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Introduction Ordinals are numbers that, although possibly infinite, share an important
property with the natural numbers: every decreasing sequence necessarily terminates. This
makes them a powerful tool when proving that processes terminate, or justifying induction and
recursion [DM79, Flo67]. There is also a rich theory of arithmetic on ordinals, generalising
the usual theory of arithmetic on the natural numbers. Unfortunately, the standard definition
of ordinals is not very well-behaved constructively, and the notion fragments into a number
of inequivalent definitions, each with pros and cons. We consider three different constructive
notions in homotopy type theory, and show how they relate to each other.

Cantor Normal Forms as a Subset of Binary Trees In classical set theory, it is well
known that every ordinal « can be written uniquely in Cantor normal form

a=wh 40P WP with By > By > - > B, (1)

for some natural number n and ordinals §;. If a < g, then ; < «a, and we can represent «
as a finite binary tree (with a condition) as follows [Buc91, NXG20]. Let T be the type of
unlabeled binary trees, i.e. the inductive type with suggestively named constructors 0 : 7 and
w™+—:T xT — T. Let the relation < be the lexicographical order, i.e. generated by the
following clauses:

0< w+b a<c— w'+b< w+d b<d— w+b< w*+d.

We have the map left : T — T defined by left(0) := 0 and left(w®+b) := a which gives us the
left subtree (if it exists) of a tree. A tree is a Cantor normal form (CNF) if, for every w®+t
that the tree contains, we have left(t) < s, where s <t := (s < t)W(s = t); this enforces the
condition in (1). Formally, the predicate isCNF is defined inductively by the two clauses

isCNF(0) isCNF(s) — isCNF(t) — left(t) < s — isCNF(w? +1).

We write Cnf := X(t : 7).isCNF(¢) for the type of Cantor normal forms.

Brouwer Trees as a Quotient Inductive-Inductive Type In the functional programming
community, it is popular to consider Brouwer ordinal trees O as inductively generated by zero,
successor and a “supremum” constructor sup : (N — O) — O which forms a new tree for every
countable sequence of trees [Bro26, CHS97, Han00]. By the inductive nature of the definition,
constructions on trees can be carried out by giving one case for zero, one for successors, and
one for suprema, just as in the classical theorem of transfinite induction. However, calling
the constructor sup is wishful thinking; sup(s) does not faithfully represent the suprema of
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the sequence s, since we do not have that e.g. sup(so, s1,s2,...) = sup(s1, So, S2,...) — each
sequence gives rise to a new tree, rather than identifying trees representing the same supremum.

Using a quotient inductive-inductive type [ACDT 18], we can remedy the situation: Let A
be a type and <: A — A — hProp. For sequences f,g: N — A, we say that f is simulated by
gif f 2 g:=VEk3In.f(k) < g(n) (where 3 is truncated ¥). We say that f and g are bisimilar
with respect to <, written f ~= g, if we have both f g and ¢ 2 f. A sequence f: N — A is
increasing with respect to < if we have Vk.f(k) < f(k +1). We write N =5 A for the type of
=<-increasing sequences. We now mutually construct the type Brw : hSet together with a relation
<: Brw — Brw — hProp. The constructors for Brw are zero : Brw, succ : Brw — Brw, and

limit : (N = Brw) — Brw and bisim : f ~= ¢ — limit f = limit g,

where we denote x < y = succx < y in the type of limit. The constructors for < ensure
transitivity, that zero is minimal, that succ is monotone, and that limit f is the least upper
bound of f. Because of the infinitary constructor limit, we lose full decidability of equality and
order relations, but by restricting to limits of increasing sequences, we retain the possibility of
classifying an ordinal as zero, a successor, or a limit.

Extensional Wellfounded Orders Finally, we consider a variation on the classical set-
theoretical axioms for ordinals more suitable for a constructive treatment [Tay96], following
the HoTT book [Unil3, Chapter 10] and Escardé [Esc21]. The type Ord consists of a type X
together with a relation <: X — X — hProp which is transitive, extensional (any two elements
of with the same predecessors are equal), and wellfounded (every element is accessible, where
accessibility is the least relation such that x is accessible if every y < x is accessible.).

We also have a relation on Ord itself. Following [Unil3, Def 10.3.11 and Cor 10.3.13], a
simulation between ordinals (X, <x) and (Y, <y) is a monotone function f: X — Y such that
forall x : X and y : Y, if y <y fz, then we have an xg <x = such that fxy = y. We write
X <Y for the type of simulations between (X, <x) and (Y, <y). Given an ordinal (X, <) and
x: X, the initial segment of elements below x is given as X/, := X(y : X).y < . A simulation
f: X <Y is bounded if we have y : Y such that f induces an equivalence X ~Y,,. We write
X <Y for the type of bounded simulations.

Results For each of Cnf, Brw, Ord, the relation < is transitive, extensional, and wellfounded;
for wellfoundedness, the refined definitions of Cnf and Brw which excludes “junk” terms are
crucial. For Cnf, < is decidable, whereas for Ord, < is decidable if and only if the law of
excluded middle holds. Brw sit in the middle, with some of its properties being decidable, e.g.
it is decidable whether a given z is finite, but < is not decidable in general without further
assumptions. We introduce an abstract framework axiomatising properties such as being a
successor or a limit ordinal, which makes it possible to compare the different notions of ordinals
above. According to these definitions, each of Cnf, Brw, Ord has zeroes and successors, and the
successor functions of Cnf and Brw are both <- and <-monotone. For the successor function of
Ord, each of the two monotonicity properties on its own is equivalent to the law of excluded
middle. Cnf does not have limits, but both Brw and Ord do. Using the abstract notions of zero,
successor and limit, we can give an abstract specification of the arithmetic operations; we say
that a notion of ordinals has unique arithmetic if the type of implementations of the specification
is contractible. Cnf has addition, multiplication, and exponentiation with base w (all unique),
Brw has addition, multiplication and exponentiation with every base (all unique), and Ord has
addition and multiplication. Finally, we have order-preserving embeddings Cnf < Brw — Ord.

Details and Formalisation Full details: arxiv:2104.02549. We have formalised our results
in cubical Agda: https://bitbucket.org/nicolaikraus/constructive-ordinals-in-hott.
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