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Our course should be seen as a very first introduction to the idea of higher
categories. This exercise sheet is a guide for the topics that we discuss in our
four lectures, and some exercises simply consist of recalling or making precise
concepts and constructions discussed in the lectures.

The notion of a higher category is not one which has a single clean def-
inition. There are numerous different approaches, of which we can only
discuss a tiny fraction. In general, a very good reference is the nLab at
https://ncatlab.org/nlab/show/HomePage.

Apart from that, a very incomplete list for suggested further reading is the
following (all available online).

For an overview over many approaches:

– Eugenia Cheng and Aaron Lauda, Higher-Dimensional Categories:
an illustrated guide book
available online, cheng.staff.shef.ac.uk/guidebook

Introductions to simplicial sets:

– Greg Friedman, An Elementary Illustrated Introduction to Simplicial
Sets
very gentle introduction, arXiv:0809.4221.

– Emily Riehl, A Leisurely Introduction to Simplicial Sets
a slightly more advanced introduction,
www.math.jhu.edu/~eriehl/ssets.pdf

Quasicategories:

– Jacob Lurie, Higher Topos Theory
available as paperback (ISBN-10: 0691140499) and online,
arXiv:math/0608040

Operads (not discussed in our lectures):

– Tom Leinster, Higher Operads, Higher Categories
available as paperback (ISBN-10: 0521532159) and online,
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Note: Exercises are ordered by topic and can be done in any order, unless an
exercise explicitly refers to a previous one.

We recommend to do the exercises marked with an arrow ⇒ first. These exercises
recall definitions or constructions from the lecture, and are useful to begin with
in order to get some intuition. They are generally quite easy.

Apart from this, the difficulty of the exercises varies, and while the first few
are easy, they are in general not ordered by difficulty. Those marked with an
asterisk (or multiple asterisks) are particularly challenging or require some extra
background knowledge; feel free to skip them. The exercises from 49 onwards
are on material that is not covered in the lecture.

Strict 2-categories

⇒1. Recall that the category Rel has sets as objects, and a morphism Rel(A,B)
is a relation between A and B, i.e. a subset of the cartesian product A×B.
Show that Rel can be given the structure of a strict 2-category, where
2-morphisms are inclusions of relations.

⇒2. For sets A, B, a span between A and B is a set R, together with functions
s : R→ A and t : R→ B. Show that a span between A and B can also be
represented as a function A×B → Set.

⇒3. Show that every relation determines a span where the induced map 〈s, t〉 :
R→ A×B is injective. How does the corresponding function A×B → Set
from exercise 2 look like?

⇒4. Composition of spans is defined as follows. Given a span (R, s, t) between
A and B, and a second span (S, s′, t′) between B and C, we define

R×B S := {(r, s) | t(r) = s′(s)}.

(R×B S is the pullback of t and s′ in the category of sets.)

The composition of the two spans is then given as in

R×B S

{{ ##
R

s

��

t

##

S

s′

{{

t′

  
A B C.
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Observe that composition of spans, as defined, is not strictly associative.
Define the identity span, and check whether the left and right identity laws
hold strictly.

⇒5. Show that a monoid is a category with one object (i.e. show that the
category of monoids is equivalent to the category of (small) categories with
one object).

⇒6. Let C be a strict 2-category, x an object of C, and id : C(x, x) the identity
morphism on x. Let A be the set of endomorphisms of id. Prove that A is
a commutative monoid.

Hints:

• first observe that all the elements of A can be composed vertically
and horizontally

• use the interchange law of the 2-category C to show a certain distribu-
tivity property of the two compositions

• use the identity 2-cell and the distributivity property to show that
ab = b ◦ a, where ab denotes the horizontal composition of a and b,
and ◦ denotes vertical composition

• conclude that the two operations are equal and commutative

This proof is often called the Eckmann-Hilton argument.

7. Show that the forgetful functor from categories to sets has a left adjoint ∆
and a right adjoint ∇. Show that ∆ has a left adjoint. Do the same for
the forgetful functor from strict 2-categories to categories.

8. A strict functor between strict 2-categories C and D is given by functions
that map all the data of C to the data of D, preserving all the structure.
Make this definition precise, and show that strict 2-categories, together
with strict functors, form a category.

9. Give a definition of strict natural transformation between strict functors,
and use it to show that strict 2-categories form a strict 2-category.

10. *Let V be a category with finite products. A V-category (or category
enriched over V) is a generalisation of the notion of category where the
homsets are replaced by objects of V. Make this definition precise, and
show that strict 2-categories are Cat-categories. Show that a cartesian
closed category can be regarded as a category enriched over itself.

11. Show that the category of strict 2-categories has finite products.

12. *Define a strict (n + 1)-category as a category enriched over strict n-
categories, define the notion of strict (n+ 1)-functor and show that the
category of strict (n+ 1)-categories has finite products. **Show that strict
n-categories form a strict (n+ 1)-category.

13. Recall that if C is a category, and a an object of C, the slice category C/a
has morphisms x→ a as objects, and commutative triangles as morphisms.
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Define the corresponding notion for strict 2-categories.

Bicategories

⇒14. In exercise 4, we have seen that composition of spans is not strictly
associative. Thus, spans will not form a strict 2-category. Define a
bicategory of spans.

15. Let C be a category with pullbacks. Define a bicategory of spans in C.

16. *Show that in any bicategory the two unitor isomorphisms id ◦ id→ id are
equal.

Hints:

• consider the following diagram of associators and unitors (where we
omit the composition operator and we write i for id):

(ii)(fg) //

$$

((ii)f)g

zz
i(i(fg))

%%

99

// i(fg) // (if)g

i((if)g)

::

// (i(if))g

dd

OO

show that the bottom left square commutes, and deduce that the
isomorphism id ◦ (f ◦ g)→ (id ◦ f) ◦ g → f ◦ g is equal to λ

• use naturality of the unitors and the previous result to write the
composition λ−1 ◦ ρ as a composition of identities

⇒17. For a bicategory C, and an object a of C, define the slice bicategory C/a
(hint: you will need to make use of the coherence properties of C).

18. Adapt the Eckmann-Hilton argument to a general bicategory. Is the
conclusion the same?

19. Recall that a monad on a category A is an endofunctor of A, equipped
with natural transformations µ, ν, satisfying certain laws. Generalise this
notion to a bicategory C and an object a of C. A monad in the conventional
sense is then a monad in Cat. (hint: a monad is an endomorphism of a,
together with two 2-cells µ, ν. . . ).

Note that we say a monad in a bicategory, but on an object (or category,
in the case where the bicategory is Cat).
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20. Similarly to the previous exercise, generalise the notion of an adjunction
from Cat to a general bicategory (hint: use the definition in terms of unit
and counit).

21. What is a monad in the bicategory of spans? How about spans of a general
category with pullbacks?

⇒22. Define the notion of weak functor (called pseudofunctor) between bicate-
gories.

Hints:

• start with the definition of strict functor
• weaken the laws involving non-strict structure by turning them into

(natural) isomorphisms
• add coherence for those

23. Show that bicategories and pseudofunctors form a category.

24. If we replace the isomorphisms of the definition of pseudofunctor with
arbitrary (not necessarily invertible) 2-cells, we get the notions of lax and
oplax functors, according to the direction of those cells: the choice with
2-cells id→ F (id) and Ff ◦ Fg → F (f ◦ g) is called lax, and the other one
oplax. Work out the complete definitions.

25. If C is a bicategory, show that a monad in C is the same thing as a lax
functor 1→ C, where 1 is the trivial (i.e. terminal) strict 2-category.

26. A monoidal category is a bicategory with one object. Give a more direct
definition of a monoidal category that does not use 2-categorical language.
Show that if C has finite products, it can be given the structure of a
monoidal category.

27. *Let k be a field. Define a monoidal structure on the category of k-vector
spaces where the operation (composition of 1-cells) is given by tensor
product. Show that the functor A⊗− has a right adjoint. Do the same
for abelian groups (or, more generally, modules over a commutative ring).

28. *Extend the definition of V-category to a monoidal category V.

29. *Show that a V-category is the same thing as a lax functor from a codiscrete
category to V.

30. Let C and D be categories. Define their tensor product C⊗D as the category
whose objects are the same as the objects of C×D, but morphisms are given
by alternating sequences of morphisms in C and D. Make this definition
precise, and show that it can be extended to a monoidal structure on Cat.

31. *Show that the functor C ⊗ − of the previous exercise has a right adjoint.

32. *A sesquicategory is a category enriched over Cat, where Cat is considered
as a monoidal category with the tensor product above. Give an elementary
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definition of a sesquicategory. What is the relation between strict 2-
categories and sesquicategories?

33. Define the notion of weak natural transformation (called pseudonatural
transformation) between pseudofunctors. Do bicategories, pseudofunctors
and pseudonatural transformations form a bicategory?

34. *Define the notion of modification between pseudonatural transformations.
Use it to define what a biequivalence of bicategories is (hint: a modification
is given by a 2-cell connecting two natural transformations for every object
of the domain category, together with a coherence condition. . . )

35. *A setoid is a groupoid that is also a preorder (i.e. any two morphisms with
the same source and target are equal). Show that, assuming the axiom of
choice, the sub-bicategory of Cat determined by setoids is biequivalent to
the category of sets (regarded as a 2-category).

Simplicial sets

⇒36. Recall the definition of the categories ∆ and ∆+: the objects of ∆ and
∆+ are natural numbers, written [0], [1], etc. We regard [n] as the subset
of natural numbers k with 0 ≤ k ≤ n, with the standard order. The
morphisms ∆([n], [m]) are then simply defined to be monotone increasing
maps [n]→ [m], while ∆+([n], [m]) is the subset of ∆([n], [m]) consisting
of the injective maps (i.e. strictly increasing).

Show that every map f : ∆([n], [m]) can be factored uniquely as a surjective
monotone map followed by an injective one.

⇒37. Define the map di : ∆+([n], [n+ 1]) as the unique monotone map whose
image is [n+ 1]\{i}. Dually, define si : ∆([n+ 1], [n]) as the only surjective
map which satisfies si(i) = si(i+ 1) = i. We will refer to the maps di as
cofaces and the si as codegeneracies.

Show that every map f : ∆([n], [m]) can be written as a composition of
cofaces and codegeneracies. *Prove that every such f admits a normal
form as a composition of cofaces and codegeneracies.

⇒38. Show that coface and codegeneracies satisfy the simplicial identities:

dj ◦ di = di ◦ dj−1 for i < j

sj ◦ si = si ◦ sj+1 for i ≤ j
sj ◦ di = di ◦ sj−1 for i < j

sj ◦ di = id for i = j or i = j + 1
sj ◦ di = di−1 ◦ sj for i > j + 1
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⇒39. Another standard definition of a simplicial set is as follows (see Def. 3.2
in Friedman’s elementary illustrated introduction to simplicial sets). A
simplicial set consists of a sequence of sets Y0, Y1, Y2, . . ., and for every
n ≥ 0, functions di : Yn → Yn−1 and si : Yn → Yn+1, with 0 ≤ i ≤ n,
such that the “opposite” of the equations from the previous exercise are
satisfied, i.e.

di ◦ dj = dj−1 ◦ di for i < j

si ◦ sj = sj+1 ◦ si for i ≤ j
di ◦ sj = sj−1 ◦ di for i < j

di ◦ sj = id for i = j or i = j + 1
di ◦ sj = sj ◦ di−1 for i > j + 1

Show that this this definition is equivalent to our definition of a simplicial
set as a functor ∆op → Set. Hint: You should do the previous exercises
before attempting this one.

⇒40. Let X be a simplicial set (i.e. a functor ∆op → Set). We will call the
elements of Xn n-simplices. For any map θ : ∆([n], [m]), the action of X
on θ will be denoted as θ∗ : Xm → Xn.

Define a simplicial set ∆n whose k-simplices are the maps ∆([k], [n]). Show
that a map of simplicial sets (i.e. a natural transformation) ∆n → X is
the same thing as an n-simplex of X (hint: Yoneda lemma. . . ).

41. We say that a simplex x : Xn is non-degenerate if for all maps θ : ∆([n], [m])
such that x lies in the image of θ∗, θ is injective. Show that for any n-
simplex x there exists a unique triple (m, y, φ), wherem is a natural number,
y is a non-degenerate m-simplex, and φ : ∆([n], [m]) is a surjective map
such that x = φ∗(y).

42. For any natural number n, define the n-skeleton of a simplicial set X as
the subfunctor of X generated by all the k-simplices of X for k ≤ n. Show
that this defines a comonad skn : sSet→ sSet. *Show that skn has a right
adjoint.

Kan complexes and quasicategories

Recall from exercise 40 that ∆n is the simplicial set whose k-simplices are the
maps ∆([k], [n]). Define Λn

i to be the largest sub-simplicial set of ∆n which does
not contain the identity function id ∈ ∆([n], [n]), and which does not contain
the unique injective function in ∆([n − 1], [n]) which does not have i ∈ [n] in
its image. Intuitively, this means that Λn

i is “∆n with the interior and one face
removed”. Λn

i is the abstract (n, i)-horn.

Assume that X : ∆op → Set is a simplicial set. An (n, i)-horn in X is a natural
transformation Λn

i → X, just as an n-simplex in X is a natural transformation
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∆n → X (see exercise 40). Recall that X is called a Kan complex or weak
∞-groupoid if every horn in X has a filler (i.e. every natural transformation
Λn

i → X can be extended to a natural transformation ∆n → X). Recall that X
is called a quasicategory if every inner horn (where 0 < i < n) has a filler.

⇒43. Try to draw a graphical representation of ∆n and Λn
i for some n and i

(you may want to choose n ≤ 3).

⇒44. Given a category C, the nerve N(C) is a simplicial set where elements of
the set N(C)k are chains of k morphisms of C. Make the definition of the
functor N(C) precise. Hint: You can use exercise 39.

⇒45. Show that N(C) is a Kan complex if and only if C is a groupoid, i.e. if and
only if every morphism has an inverse. For the construction of the nerve
N(C), see exercise 44.

46. We have seen in the previous exercises that N(C) has fillers for (some)
horns. Show that these fillers are in fact always unique. Show that, for
any quasicategory X where all required fillers exist uniquely, one can find
a category C such that X is naturally isomorphic to N(C).

⇒47. Define the abstract boundary ∂∆n as the simplicial set where k-cells are
maps ∆([k], [n]), excluding the identity on [n] (that is, we have Λn

i (
∂∆n ( ∆n). An n-boundary in a simplicial set X is then just a natural
transformation ∂∆n → X. For which n do in general all n-boundaries in
X have fillers, if you know that X is . . .

• any simplicial set?

• a Kan complex or quasicategory?

• N(C), for some category C?

What is the relationship between being able to fill boundaries, and being
able to fill horns?

48. Let C be a category, and a an object of C. Express the nerve of the slice
category C/a in terms of the nerve of C. Derive a definition of the slice of
a quasicategory.

Extras

The following exercises can be used to acquire familiarity with the ideas behind
some of the existing definitions of higher categories.

Double categories and multisimplicial sets

49. Let C be a category with pullbacks. An internal category in C is given by:
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• an object O of C called the object of objects;
• an object A of C called the object of morphisms;

together with an “identity” and an associative “composition” operation.
Make this definition precise and show that an internal category is Set is
simply a small category. (This notion will look familiar if you have solved
enough of the previous exercises).

50. An internal category in Cat is called a double category. Find an elementary
definition of double category.

51. Show that a double category where the object of objects is a discrete
category is the same as a strict 2-category.

52. Show that an internal category in simplicial sets is the same thing as a
simplicial object in Cat.

53. Use the previous exercises to show that a double category is the same
thing as a bisimplicial set satisfying unique horn filling conditions in both
dimensions. Obtain an alternative definition of strict 2-category based on
bisimplicial sets.

Strict ∞-categories

54. The globe category has natural numbers as objects, and exactly 2 morphisms
s, t : n→ m for all m < n, with s ◦ t = s ◦ s = s and t ◦ s = t ◦ t = t. Verify
that those conditions do indeed determine a category.

55. A globular set is a presheaf over the globe category. If X is a globular set,
the elements of Xn are called n-cells. Show that a bicategory determines a
globular set where s and t are both isomorphisms at high enough dimensions.
Find an alternative definition of strict 2-category based on a globular set.

56. *Generalise the second part of the previous exercise to get a definition of
strict ∞-category.

Hint: you will need the following ingredients:

• n different compositions of n-cells for every n;
• units for all dimensions;
• associativity of all compositions;
• interchange laws.

57. Let T be a monad on a category C with pullbacks. We say that T is
cartesian if it preserves pullbacks, and the naturality squares of η and µ are
pullbacks. Show that the list monad on Set (i.e. the free monoid monad)
is cartesian. Show that the monad of multisets (i.e. the free commutative
monoid monad) is not cartesian.
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58. Show that the forgetful functor from strict ∞-categories to globular sets
has a left adjoint (giving the free strict ∞-category on a globular set).
(hint: find a general expression for the formal composition of cells of a
globular set).

59. Show that the monad determined by the adjunction of the previous exercise
is cartesian.

Multicategories and operads

60. Let L be the list monad on Set. Define a bicategory of L-spans, whose
objects are sets, and morphisms from A to B are given by spans of the
form:

R

}}   
LA B.

Complete the definition of this bicategory.

61. Generalise the above definition to get a bicategory of T -spans for any
cartesian monad T on a category C with pullbacks.

62. A T -multicategory is a monad in the bicategory of T -spans. An L-
multicategory is often called a plain multicategory. Give an elementary
definition of plain multicategory.

63. Suppose C has a terminal object 1. A T -operad is a T -multicategory
structure on the object 1 of the bicategory of T -spans. Give an elementary
definition of plain operad.

64. Let P be a T -operad. For an object X of C, define TPX via the pullback:

TPX

{{ ""
TX

##

P

||
T1.

Show that TP defines a monad on the slice category C. Give an elementary
definition of this monad in the case where P is a plain operad.

65. An algebra of an operad P is defined to be an algebra of the monad TP .
Show that there exists a plain operad whose algebras are monoids.
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