
1-Types versus Set-Based Groupoids

Nicolai Kraus

January'14

Abstract

In Homotopy Type Theory, we have (at least) two plausible notions of
�groupoid�:

1. 1-truncated types

2. a set of points, and for any pair of points, a set of morphisms between
them, together with all the data needed to make it a groupoid (a
set-based representation).

From a groupoid in the second representation, it seems to be fairly simple
to get one in the �rst presentation. We do not discuss this here (it is a
simple higher inductive types, see Rezk completion).

I show that we can derive the second representation from the �rst one
(in the sense of Altenkirch) if and only if the task is trivial, i.e. for 1-types
that are actually sets.

However, for a given 1-type with braided loop spaces (�weakly abelian�
loop spaces), I can construct a weak form of the second representation
which only includes all loop spaces instead of all path spaces.

1 Negative Results

De�nition 1 (Altenkirch). Given a type A, we say that A is presentable as a
groupoid i� there is

h : ‖A‖0 × ‖A‖0 → U

such that
c : ∀(a1 a2 : A). h(|a1|, |a2|) ' (a1 =A a2).

Altenkirch wanted to know whether a type can always be presented as a
groupoid, where the correctness criterion should probably be that the canonical
HIT-construction allows to recover the original type (this makes sense at least
for 1-types). Note that I don't require A to be a 1-type as this is never used in
the proof of the negative result.

Capriotti observed that, if A is presentable as a groupoid, then

|−| : A→ ‖A‖0 (1)

has a section. The other direction of this statement is actually wrong - a section
does allow us to construct a reasonable h, but we will not get c. This would
require a retraction (which would immediately imply that A is a set).

I give an improvement of this observation:

1

Theorem 2. A type is presentable as a groupoid if and only if it is a set.

The �rst direction (�if�) holds trivially. The title of this section is �negative
results� as the theorem shows Altenkirch's notion to only be attainable in the
trivial case.

Proof (of the nontrivial direction of Theorem 2). I want to start with a simple
observation. It probably follows from the usual �proof-rewriting-rules� and could
be done in much higher generality, but for now, it's enough like this:

Observation. Given types A,B, functions j : A→ B and k : B → U as well as
a1, a2 : A and p : a1 = a2. Then, there are three functions k(j(a1))→ k(j(a2)),
namely the ones coming from

• transporting along p

• transporting along apjp

• transporting along apk◦jp.

These three functions are all equal (trivial by induction on p).

Assume now that we have a type A, together with h and c as in De�nition
1. I need to show that A is a set. Assume a1, a2, b : A and p : a1 = a2. The
latter proof gives us c(|a1|, |b|) = c(|a2|, |b|). We need to analyze what exactly
this means: it implies that the square

h(|a1|, |b|)
induced by c(|a1|, |b|) //

transporting along p

��

a1 = b

transporting along p

��
h(|a2|, |b|) //

induced by c(|a2|, |b|)
// a2 = b

commutes (up to homotopy). The right vertical map is just composition with
p. The left vertical map can, by the above observation, be replaced by the map
that is given by transporting along |p| (the situation is: A :≡ A, B :≡ ‖A‖0,
j :≡ |−|, k :≡ λx.h(x, |b|); and |p| means ap|−|p). However, transporting along

|p| is equal to transporting along |q| for any other q : a1 = a2, implying that
composition with p is equal to composing with q, implying p = q.

2 Positive Results

De�nition 3. I say a type A is reduced-presentable as a groupoid if there is

g : ‖A‖0 → U

and
d : ∀(a : A). h(|a|) ' (a =A a).

I consider this a reasonable alternative to De�nition 1:

2

1. the higher structure of a type is fully speci�ed by its higher loop spaces

2. consequently, in De�nition 1, �too much� information is given; the HIT-
construction can be done with the reduced data given in Def. 3 (of course,
we will not get the general isomorphism, as both de�nitions would have
the same problem otherwise)

3. the double-indexing in De�nition 1 induces some weird choice-property
that we probably would not want.

Remark 1. Assume A is reduced-presentable with (g, d). In general, it will not
be presentable. In particular, it does not need to be a set. One approach to
construct a presentation (h, c) would be to set

h(x, y) :≡ ‖x = y‖−1 × g(x).

Intuitively, this is correct: a = b is isomorphic to a = a if a = b, and empty
if ¬a = b. However, we will not be able to construct the general c. What we
could do it o�ering

c′ : ∀(a1 a2 : A).
∥∥∥h(|a1|, |a2|) ' (a1 =A a2)

∥∥∥
−1
.

(if I am not mistaken, this requires LEM−1 in addition). The truncation avoids
the �weird choice property� mentioned above.

Let's discuss some �positive� result.

De�nition 4. Say that a type A has braided loop spaces if, for any a : A, the
loop space a = a is commutative (∀p, q.p � q = q � p).

Caveat: Saying that a = a is abelian in this case is maybe not appropriate
as it does not take the higher structure into account.

The arguable most obvious examples of types with braided loop spaces are
sets (for which it is trivial), and loop spaces themselves (by the Eckmann-Hilton
argument).

Theorem 5. Every type with braided loop spaces is reduced-representable.

For an elegant proof of this, we can use the following special case of Capri-
otti's and my more general work:

Lemma 6 (out forthcoming work [1]). Given a function f : A → B such that
apf is constant (in the most naive sense). Under the assumption of HITs, f
factors through ‖A‖0.

Proof of Theorem 5. We want to show that f ≡ λa : A.a = a factors through
‖A‖0. Thus, we need to show that apf is constant. Observe that apf is �con-
jugation�: given p : a = b, the term apf induces an equivalence between a = a
and b = b which is given by λq.p−1 � q � p, and the property of having braided
loop spaces is exactly what we need to say that this function is constant.

References

[1] Paolo Capriotti and Nicolai Kraus. �Eliminating Higher Truncations via
Constancy�. in preparation. 2014.

3

	Negative Results
	Positive Results

