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Preface

This composition is an introduction to a fairly new field in between of math-
ematics and theoretical computer science, mostly referred to as Homotopy
Type Theory. The foundations for this subject were, in some way, laid by an
article of Hofmann and Streicher |21] E|by showing that in Intentional Type
Theory, it is reasonable to consider different proofs of the same identity.
Their strategy was to use groupoids for an interpretation of type theory.
Pushing this idea forward, Lumsdaine [31] and van den Berg & Garner
[8] noticed independently that a type bears the structure of a weak omega
groupoid, a structure that is well-known in algebraic topology.

In recent years, Voevodsky proposed his Univalence azxiom, basically
aiming to ensure nice behaviours like the ones found in homotopy theory.
Claiming that set theory has inherent disadvantages, he started to develop
his Univalent Foundations of Mathematics, drawing a notable amount of at-
tention from researchers in many different fields: homotopy theory, construc-
tive logic, type theory and higher dimensional category theory, to mention
the most important.

This introduction mainly consists of the first part of my first year report,
which can be found on my homepageﬂ (as well as updates of this composition
itself). Originally, my motivation for writing up these contents has been to
teach them to myself. At the same time, I had to notice that no detailed
written introduction seems to exist, maybe due to the fact that the research
branch is fairly new. There are several good introductions to certain aspects,
but most of them require the reader to already have a good knowledge of

this is not the original one, but an improved version
Zhttp://red.cs.nott.ac.uk/~ngk/
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the underlying deep-going theoretical concepts. Therefore, I hope that this
introduction could be helpful for everyone interested in the subject without
too much specific knowledge. I start from the very beginning and try to
give a self-contained presentation. However, I believe that this attribute
is somewhat inherently ill-defined. Of course, it is necessary to assume
a certain level of knowledge before getting started, and here, I choose to
essentially take my own, including a (however very basic) amount of type
theory, homotopy theory, topology in general, and category theory.
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1 Overview

In Section 2, we give very short introductions to type theory with identity
types, homotopy theory, higher dimensional category theory and how they
are connected. Section 3 contains a summary of the standard categorical
semantics of the simply typed lambda calculus, as originally given by Lam-
bek and Scott [26]. In Section 4, we discuss in which way the generalization
described by Seely can model dependently typed theories. Further, we
give an introduction to the construction of homotopic models with the tools
of weak factorization systems (Section 5) and model categories (Section 6),
as it is done in many recent publications (including [3], [5], 6], [7], [23]).
One example of a model category is the category of small groupoids, that
was used by Hofmann & Streicher to show that uniqueness of identity
proofs is not implied by J (Section 7). Another model category is the one
of simplicial sets, which plays a very central role in Voevodsky’s model of
type theory. We introduce it in Section 8. Section 9 deals with the notion
of contractibility, homotopy levels, weak equivalences, univalence and con-
cludes with a proof that univalence implies function extensionality. Finally,
in Section 10, a proof of Hedberg’s theorem is presented.

2 Type Theory, Homotopy Theory, Higher Cate-
gory Theory and basic Intuition

We want to give a very brief introduction to the main topics we deal with.



2.1 Type Theory

Type theory, as described by per Martin-Lof ([35], [33], [34]), is an extension
of the simply types Lambda calculus. Types may depend on terms of other
types. Especially, if A is a type and B depends on A, then there is the depen-
dent sum X;.4.B and the dependent function type 1l,.4.B. From the point
of view of the Curry-Howard-Isomorphism, these type formers correspond
to the existential and universal quantifier.

Concerning equality of terms and types, it has turned out to be very
reasonable to distinguish between two main kinds: First, the definitional
equality that type checking depends on. It is usually required to be decidable
and can be used for computation. For example, 8 equality is often a subset
of the definitional equality.

Obviously, not every interesting equality can be decidable. Instead, it is
often necessary to give a concrete proof if it is claimed that two terms (or
types) are equal. This is where identity types play a role: If a and b are of
the same type A (possibly in some context), then Ids ab is a new type (in
this context), the type of proofs that a equals b. The only constructor is
reflexivity, stating that a term always equals itself. The natural elimination
principle says that if a type depends on Y..4.a = b, then we only need
to construct an inhabitant for the reflexivity cases; and finally, the usual
computation rule states that using the elimination rule to create a term
over the reflexivity proof, we just get the same term that we have provided
in the first place. The following inference rules make this precise, but there
are two things to emphasize: First, we omit the assumption I' F A : fype in
each rule, and second, we only state the weak form of the elimination rule.
The strong one would not require the equality proof to be at the very end
of the context. Of course, in the presence of dependent functions (which we
always assume), the two forms are equivalent.

. u I'ka,b: A
R Idagab : type
Introduction 'Fa:A

I'trefl, : Idaaa

'+-P:(ab:A) — Idgab— Type
I'm : Ya.P(a,a,refl,)
'k (a,b,q) : Lapa.ldaab

' JP,m,(a,b,q) : P(aa b, Q)

Elimination J
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'+P:(ab:A) — Idgab— Type
I'+m : Ya.P(a,a,refl,)
I'Fa: A
I't JP,m,(a,a,reﬂa) =pma: P(a’a b, Q)

Computation 8

The following is a simple, though crucial, fact:

Theorem 2.1 (equality is equ. rel.). Propositional equality is an equivalence
relation, i. e. there are terms of the following types:

1. refl : Ya.ldpaa
2. sym : VYab.Ildgab— Idaba

8. trans : Yabe : Idpbc — Idyab — Idgac

Proof. The first is part of the definition, the second and the third are easily
shown by applying J. O

Remark 2.2. Tt is convenient to write p~! instead of symp and p o ¢ instead

of transpq. Of course, the three terms are all parametrized over the type
(which is A here). To improve the readability (especially in later formulas
that make heavy use of reflexivity), we do not make this explicit.

The above theorem can be improved to the statement that propositional
equality comes with the structure of a groupoid, or even a higher groupoid,
if an appropriate formalization is given. For example, we can prove that
pop ! equals reflexivity, or that refl, o p equals p.

Sometimes, a second eliminator is used. It does not arise naturally from
the definition of equality as an “inductive” type, so it has to be understood
as an additional axiom:

'ka: A
I'tP: Idgaa — Type
'tm : P(refl,)
I'tq: Idgaa
'k Ka,P,m,q 3 P(Q)

Streicher’s Axiom K

It is not difficult to check that K is actually equivalent to the principle
uniqueness of identity proofs that states that for any valid type Id4 a b, there
is at most one inhabitant:



'tab: A
T'tp,q: Idgab

UIP -
'k uzpqu N ]d]dabpq

The eliminators J and K look quite similar; and for some time, it was
open whether the principle UIP or, equivalently, K were derivable from J.
They are indeed not, as shown by Hofmann and Streicher [21]. The crucial
difference is that J can eliminate if we have some type that depends on
Idab for any a,b, while K can eliminate in the restricted case where the
type depends on Idaa. The usage of K is questionable. While it was, for
some time, considered a natural property, a (sufficiently strong) type theory
with Voevodsky’s univalence (which we will introduce later) is inconsistent,
if we assume K. As McBride [36] has shown, the assumption of K allows
the usage of stronger pattern matching. This might make it useful in some
way. By default, the proof assistant and dependently typed programming
language Agda makes use of K, while on the other hand, e.g. Coq does not.

Finally, we want to mention the reflection rule

I'tab: A
 Trkp:Idiab
reflection
a=1»

that makes a theory extensional by merging definitional and propositional
equality (note that, clearly, every definitional equality can be proven by
reflexivity and is therefore propositionally valid). This yields (in sufficiently
strong theories) undecidable typechecking and is therefore in general not at
all feasible.

2.2 Homotopy Theory

A standard reference for a totally elementary and basic introduction to al-
gebraic topology is Hatcher’s book [17]. However, for the reader with a
background in category theory, it might not be an economical choice. There
are many other introductions available, for example [24]. Here, we only give
the most basic definitions for reference, and our few paragraphs are in no
way a helpful introduction to the topic.

Definition 2.3 (topological space). A topological space, or, if no confusion
is to be expected, just a space, is a tuple (X, 7) of a set X and a set 7 of
subsets of X, called a topology of X, that is closed under finite intersections
and arbitrary unions.



Remark 2.4. In the above definition, 7 contains in particular the empty
set and X itself. The elements of 7 are called open sets of X, while their
complements are called closed. It is common to omit the topology 7 in the
notation and just write X instead of (X, 7).

Definition 2.5 (continuity). A function f : (X1,71) — (X2,72) between
two spaces is a map X; — Xo (which is, by abuse of notation, also called
f) satisfying that the inverse image of each open set (i.e. element of 75) is
again open (i.e. in 7).

A very special case of a topological space is a metric space:

Definition 2.6 (metric space). A metric space is a tuple (X, d) of a set X
and a metric (or distance function) d : X x X — R, which has to have the
following properties, for all z,y, z in X:

e d(xz,y) =0 if and only if z = y (coincidence)
o d(z,y) = d(y,x) (symmetry)
o d(z,y) +d(y,z) <d(z,z) (triangular inequality)
Remark 2.7. A metric space (X, d) induces a topological space (X, 7), where

T={U|VueU.3e>0.YveX.duv)<e—velU}.

Example 2.8. R or any subset of it is a metric space, where d(x,y) = |z—y|,
and therefore also a topological space.

Definition 2.9 (point, path, homotopy and higher homotopy). Given a
topological space X. By I, we denote the unit interval [0,1] C R.

e A point is an element x € X, or equivalently, a map I° — X.

e A path is a continuous map I — X. In particular, if a,b are points,
then a map p: I — X with p(0) = a,p(1) = b is a path from a to b.

e If a,b are points and p, g are paths from a to b, then amap H : I? - X
with H(0) = p and H(1) = p and Vt. H(t,0) = a A H(t,1) = bis a
homotopy from p to q.

Note that we use implicit currying / uncurrying in the obvious way. Higher
homotopies can be defined by the straightforward generalization as maps
m— X.



2.3 Higher Category Theory

The notion of higher categories is a generalization of ordinary category the-
ory. Intuitively, a 2-category is an ordinary category, enriched over the
category of small categories. This means, given any two objects X,Y in a
2-category C, the “hom-set” C'(X,Y) is an ordinary category, the objects of
which are the morphisms of C'. Instead of talking about objects and mor-
phisms, it is reasonable to call them cells, where the objects of C are the
0-cells, the morphisms are the I-cells and the morphisms in the “hom-set”
categories are the 2-cells. A standard example of a 2-category is Cat, the
category of all small categories, where the small categories are the 0-cells,
the functors are the 1-cells and the natural transformations are the 2-cells.

In case of 2-categories, there are two possibilities: The associativity and
identity laws might hold “as usual”’, in which case we talk about strict
2-categories, or only up to isomorphism, which gives us weak 2-categories.
Similarly, a functor between 2-categories is usually weak, so that the functor
laws only again hold up to isomorphism.

The situation becomes even more complicated if we look at categories
of higher dimensions: 3-categories, 4-categories, 5-categories and so on. An
n-category can be described as a category enriched over (n-1)-categories.
The case we are most interested in is the one of a w-category, which has in-
finitely many levels of cells. Basically, an w-category is an ordinary category,
enriched over w-categories. While they seem to be incredibly complicated,
which is unfortunately not totally incorrect, the bright side is that there is a
certain symmetry - there are w-categories on each level, so all levels behave
the same.

Fortunately, our requirements are actually a bit simpler: We are mainly
interested in (w)-groupoids, where every cell is an isomorphism (a 0O-cell is
always an isomorphism by definition).

2.4 The Connection, intuitively

The reason why homotopy theory and type theory can be brought together
is that both spaces and types are instances of weak w-groupoids.

In the case of a space, the 0O-cells are the points of the space, the 1-cells
the paths, the 2-cells the homotopies and in general, an n-cell is a map
I" — X with the properties listed in definition [2.9

Van den Berg & Garner [8] and Lumsdaine [31] have independently
proved that a type also forms a weak w-groupoid: The 0-cells are terms and
given two n-cells, the equality proves between them form the n + 1-cells.



This can be seen as an indication for the existence of a model of type
theory in topological spaces; and indeed, as Voevodsky [49] has shown, such
a model exists in simplicial sets, which is very much related to the category
of CW-complexes, the category of “nice” topological spaces. We want to
describe the most basic intuition.

A (base) type A is modelled as a space [A]. Terms of this base type are
just points of [A]. Given two terms s, t, the type Idj ab is modelled as the
space of paths between [a] and [b]. Given paths p,q, the type Idpq is, of
course, just the space of homotopies between [p] and [¢]; and so on.

In this model, the eliminator J holds, while K does not, and this is
exactly what we aim for. The first time I have understood this intuition
completely was when I read a post by Dan Licata |27] on the HoTT blog
[14], which T highly recommend. K expresses that every proof in Idaa is
equal to refl,, which is not the case for paths in spaces: Obviously, not every
path in some space is homotopic to the constant path. On the other hand,
for J, it is enough if every element of ¥y 4.1dab is equal to (a,a, refl,). In
the homotopy model, this means that for any path p between [a] and [b],
there is a “weak homotopy” to the constant path const at [a], where “weak
homotopy” means a map h : I? — [A] with h(0) = p, h(1) = const. But
this is clearly true. A (canonical) choice for h is

h(t,s) =p((1 —t)-s).

In my talk [25] for the FP Away Day 2012, I have tried to give some expla-
nations of these things.

3 Semantics of the Simply Typed Lambda Calcu-
lus

In this section, we want to give an introduction to the standard categorical
semantics of the simply typed lambda calculus. This content is traditional
and well-known. A standard reference is [26)].

To get started, consider a set S of base types, function types, finite
products and coproducts. Concretely, this means that the empty type 0
and the unit type {x} are types, every element of S is a type and if A, B
are types, then so are A — B, A x B and A 4+ B. Further, every base type
o € § is inhabited by a number of constants, which we denote by const,.
Of course, for every type former, we assume the usual introduction and
elimination rules.

Let C be a bicartesian closed categoryﬁ The standard categorical se-

3Concretely, we want C to have all finite products, finite coproducts and exponentials.



mantics, as, for example, described in [2], is now given as follows:

For every base type o € S, let o] be an object in C. Let [#] = 0 be
the initial object and [{x}] = 1 the terminal object of the category. Every
constant ¢ € const, gets interpreted as a morphism [c¢] : 1 — [o]. In
addition, the unique inhabitant of the unite type is modelled by the identity
morphism id;.

Types. On types, the interpretation is expanded naturally :

[Ax B] = [A] x[B], the categorical product

[A+B] = [A]+[B], the categorical coproduct

[A— B] = [B]WM1, the categorical exponential.
Contexts. Similarly, contexts are interpreted as

10] = 1, where () is the empty context

[T,z:A] = [I'] x [4].

This should not be surprising, as a context x : A,y : B can be seen as
the type A x B (together with a variable of that type).

Terms. As implied above, we want to interpret terms as morphisms.
More precisely, the term judgement I' F ¢ : A will be a morphism with
domain [I'] and codomain [A]. This is consistent to our definition of the
interpretation of constants:

[OFc:dl = [d

[CF % {%}] = [I]51

[T,z: Ak a: A = m

[T,x: At y: B] = [CFy:B]lom ifz#y

[T fst t: A] = mo[l'Ft:Ax B]

[T snd t: B] = mo[['Ft:Ax B]

[T'F(r,s): Ax B] = ([CFr:A][I'Fs:B])

[T'Finl r: A+ B] = injo[['Fr: A]

[l'Finr s: A+ BJ = ingo 'k s: B]

[Tk case(f,9): A+ B—-C] = [[I'Ff:A=C],[I'Fg:B—C]]

Here, A <~ A x B =% B are the projections of the product, dually,

A Y A+ B &2 B the injections into the coproduct. Given A ER C
and B %4 C, we write [f,g] for the corresponding morphism A + B — C.

Similarly, we write (h, k) : C — A x B, if C b Aand © 5 B are given.
Note that the bracketing in [z : A,y : B,z : C,w: D] = (([A] x [B]) x
[C]) x [D] is important.

To interpret the introduction and elimination of functions, it is necessary
to recall that exponentials are right adjoint to products. More precisely, for
any object A, the functor - x A: C — C, B — B x A is left adjoint to the
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functor -4 : C — C, B — BA.

The language of category theory now offers multiple possibilities to de-
scribe what is going on. We want to be very detailed, as we believe that
this in an important point:

e The adjunction - x A 4 -4 comes along with its hom-set isomorphism
Paxy : C(X x A,Y) = C(X,Y?4) (natural in all arguments). This
isomorphism is sometimes (e.g. [2]) called curry, y y-

e Application. If we are given ' - f : A - Band ' F a : A we can
define:

[T fa: B]= curry[[j]]v[[rMB]] ([T f : A= B])o(idpry, [T Fa : A])

e The adjunction has a counit €4 : A % A — 1¢. This counit is often
called apply,. The following definition is equivalent to the one just
given:

[Tt fa: B] :apply[[A]]([[B]])oq[Fl—f:A—)B]],[[FI—a:A]]>

This is the definition given in [2]. Note that many authors, including
[2] and Awodey [4], introduce exponentials as an object together with
the morphism apply and its universal property. Here, we need to see
the “big picture” in order to be able to discuss the generalized setting
of dependent types later.

e Abstraction. Again, assuming we are given ',z : AF ¢ : B, we define

[['+ Azt : A— B] = currypq s (L2 : At - B])

Substition/Context morphisms.  Again, note that we do not make a
real difference between a context such as = : A,y : B,z : C' and the type
A x B x C (with a variable of this type). Therefore, a substitution or context
morphism is, more or less, the same as a (“generalized”) term:

[C+o:()] = [I]>1 the same as [I'F  : {x}]
[TFo:At:A] = ([TFo:A][TFt:A])

Lemma 3.1 (Substitution is composition). Given A+t : A and T F o :
A, the equality [AFt: Al o[I'Fo: A] = [I'F tlo] : A] holds, where t[o]
denotes the usual parallel substitution.

Proof. By induction on (¢, A). See [2], section 5.4.3. O
Theorem 3.2 (Correctness). If I' = s =g, t : A, then [['Fs:A] =
[T+t A].

11



Proof. The most interesting part of the proof is the correctness of 37 equality
for functions. We show this part here; for the rest, see [2], section 5.4.4.

According to Lemma [3.I], we have

[0 Ftla/x] : Bl = [,z : Abt : B] o {idpyy, [+ a - A])

On the other hand, we have by the definitions (for the sake of readability,
we omit the indices of curry)

[TF(Azt)a : B] = curry ' ([['F Azt : A— B])o (idpry, [T Fa - A])
= curry ! (curry ([[,z: AFt : B]))o (idprp, [T Fa - A])

1

This show that the S-law is given by curry™" o curry = id.

Concerning 7, note that

[CFXe.foe : A— Bl =curry([Iz: AF fx : B])
= curry (curry ' ([I' - f : A — B]))

So, n is just the other direction of the hom-set isomorphism curry. O

(Co-) Inductive types. In our setting, an inductive type is the initial
algebra of a functor F', while a coinductive type is the terminal coalgebra.
The usual restriction is that we only deal with strictly positive functors. For
example, we get the natural numbers as the initial algebra of NX =1+ X,
lists over A by ListaX = 1+ A x X and so on. The codomain of the
initial algebra (domain of the terminal coalgebra) of F' is usually denoted
by pF (resp. vF'); the algebra itself is an isomorphism F(uF') — pF (resp.
vF — F(vF) that gives us the constructors for the type while the universal
property provides the eliminator, together with the S and 7 rule. For an
explanation on that topic, see Sattler’s notes [44].

Here, we do not go any further but introduce semantics of dependent
types instead.

4 Semantics of Dependent Type Theory

The basic idea for moving from simple types to dependent types is surpris-
ingly straightforward. In the above setting, we have been viewing a type as
an object. However, the situation is more involved in the dependent case as
a type might only be a type in a certain context, not in the empty one.

In the preceding section, a type has always been seen as a singleton
context, while a term was just the same thing as a context morphism. Note

12



that an object in C is just the same as an object in the slice category C/1.
The main difference in the interpretation of dependent type theory is that
we can no longer use C/1 all the time. Instead, we have to “switch between
slices” whenever necessary. Assume now that C is not only bicartesian
closed, but also locally cartesian closed and has pullbacks (or, equivalently,
all finite limits).

Again, we model every context as an object of the category, in partic-
ular, the empty context is interpreted as the terminal objectand context
morphisms as morphisms between them.

We interpret a type A in context I' as a morphism with codomain [I'].
More precisely, the statement

I'EA : type
is modelled as a morphism
T,z - A] ¥ oy

Here, the morphism [A] should in fact really be named [I'+ A : type], we
chose the simpler name for convenience. The required condition is therefore
that for any type A over I, there has to be a morphism with codomain [I'].
The domain of this morphism just becomes [I', z : A].

Consequently, the statement
Faxg: Ag,x1: A1, ...,z Ay o context
which requires statements of the form
xo: Ag, 1 Ar, .. a1 A1 B A - type

is naturally modelled as a chain of morphisms

L R |y e N N 0 ey oy R N O
where Fl = Xo - Ao,xl : Al,...,a:i : Az

Note that a type in context I' is nothing else but an object in the slice cat-
egory over the context [I'], just as it is an object in the slice over the empty
context [()] =1 in the simply typed calculus. Clearly, the interpretation of
a type is just the one of a “special” context morphism or substitution.

The same is true for a term. The intuition should be that a type is a
projection (sometimes called a display map), making the context shorter by
forgetting about the last entry, while a term does the opposite by construct-
ing an inhabitant of a type, thereby prolonging the context. More precisely,
the statement

F'Ft: A

13



is modelled as a section of [I', z : A] 14, [T], i.e. amorphism [¢] : [I'] — [,z : 4]
that makes ‘
[T,z : A] i [T,z : A]

[[tJ]T 7
[T

commute.

Therefore, in this construction, a morphism can be both the interpreta-
tion of a type and of a term. This is not a problem and it is easy to see that
if a morphism is indeed the interpretation of an inhabited type and a term,
then it has to be an isomorphism.

Substitutions. Compared to the simply typed case, substitution is fairly
tricky. We do not only have the substitutions for terms, but also on the type
level, which we discuss first. The natural way is the solution of Seely [45],
which is interpreting substitution with o : I' =& A as the pullback functor
[o]*. Concretely, given A = A : type, we would model I' F Alo] : type as
follows:

[o]* [[‘A.A]] 77777 -~ [A.A]

I
[Alo1] [A]
|

Y
[ —— 4]

For aterm A a : A, that is interpreted as a section of [A], we immediately
get the interpretation [I" - afo] : A[o]] as a section of [A[o]] by the pullback

property.

Here are a couple of issues to be considered. First, pullbacks are clearly
only unique up to isomorphism, while substitution in type theory is, for ex-
ample, strictly associative. Authors such as Hofmann [19] argue that, given
05T L AandT + A : type, it is hard to ensure that [p]*([o]* ([T, z : A]))
and [po o]*([T,z : A]) are strictly equal. The situation is presented in the
following diagram, where all the dotted lines are constructed as pullbacks.
We shorten I', z : A to ' A:

[pool’[aA]_

o ol Al = o [T AL S 2 [A 4]
N | [[Aﬂl

‘o1 Ir] [A]

[ [o]

14



But clearly, these two upper left objects are isomorphic and it is questionable
if more than that should be required in a categorical setting anyway. How-
ever, we always have to be able to recover the unique isomorphism satisfying
a couple of coherence conditions.

The question how to solve these issues have given rise to a couple of
suggestions. Curien [10] suggests that substitution can be modelled using
an explicit pseudo-functor, while Hofmann [19] proposes categories with at-
tributes (or the very similar categories with families [20]), which can be
understood as a locally bicartesian closed category together with some ad-
ditional data. The latter does the job of “choosing the correct pullbacks”
and providing the coherence information.

In the case of the model in Simplicial Sets which is, in some sense, much
more concrete, a very clean way how to solve these issues was given by Vo-
evodsky. A good and clear presentation was given by Kapulkin, Lumsdaine
and Voevodsky [22].

Dependent Sum and Function types. Again, all of the content described
below was, to the best of our knowledge, first described by Seeley [45]. We
first discuss dependent sums. Consider the judgements

I'EA : type
I'kFa: A
Ix: A B : type
I'Eb: Ala/z]

and, consequently

I'EX,4.B : type
'k (a,b) : ¥;.4.B

Assume we have defined the interpretation for the first four judgements.
We then want to define [I'+ X,.4.B : type]. Clearly, the codomain of this
morphism has to be [I']. As the domain, we choose ',z : A,y : B] and
define:

[T'FX,a.B : type] =L A : type] o [T,z : AF B : type].

Note that in a category C that has pullbacks, there is, for any f: X — Y,
the pullback functor f* : C/Y — C/X between the slices. Actually, it
is dangerous to talk about “the” pullback functor, as pullbacks are only
unique up to isomorphism; but as we need something like “chosen pullbacks”
for the substitution anyway, we do not worry about thatﬂ Then, the left

4actually, it is common to specify functors only up to isomorphism anyway: i.e., there
is also “the” product functor.
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adjoint of f* is given by composition and usually denoted by X ;. The above
interpretation can now be written as

[T'FXea.B : type] = Eprea : gpels 20 Al B - type].

We now need to construct the interpretation of I' F (a,b) : ¥,.4.B. From
our discussion of the substitution, we know that in the diagram

[T,y : Bla/z]] [T, (z,y) : ¥pa.B]l = [z : A,y : B]
- ~ B
~ ~ 3Br4lBI] 171
-7 [a]
Ms=——————— — [,z : A]
[A]

the solid square is a pullback. From the interpretation of I' - b : Ala/x],
which is a section of the leftmost morphism, we get (by composition with
the uppermost morphism) the interpretation of I' - (a,b) : ¥,.4.B.

When it comes to dependent functions, it finally becomes clear why we
want C to be locally cartesian closed. An important property (for many
authors actually the definition) of a locally cartesian closed category is that
each pullback functor f* has a right adjoint f* - 1I;. More precisely: Let
f: X — Y be a morphism. Then, we have the following morphisms in the
slice categories:

Yp:C/lY = C/X
ff:C/X -C/Y
I;:C/Y - C/X
with the property that
SpA A1y
where we have already used the first functor to interpret dependent sums.

The last one will become the interpretation of dependent function types.

This connection is not surprising at all: In the simply typed setting,
function types are interpreted as exponentials, the right adjoints of products.
But the product with X — 1 in C/1 is just the pullback along X — 1.
In the dependently typed case, it could therefore have been expected that
dependent types are modelled using the right adjoints of pullbacks.

We define

[0 Fen.B : type] = e a ;e[ 2: AE B type].
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The interpretations of the rules for terms is given by adjunction very
similarly to the simply typed case. We proceed completely analogously as
above:

e Given f: A — X, the adjunction f* - Iy has an associated hom-set
isomorphism. This time, we have to talk about the slice categories:

CUrry o g, C/A(f*idx,B 2 A) = C/X (idx,11;B)

However, one easily notices that f*idy = ida, so that the above pre-
sentation simplifies to

Curry o s, C/A(ida, B 2 A) = C/X (idx,I1;B).

o Application. If we are given I' F f : [l 4B and I' F a : A, we
define the application in nearly the same way as before. However, if
we precede exactly as above, we get a section of [B] o [A], i.e. a
morphism [I'] — [[".A.B], which is not precisely what we want. This
can be fixed by by defining

[T'F fa: Bad]

to be the unique morphism [I'] — [I'.Bla/z]] that is induced by the
dotted morphisms and the fact that the solid square is by definition
of the substitution a pullback:

[T".Bla/z]] [Tl
l |1
[PAB] = [T.A]
c::urry71 ([THf : Hy.a.B])

[B] [A]
[T.A.B]——>[.A]——>[I]

e As before, it is possible to express this interpretation using the counit

apPLy[ri A : 1ype ¢ LAl (Mpay) = leyroap. Given T - f o Tpa.B
and I' F a : A, these two induce the unique dotted map in the solid
pullback square:

[A]*[T.11,.4.B] [T.A4]
~ A

\
[A] | | [a]

|

v

[T, B] 2o ]

/]
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e Abstraction. As before, assume we are given I',x : A+t : B. Then,
we define

IIP FAx.t: HIAB]] = curry[[A]]’[[Fﬂ’[[B]] ([[F,a: AR B]])

Identity types. In this part, we show that the “naive” interpretation of
type theory in locally cartesian closed categories automatically results in an
extensional model, i.e. a model that cannot distinguish between proposi-
tional and definitional equality. The proof we give here is, to the best of my
knowledge, originally due to Awodey and Warren [6]. It can also be found in
Awodey’s survey paper [5], Kapulkin’s master thesis [23], and Arndt’s and
Kapulkin’s and Arndt’s paper [3]. I myself understand it as a justification
for the (rather complicated) construction of homotopic categorical models.

First, note that if I'. A is a context, A itself is a valid type in this context.
Further, there is the “diagonal map” d4 : ''A — I".A. A, a term of this type.

The formation rule for identity types states that, given I'.A.Acontext,
the judgement I',x : A,y : AF Idaxy : typeis valid. In shortened notation,
we have

[0.A.A.1d,] Y2 0 4.4

in the model. The introduction rule tells us that there is, in context I', a
term refly : Aa.Idg aa. This makes sure that there is a term (or, better,
context morphism)

[r.A] L9 10 4414,

that is a section of
r.A.A1d,] 244 r.a.a) B4 roa

[refi4] also has the (stronger) property that, composed with the display map
[1da], it is equal to the term d4; i.e. the following commutes:

[T.A.A.1d4]
T [re
[[]dA]]i -k ﬂA]]

7
[r.A.4) 221

S
da

Note that we shorten I' = A : type to A in general, but as we really want to
be able to distinguish I' - A : type and I.A - A : type, we write AT for the
latter.

The elimination rule J says that, given a type P that depends on an
identity type, ie. I'x : A,y : A,p: Idaxy b P : type, a term m of type
Va.Pla/x,a/y, refly /p] in context T, is enough to derive a term of type P in
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any context I'.A.A.Id4. This gets translated to the statement that, whenever
we have a commuting square

Al — "L .4 A.1d,. P
[[TeﬁA]]l [[P]]l
[.AAJdA] —> [D.AATd]

the there is a diagonal filler j that makes everything commute:

[m]

[0.A] [T.A.A.Ids.P]
[[TEﬂAE\L [[P]]l
D AATds] — > [D.AATd]

Note that we do not require j do be functorial or unique in any way, but for
a model of type theory, it should of course be possible to get one of these
diagonal fillers constructively. I is also worth noting that the lower diagram
just makes sure that j is a term of the correct type, while the upper triangle
represents the computation rule or the 5-rule of the identity type: If we use
J with some term m to construct an inhabitant of Pla/x,a/y, refl,/p], then
this is just m itself (in type theory, definitionally, in the model, equal as
hom-set morphisms).

But here is a problem: We do not want this diagonal filler j to exist in
general, we only need it if the right vertical morphism [P] is a type. If we
require the existence of j just for any morphism on the right side as long as
we have [refl4] in the left side, it would in particular exist in the following
diagram:

[T.A] id [T.A]
[refial l [refial l
[[.A.A.Jds] —> [ A.A.Tda]

Now, commutativity of the diagram implies that [refi4] is an isomorphism.
The sources cited above immediately conclude that the model is extensional.
However, it took me quite some time to really understand it; after all,
refly + A = Ypaya-ddazy is a “type theoretical” isomorphism. “Type
theoretical isomorphism” (or “bijection” |11]) means that there is a term
t and terms of type Va.a = t o reflja as well as Vp.p = refiy o tpE| How-
ever, these “type theoretic” isomorphisms are not necessarily modelled by

This is equivalent to saying that refl, is a weak equivalence and, assuming univalence,
A and Xg:4,y:4.1da xy are actually equal types.
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isomorphisms! After all, their compositions are only in a very weak sense
equal to the identity.

Assume we have I' F sg,s1 : A and T' + p' : Idsgs;. We set p =

(s0,81,p). Let us draw another diagram:

r.A] e 44 1d4]

|

I.AA r
[T-A-A] 3 —[T]

Note that the labelling of the bottom vertical arrow is slightly inaccurate,
better (but less readable) would be [A]*([s1]) o [[50]]E| The commutativity of
the lower diagram means that p = (sg, s1,p’) is really a proof that sy and s;
are equal terms. Commutativity of the upper triangle is just the property of
refl, discussed above. But now, we have (if we omit the substitution again
which does not change anything) [(so, s1)] = do [refly] ' o[p] and therefore
[so] = [refls]'o[p] = [s1]. Summarized: If there is a proof that two terms
are propositionally equal, then they are modelled by the same morphism.

It is therefore not possible to model proper intensional type theory in this
naiv way. The problem is that we have required the diagonal filler j to exist
whenever the vertical left arrow is a reflexivity proof; a straightforward idea
to fix it is restricting this requirement to a class of morphisms containing
every interpretation of a type. However, it turns out to be very hard to give
a good nontrivial characterization of such a class; and actually, all the work
on homotopic-theoretical models can to some extend be seen as attempts to
find those characterizations.

5 Homotopic Models

The main sources for this section are van den Berg & Garner (7], Arndt &
Kapulkin [3] and Awodey & Warren [6]. For some concepts, the nlab [48] is
very useful.

5.1 Weak Factorization Systems

Weak factorization systems provide a useful setting for models of identity
types. As described in the section about semantics, the critical point is
to find a suitable subclass of morphisms that have the properties of types,
and weak factorization system address exactly at this issue. It also works

5T.A.A is isomorphic to I".A x A. This justifies our simplification.
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the other way round: As shown by Gambino & Garner [16], the classifying
category of a type theory with identity types admits always a (nontrivial)
weak factorization system.

We use the definitions stated in [39]. The concepts are well-known and
wildly accepted, but to the best of my own knowledge, they are originally
due to Bousfield [9).

It will turn out later that a basic requirement for identity types is the
following lifting property.

Definition 5.1 (Lifting Property). Let ¢, f be morphisms in a category. ¢
has the left lifting property with respect to f (equivalently, f has the right
lifting property with respect to c) if, for any commutative square

A——X

S

B——Y

a diagonal filler, i.e. a morphism j : B — X, exists, making the whole
diagram commutative. This filler does not have to be unique (though this
would be a useful property later).

Having this concept in hand, we are able to define the mentioned systems:

Definition 5.2 (weak factorization system). Given a category C, a weak
factorization system on C'is a pair (£,9R) of sets of morphisms of C' such
that

(W1) every morphism in C' can be written as p o4, where p € R,i € £ (not
necessarily unique)

(W3) every morphism in £ has the left lifting property with respect to every
morphism in R

(W3) £ and R are maximal with this property (i.e. we cannot add any
morphisms without violating the above requirements)

Example 5.3. A basic (but nonconstructive) example of a weak factoriza-
tion system on the category of sets is (monos, epis), i.e. the set of injective
(monomorphisms) and surjective maps (epimorphisms). The factorization
of f: A— B is given by

A B
\\ /7

am(imaf@) s “(ab)b

(1+A)xB
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Note that the somewhat nasty 14 is necessary as there would be a problem if
A = () # B otherwise. For the lifting j, given an injective ¢ and a surjective
f in
A—s X
|l
B——=Y
v

define j(b) = u(a) if a = ¢(a) and, if such an a does not exist, j(b) = = for
some z that satisfies f(z) = v(b). Note that this is possible if and only if
the Axiom of Choice holds true. Finally, the maximality condition is clearly
satisfied.

This can also be done in a constructive way by requiring that all the
monos and epis are split (and carry information about the corresponding
retraction resp. section), thus essentially making a (deterministic) construc-
tion of the diagonal filler possible.

As an easy exercise and because it is important for further explanations,
we prove the following:
Lemma 5.4. Given a weak factorization system (£,R), the class R is closed

under pullbacks (whenever they exist).

Proof. Let f: B - A € Rand 0 : X — A any morphism. Then, for
Y = X x4 B, we have to show that in the pullback square

Yy "B
| b

the morphism g is in SR. Therefore, let ¢: S — T € £ be any morphism and
s: 5 —=Y,t:T — X be morphisms that make the left square and therefore
the whole diagram commute:

S y_T.RB

9 !

P

— X —A
t g

As f € R, there exists a diagonal filler:

S—>Yy-T">B

-
. ~
1 ~
c -7 f
-
-

TZ—X—A
t o
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Together with the pair (i,t), the property of the pullback guarantees that
there is a morphism j:

. yYy_T.RB

S

i 7
13770
T-

By our construction, we have goj = t, so the only thing to check is whether
s equals joc. We know that gos = gojocand that Tos =ioc=710joc,
so the pairs (T 0s,g03s) and (Tojoc,gojoc) are equal. Because of the
pullback property, each of the two pairs provides a unique morphism S — Y
making everything commutative, but for the first pair, this is obviously s
and for the second pair, this is j o ¢. Consequently, they are equal and we
are done. O

The above lemma enables us to interpret substitution of types as pull-
backs, as described in the section about semantics of dependent type theory.

5.2 Identity types in Weak Factorization Systems

I have learnt the content of this subsection by reading the (highly recom-
mended) survey article [5]. Unfortunately, it is not very detailed, so I try to
give a slightly longer explanation.

From now on, let us write A’ as short-hand for Yapa-ddgab. Clearly, if
A is a type in context T, then so is AT}

So, let us now discuss the interpretation of identity types. Given a bi-
cartesian closed categoriy C with a weak factorization system (£, R), assume
we have interpreted everything apart from identity types as described in the
semantics section. If I' = A : type, then there is the context morphism
d4: T A —T.A.A. In C, the morphism [§]4 can, according to the laws of
a weak factorization system, be written as

[64] = [T.A] <=5 x L5 [1.4.4].

Assume we have a possibility to choose one of the (possible multiple) factor-
izations in a coherent way. Then, we can choose to model I'.A! by X, and
¢ will be the interpretation of Aa. (a,a, refi,), while f is the interpretation
of the equality type (that depends on I'.A.A).

For an easier notation, let us write r4 instead of Aa : A. (a,a, refl,).

"This is usually the notation for the path object in abstract homotopy theory of model
categories; this coincidence is, of course, not random!
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The property of the weak factorization system makes sure that we can
interpret the eliminator. Consider a type P that depends on A’ in context T’
and assume we have a term m of type Ya.P(a, a, refl,) as in the commutative
diagram

r.A] — " poalpp
[r ] 7]
[T.A'] ! [T.AT]

This diagram represents exactly the assumptions of the J rule. We know
that the left and the right morphism are in £ resp. in 9R. Therefore, the
properties of the weak factorization system guarantee the existence of a
morphism j making the diagram commutative:

[m]

[r.A] [T.AL.P]
[ra] f [P]
[[.AT] ! [[.AT]

If we have a coherent possibility to choose the filler j, we can use it
as the interpretation of the elimination rule. Note that the upper triangle
represents the computation rule, stating j o [ra] = [m].

5.3 Homotopy Theoretic Models of Identity Types

Let us state the above discussion in form of a theorem. Is is due to Awodey &
Warren [6] and makes use of some abstract homotopy theory (in particular,
path objects, which we do not repeat here; a good source is [12]):

Theorem 5.5. Let C be a finitely complete category with a weak factor-
ization system and a functorial choice (-)! of path objects in C, and all of
its slices, which is stable under substitution. ILe., given any A — I' and
o:I"—T,

o (Al = (o*A)L.

Then C is a model of a form of Martin-Ldf type theory with identity types.

Note that A is now defined in both the cases that A is a type and that
A is an object in a category, which will hopefully not lead to confusion. The
intuition is that the former should be modelled by the latter.
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Here is a diagram that illustrates the theorem. Given an f € R and a
morphism o, which are painted as solid arrows, we can construct the pull-
backs (dashed arrows) and factorizations of the diagonals (dotted arrows):

o* A X o A

A
(O'*A)I
A ,_'_ra*A
O'*A ***** :;F/
I
- T
- |
J*(AI)’ \ o
\ \
\ \
\ Y
\ A ! r
\ A
\ \
\ |
\ ‘ f
\\ ‘
\ I
\ AxpA-———-—— = A
\ 7
\
|
Al
7

rA .

As shown in the diagram, o*(A’) and (6*A)! have to be isomorphic in
order to fulfil the assumptions of the theorem.

The proof given in [6] is basically a summary of our explanations in the
previous sections.

Remark 5.6. At first sight, one might wonder if the choices of j in Awodey
& Warren’s theorem have to fulfil some coherence conditions. The authors
do not mention any, but personally, I am still not completely sure about
this.

6 Model Categories

In this section, we want to provide some background on model categories,
a structure that can be found in many mathematical constructions and
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has two weak factorization systems built-in. They were first mentioned
by Quillen [42]. Many authors ([3], [5], [6], [7], [23], [30]) make use of model
categories, but in fact, one of the two weak factorization systems is never
used. However, if something has the structure of a weak factorization sys-
tem, it nearly always is a model category as well, so not much harm is done
if the stronger notion is assumed. The advantage is that model categories
are a well-established concept in mathematics.

We first state the definition given in the nlab [38]:

Definition 6.1 (Model Category). A model structure on a category C con-
sists of three distinguished classes of morphisms of C'; namely the cofibra-
tions €, the fibrations § and the weak equivalences 20, satisfying:

(M) 2-out-of-8: If, for any two composable morphisms f, g, two of the
three morphisms f, g, g o f are weak equivalences, then so is the third.

(Ms) there are two weak factorization systems, (€,20NF) and (€ N2, F).

A model category is a complete (all small limits exist) and cocomplete (all
small colimits exist) category that carries a model structure.

Like most authors, we call a map that is a fibration and a weak equiv-
alence at the same time an acyclic fibration (not that trivial fibration is
also common), similarly, a cofibration that is a weak equivalence is called
an acyclic cofibration. If A — 1 is a fibration, then the object A is called
fibrant. If 0 — B is a cofibration, B is called cofibrant.

We allow us to make three comments here, all of which are well-known
and are, for example, stated in [32].

Example 6.2. For any category C, let two of the three classes §, €, 20 be
the class of all morphisms and let the third be the class of all isomorphisms.
This gives us three different model structures on C. If C' has all small limits
and colimits, these construction forms a model category.

Example 6.3. The product of model categories is, in the obvious way, a
model category.

Remark 6.4. The concept of a model category is self-dual.

Nontrivial examples include the categories of groupoids, simplicial sets
and topological spaces, which will be discussed later.

As we will need it soon, we want to state the the following proposition
(|[12] Proposition 3.14):

Proposition 6.5. Let C' be a model category. Then the following statements
are true:
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(i) € is closed under cobase change, i.e. if ¢ is a cofibration in the fol-
lowing pushout diagram, then so is c':

A——C
|
ci I ¢
Y
B-->=D

(i) WNC is closed under cobase change, i.e. if ¢ is an acyclic cofibration
in the diagram above, then so is c.

(i1i) § is closed under base change, which is the dual statement of (i), i.e.
the pushout is replaced by a pullback.

(iv) N2 is closed under base change.

Proof. The statement (i) can be proved analogously to (i) and (éii), (iv)
are clearly dual to (i), (ii), so we only prove (i). To prove that ¢’ in the
given diagram is a cofibration, let f be an acyclic fibration.

A——sC—"+E

!
ci I ¢ l f
y
B-<>D——F
t
As c¢ is a cofibration and f an acyclic fibration, there exists a lifting j :
B — FE. Together with u and the pushout property, j implies that there is
a morphism j' : D — E. While [12] concludes the proof by stating that j’
is the required lifting, the authors do not find it obvious that both triangles
commute.

A——>C—Y>F

Ly T

B _>D—>F
S t

While the commutativity of the upper triangle, i.e. u = j’ o ¢ is indeed a
direct consequence of the pullback property, it is less clear that t = f o j'.
However, note that foj oc = fou=toc and foj os= foj=tosdo
directly follow from the commutativity of the diagram, where commutativity
of the lower triangle is not assumed. We have therefore shown that the

toc’

pairs (C Joi'ec, F,B Jores, F) and (C — F.,B Los, F') are identical,
which means that they induce (by the pushout property) the same unique
morphism D — F', but as those morphisms are f o j’ respective t, those are
equal. O
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We want to state another often used definition, used, for example, in
[12] and [32] (however, both times slightly differently). One thing should be
mentioned before:

Definition 6.6 (Retract). If X, Y are two objects in a category C, we say
that Y is a retract of X if there exists maps Y = X = Y with ros = idy. If
f, g are maps, we call g a retract of f if this holds true in the arrow category
C, i.e. if there is a commuting diagram

Ao w P

N

g f g

-

oy

192 p2

satisfying p; o 11 = ida and po 0 19 = idp.

Definition 6.7 (Model Category, alternative definition). As above, a model
structure on C consists of three classes €, §, 2, so that:

(N1) €,§,20 are all closed under composition and include all identity maps

(N3) 2-out-of-three is satisfied as above: If two of f, g, go f are in 20, then
so is the third

(N3) €,§,20 are also closed under retracts, i.e. if g is a retract of f and f
is in one of the classes, then g is in the same class

(Ny) if c € € and f € §, then ¢ has the left lifting property with respect to
f if at least one of them is also in 20

(N5) any morphism m can be factored in two ways:

ceeNW fes

A™ B = AW, v S8 b g CEC x F1E3NW

B

A model category is a category with all small limits and colimits together
with a model structure.

Remark 6.8. There are a couple of variants to these definitions. For exam-
ple, Dwyer & Spalinski [12] only requires the existence of finite limits and
colimits. Also, Hovey [32] wants the factorizations to be functorial. The
nlab [38] states: “Quillens original definition required only finite limits and
colimits, which are enough for the basic constructions. Colimits of larger
cardinality are sometimes required for the small object argument, however.”

As an exercise, we want to prove that each of the above definitions can
be replaced by the other.
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Proposition 6.9. The definitions and[6.7] are equivalent.

Proof. For the first direction, we have to show that (M;) and (M) imply
(N1) — (N5). For (N2), (N4) and (Ns), there is nothing to do.

Concerning (NV7), the maximality condition in the definition of a weak
factorization system clearly implies that each class contains all identity
maps. The closedness under composition of 2J follows from 2-out-of-3. For
the rest, let f1, fo be composable fibrations. To show that fy o f1 is a fibra-
tion as well, assume that ¢ is any acyclic cofibration. Given a commuting
diagram

A—=X

P

c A

P

In this situation, (M3z), applied on ¢ and fa, guarantees the existence of a lift
B — Z. Using this lift, we can apply the same argument again on ¢ and fi,
obtaining a lift B — X as required. Using the maximality condition of weak
factorization systems again, we conclude that fy o f1 is indeed a fibration.
The rest of (N;) follows analogously.

Concerning (N3), we first show that § is closed under retracts. Assume
f € § and g is a retract of f. Let ¢ be any acyclic cofibration. We have to
show that the diagonal filler exists in

A—>

| l(

B t

The fact that g is a retract of f yields an extension of this diagram, namely

A i1 1174 p1 A—S5. X

Lok

B A B Y

12 b2 t

where p; 041 = idg and py o iy = idg. As f is a fibration, we get a filler
j : Z — A and consequently, j o is is a valid filler for the original square.
Using the maximality property of § proves g € §. If we require ¢ only to
be a cofibration, not necessarily acyclic, the same argumentation shows that
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§ N YW is closed under retracts. Dually, € and 20 N € are both closed under
retracts.

Surprisingly, closeness of 20 under retracts is a bit tricky. This case is
actually the reason why we stated proposition [6.5] above. Assume f € I
and g is a retract of f. Using (Ma), we factorlze gasg=poi, wherei € €
and p € W N F, yielding the following commutative diagram:

1

A—sw -2 4
T
K f K
pi ipegﬁﬁg

B——7——N
19 b2

We now take the pullback of p along ps. As shown in proposition the
map Z Xxp K — Z isin WNF:

A" cw— P g

] P
K ZxBK——>K

pl u7623m3 PEWNG

B

12 p2

Because of the pullback property, the pairs (idx,iz0p) and (f,i0p;) induce
the following maps

i1 1074 p1 A

o
|

S

.
-

K L ZxpKY->K
[

pl | p' eWNF pEWNF
Y

B 5 A o N

where p' 04’ = f and vou = idg. The reason for i’ being in 20 is two-out-of-

three, as p’ and f are both weak equivalences. We now focus on the top half

. L . " €CM " eWNF
of the diagram. We can factorise 7’ as i’ = W = x 2 Z xg K,

where two-out-of-three is again the reason why we may assume that both "
and p” are weak equivalences. Further, by the lifting property, we get the
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morphism j:

i p1
A ! W A
i'eenyy .
iee X i’ €W iee
J s
L7 ey
K = xp K==~ = ==K

As (vop"”)oj = idk, we can conclude that i is a retract of i’. But we
already know that € N2 is closed under retracts, so ¢ € 2, and therefore
f=poi e as required.

To complete the proof, we have to show that (N1) — (N5) imply (M;)
(which is trivial) and (My) (which we do now). Because of duality, it is
enough to prove that (€ N W, F) is a weak factorization system. The fac-
torization property (W7) is just the same as (IV5), while the lifting property
(W2) is an immediate consequence of (N4). Only the maximality (W3) re-
mains to be shown: Assume the morphism f has the right lifting property
with respect to every morphism in €N20. By (Mj5), we have a factorization
f = pot, where ¢ is an acyclic cofibration and p a cofibration. According to
our assumption, the diagonal filler in the following diagram exists:

idag
_—

A A
i7
17
/
X

__ B
P

The following diagram proves that f is a retract of p.

A#X#—A

f p f
B——B——=B

idp idp

By (N3), we conclude f € §, proving one part of the maximality condition
(W3). The other part follows by duality. O

7 Groupoids

The Groupoid model is the easiest one of those we want to present here. At
the same time, it is the oldest one (|21]) and probably the one that leaves
us the least choices.
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7.1 Weak factorization system on Grp

The basic setting is the category Grp with (small) groupoids as objects
and functors as morphisms (so groupoids are the contexts). In category
theory, there exist the so-called Grothendieck fibrations [37] and these are the
fibrations we need, as described in [5], though it might be more appropriate
to talk about isofibrations. As both concepts are the same in the simple case
of groupoids, we do not make the distinction. We only give the definition
for groupoids, not the more general one for categories.

Definition 7.1 (Fibrations in Grp). A functor p : E — B between groupoids
is a fibration if for any e € E and f : b — p(e), there is a morphism g : ¢/ — e
with p(g) = f. This immediately implies that every groupoid is fibrant.

The definition implies that any connected component of B is either dis-
joint from the image of p or completely objectwise contained in this image.

Groupoids carry the structure of a weak factorization system in the fol-
lowing way:

e £ is the class of functors which are injective and equivalences in the
categorical meaning (i.e. embeddings which are injective on objects).

e ‘R are the fibrations defined above.

Theorem 7.2. The structure (€,F) is a weak factorization system on the
category of small groupoids.

Proof. In my original composition, I had a very long and unnecessarily com-
plicated proof here. I have decided to skip it, as there are much more elegant
proofs available, for example at the nlab [13]. O

We may define A’ to be the arrow groupoid A~. Then, refl maps objects
a € |A| canonically on id, € |A7| and morphisms m : a — b on (m,m). It
is easy to check that this is indeed an injective equivalence between A and
A7, i.e. atrivial cofibration. Moreover, there is an obvious fibration A~ —
A X1 A that represents the Identity Type. Summarised, our decomposition
of the diagonal is

A a»—)ida A_) p>—>(d0m(p),codom(p)) A % A

This model has in some way marked the beginning of the whole develop-
ment. It is due to Martin Hofmann and Thomas Streicher’s work [21], who
used it to answer an important question about the uniqueness of identity

proofs:
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Corollary 7.3 (UIP is not provable from J, M. Hofmann and T. Streicher).
Given two terms a,b : A and two proofs p,q : Idaab, it is not possible to
construct an inhabitant of Idrq, o» p g without using azioms beyond J.

Proof. We use the weak factorization system given above, together with
theorem We do not work out the details here. A subtle point is the
question if it is possible to model dependent function spaces, as the category
of small groupoids is not locally cartesian closed. In fact, it is, as shown by
Hofmann & Streicher [21], and Palmgren [40] explains this by discussing
that pullbacks along fibrations have “semi-strict pseudo-adjunctions”.

Remark. It causes regularly some confusion that two objects in A’ such

as a i> b and a L b, are always propositionally equal, since A’ = A~ and
the diagram

is obviously commutative. This should, however, not be too surprising, as
[21] already mentioned that UIP_tuple is provable: Any (a,b,p) is equal to
(a,a,refl,), the crucial point is that p is not equal to refl,.

Remark 7.4. While we have only used that small groupoids form a weak
factorization system, they are even an example of a model category. To
get this structure, take all the functors which are injective on objects as
cofibrations and the usual categorical equivalences as weak equivalences.

8 Simplicial Sets

A simplicial set is a presheaf over the category of (isomorphy classes of)
finite totally ordered nonempty sets and monotone functions. We want to
introduce the most important concepts and provide some intuition.

8.1 General introduction to simplicial sets

Our main source for this subsection is Greg Friedman’s article[15]. Another
valuable article is [43] which is somewhat more direct but also discusses
fewer concepts. As simplicial sets play an important role in homology and
related topics, books such as [41], [17] and [32] can also serve as references.
Here, we only give a brief summary. For everything beyond that, we highly
recommend Friedman’s article.
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Definition 8.1 (category A). For every natural number n > 0, we define
[n] to be the set {0,1,...,n — 1} (equivalently, the finite ordinal). A is the
category that has the [n]| as objects and all monotone maps (I < k implies
f(l) < f(k)) as morphisms.

Remark 8.2. Caveat: The literature does not completely agree on the defi-
nition of A, but the different definitions are equivalent. It is still necessary
to pay attention to avoid confusion. In particular, [n] is sometimes defined
to be {0,...,n} and the condition n > 0 is dropped, thereby shifting every-
thing by 1. However, the empty set is usually never seen as an object of the
category, i.e. A does not have an initial object.

Definition 8.3 (category sSet). sSet is the functor category Set®”.

Although the above definition is short and precise, it is sometimes helpful
to use a picture:

Given a simplicial set, i.e. a functor X : A°? — Set, one can (to some
extend) visualise X[1] as a discrete set of points in the space. X|[2] is a
set as well. We can visualise it as a set of directed connections, or lines,
between pairs of points in F[1]. To see how this can be justified, notice that
in A, there are two maps from the one-point set [1] to the two-point set [2].
Consequently, in A°P, there are two maps from [2] to [1]. Applying X on
them, these are exactly the two maps that map every directed connection
on its source respectively its target. Further, in A, there is exactly one map
from [2] to [1]. After applying X, this map maps every point z € X[1] on
the trivial connection from x to x. Therefore, the visualisation of only X[1]
and X[2] looks like a directed multigraph with loops. Similarly, an object of
the set X[3] will be the shape of a triangle whose border is already given in
the graph, X[4] can be visualised as a tetrahedron, and so on. In fact, the
image we have described can be seen as the Grothendieck construction [ X
(see )

In general, an element of X[n] is called an n-simplex of X. We also call
X|[n] the set of n-simplices. By the Yoneda lemma, this set can also be
classified as Set®” (A", X).

It is handy to introduce a set of generators of the morphisms in A:

Definition 8.4. For i,n with i < n, we write D; for the map [n] — [n + 1]

that is defined by
. J if j <4
Di(j) =" :
j+ 1 otherwise.
Further, again for i < n, there is the map S; : [n + 1] — [n], defined by

) j if 5 <4
Si(j) = {] /

j—1 otherwise.
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It is easy to see that those two classes of maps generate all the morphisms
in A. They are central in the theory of simplicial sets:

Definition 8.5 (face and degeneracy maps). Given a simplicial set X, the
morphism d; := X(D;) : X[n + 1] — X[n] is called face map, while s; :=
X (S;) : [n] = [n+1] is called degeneracy map.

The reason for these names can again be explained using the visualisa-
tion: d; maps an element of X[n + 1], i.e. an n + l-simplex, on its ith face.
This can also be expressed by saying that the ith corner is deleted, which
collapses the rest. For n = 1, we have already seen that this morphism maps
a directed line on one of its endpoints. For n = 2, it maps a triangle on one
of its three faces, for n = 3, a tetrahedron is mapped on one of its four faces,
and so on. Dually, s; maps an n-simplex on an n + 1-simplex by just using
the i¢th corner twice. In the case of n = 1, we have described sy above as the
map that maps a 1-simplex on the trivial connection to itself, i.e. a point is
mapped on the degenerated line which has the point as both endpoints.

An n-simplex is therefore called degenerated if it can be written as s;(x)
for some n — 1-simplex x, else it is called non-degenerated.

A morphism in sSet is, of course, just a natural transformation between
functors F, G : A°? — Set. It maps points on points, lines on lines, triangles
on triangles and so on and is therefore easy visualise as well. If we specify
Min) for such a natural transformation, all p,) with m < n are determined.

There is one type of simplicial sets that can, in some sense, be seen as
the most basic type, often referred to as the standard simplices:

Definition 8.6 (standard simplex A™). For any positive integer n, we define
A" := y[n], where y is the Yoneda embedding y : C — Set®” for a locally
small category C'. If we spell this out, A™ is the simplicial set given by the
functor A(-,[n]) : A? — Set. Its visualised version looks like a (regular)
triangle of dimension n — 1; i.e., A! looks like a single point, A? like a line,
A3 like a triangle (with its body), A% like a tetrahedron, and so on.

Note that A™ always has exactly one non-degenerated n-simplex. More
general, for each m, A" contains exactly (TZ) non-degenerated elements as
any set of m distinct points (elements of A™[1]) form the boundary of exactly
one non-degenerated m-simplex. Also note that Al is the terminal object of
sSet. Caveat, again: With the alternative formalization of remark AV
is the terminal object. Another possible way of dealing with this is defining

A" to be y[n + 1].
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8.2 Kan fibrations

Basically, a Kan fibration is a simplicial map satisfying a certain lifting
property, which should not be surprising. Again, we recommend [15] and
the articles mentioned above as our main references.

Definition 8.7 (k" horn A?). For k < n, the k" horn (denoted by A}) of
the simplex A™ can be defined by the full subcategory that is given by

Aglil =AUl = [nl[Fi € [n].d # k- Ai & fl1}-

Here, we make use of the Yoneda embedding again. A} is obtained by
removing the “interior” and the n—1-dimensional boundary piece at position
k. There is therefore an obvious inclusion A} < A™.

Definition 8.8 (Kan fibration). Finally, a morphism f: E — B in sSet is

a Kan fibration if, for any (k,n), any commutative diagram of the form

A} —FE

L)

A"——B
has a diagonal filler j : A" — E.

The idea is the same as for all fibrations: “If we can complete something
in B, then we can also complete it in £”. The fibrant objects, i.e. those
objects E such that E — Al is a Kan fibration, are called Kan complezes.

Note that even such simple examples as A™ fail to be Kan complexes
(see |15]):
0—0,1—~1,2—0

A A?
| ll
A" Al

A% has the three constant functions as 1-simplices, which we have just called
0,1,2 above. It is a good idea to think about the triangle with vertices
labelled 0, 1,2 and, as it is the 0" horn, without the body and without the
edge between 1 and 2. The given mapping for these constants determines the
whole simplicial map. A? is, thinking this way, the line with two endpoints,
labelled 0 and 1. The upper morphism works well; however, there is no
diagonal filler because we would have to map the edge between 1 and 2 to
the edge between 1 and 0, but in the wrong way (1 — 1,2 + 0), which is
not a morphism in sSet.
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8.3 Simplicial sets and spaces

Simplicial sets are used as a completely algebraic model of “nice” topological
spaces. To make the connection clear, we first need to become more serious
of what we have called “visualisation so far:

Definition 8.9 (Realisation of standard simplices). For all n > 0, we denote
by |A”| the realisation of the standard simplex, that is the topological space
given by

|A"| := {(z0,21,..., 7, ER"THO < 2; < 172«% =1}

This definition is straightforward and well-known. We can use it to define
a functor Top — sSet:

Definition 8.10 (singular set functor). The singular set functor & : Top —
sSet is given by
SY := Top(|A"],Y)

This means, if Y is a space, then &Y is the set of “ways how A™ can be
embedded in Y7, i.e. the set of all “pictures” of A™. Of course, &Y is very
large unless Y is discrete.

We now want to be more precise about the notion of realisation, or
“visualisation”. While intuitively easy, it is surprisingly hard to define a
functor that builds a space out of a simplicial set X in a reasonable way.
The definition we state is given in [43]. We choose it as it is compact and at
the same time not (much) more confusing than the “more down-to-earth”
definition given in [15]. Clearly, any set can be viewed as a discrete space, in
particular, X [n] is one. Consider the product of spaces |A™| x X [n]. Given
f:[n] = [m] in A, there is a canonical continuous map f, : |A™| x X[n] —
|A™ x X|[n] doing nothing on X[n] and sending the standard simplex of
dimension m to the one of dimension n. Similarly, there is the map f* :
|A™] x X[n] — |A™| x X [m]. We now define (where we write | [ instead of
+ for the coproduct):

Definition 8.11 (geometric realisation functor). The geometric realisation
functor | - | : sSet — Top is given by

X = cotimit | [] 1A™ x X[n] =5 TT1A7 x X[n]

fin]—=[m] [n]

Note that this is often always written as [ |A"] x X [n]ﬂ

8This is a generalized version of the Grothendieck construction (if I am not mistaken)
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Intuitively, the realisation functor just does what it is supposed to do:
For every standard simplex occurring in the simplicial set, it constructs
its geometric version. This gives us quite a lot of “pyramids” in every
dimension and we have to make sure that all the face and degeneracy maps
are respected. This is done by taking the colimit.

Theorem 8.12 (|- | 14 &). The geometric realisation functor is left adjoint
to the singular set functor.

Proof. For an even more general statement see [43]. O

Especially interesting is that Kan complexes are actually in some way
the same as CW-complexes:

Theorem 8.13. The category of Kan complexes and homotopy classes of
maps between them is equivalent to the category of CW complexes and ho-
motopy classes of continuous maps, where the equivalences are given by | - |
and S.

Proof. See [41], theorem 1.11.4. O

In Section [2| we have tried to give intuition of what homotopy type
theory is about. While the ideas work nicely in our description, the category
Top is not very well-behaved, which raises a lot of problems when it comes
to the details of an interpretation of type theory. On the other hand, sSet is
a purely combinatorial formulation with much better properties. The above
theorem demonstrates how one should think, in summary: Work in sSet,
but get intuition from Top!

8.4 The model in sSet

Multiple sources (including [5], [6]) explain that there is the following model
structure on sSet:

1. cofibrations are the monomorphisms
2. weak equivalences are the weak homotopy equivalences (see below)

3. fibrations are the Kan fibrations
Therefore, the weak factorization system we should use is

o £ = monosN weak equivalences

e R = Kan fibrations
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A morphism f : X — Y in sSet is a weak homotopy equivalence iff it
induces isomorphisms on all homotopy groups. For the homotopy groups of
a simplicial set X, there are several equivalent definitions (see [15], section
9), one of them saying that the n** homotopy group is defined to be the n'
homotopy group of the topological space that is obtained by applying the
realisation functor on X. Applying Whitehead’s theorem [52], we should
be able to conclude that a weak homotopy equivalence is just a map that
becomes, after realization, a homotopy equivalence.

Simplicial sets are used by Voevodsky to model univalent type theory
([49], [59], [51]). For a good explanation of the construction (which is un-
fortunately quite involved), we would like to recommend Kapulkin & Lums-
daine & Voevodsky’s [22] or Streicher’s [47].

9 Univalence

We now switch to a different aspect: Instead of discussing model construc-
tions, we examine interesting (possible) properties of identity types.

9.1 Contractibility

Contractibility is, in topology, a well-known property of topological spaces:
A space is called contractible if (and only if) it is homotopically equivalent to
the point. This means, a space X is contractible iff there exists a continuous
map H : X x [0,1] = X and a point a € X so that, for all z € X, we have
F(x,0) = x and F(x,1) = a; in other words, F' is at "time” 0 the identity
and at "time” 1 constant.

For a type A, the notion is defined analogously:

Definition 9.1 (Contractibility). A type A is called contractible if the type
Contractible (A) := Yg. .11y, 4.1ds aa’ is inhabited.

Unsurprisingly, this definition requires A to be inhabited by a distin-
guished element a. Furthermore, every other element has to be equal to a.
At first, this property might look a bit weak: The corresponding w-groupoid
of A has, obviously, “up to propositional equality” exactly one 0-cell, but
what about higher cells? There is no need to worry, as we will soon under-
stand that this definition does indeed imply the same thing for all levels.

In the homotopy interpretation, the above definition looks like the def-
inition of path-connectedness. However, if we have a closer look, we notice
that it gets interpreted as There exists a point a € A and a continuous
function f which maps every point x € A on a path between a and x. The
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continuity of f is the important detail. For example, consider the space
S1 It can, for example, be defined as the set of all points in the euclidean
plane that have distance 1 from the origin. Another possible definition is to
define it as the CW-complex with one 0-cell, where we attach one 1-cell in
the obvious way; and this meets the type theoretic definition of the circle
as a higher inductive type (see [29], [46]) quite well. For the moment, let us
identify the circle with [0, 27], divided by the relation that unifies 0 and 2.
Assume that there is a continuous map f mapping a point z of this interval
to a path from 0 to this point. f(0) is a path from 0 to 0. Now, increase
the argument = continuously; this makes the path f(x) change continuously.
Therefore, f(27) is homotopic to the path from 0 to 27, composed with f(0);
but of course, f(27) is just f(0), which shows that any path from 0 to itself
is null-homotopic, contradicting the properties of the circle.

9.2 Homotopy Levels

The notion of homotopy levels corresponds (roughly) to the question which
homotopy groups of a space are nontrivial. Clearly, for a contractible space,
they are all trivial; and in fact, we define H-levely just to be the same as
contractible. A space is still “relatively simple” if it becomes contractible
after replacing it by it’s path space (or iterating this step several times). For
types, we define analogously:

Definition 9.2 (homotopy level). A type A is said to be of homotopy level
0 just if it is contractible:

H-levely (A) := Contractible (A)

Moreover, if all the identity types are of homotopy level n, then A is of
homotopy level n + 1.

H-levely 11 (A) := gy 4. H-level, (Ida a'b)

Remark 9.3. For small homotopy levels, the following notions are commonly
used:

A type of homotopy level 0 is a singleton type, (isomorphic to) the
unit type, or just contractible.

A proposition, i.e. a type with at most one inhabitant, has homotopy
level 1.

The types of homotopy level 2 are called sets.

Less frequently used, but reasonable, is writing groupoids for types of
homotopy level 3.
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e Similarly, the homotopy level 4 types are 2-groupoids, those of level 5
are 3-groupoids, and so on. In general, types do not need to have a
finite homotopy level or the homotopy level might just not be prov-
able. Univalence ensures that there is a type of homotopy level 3, the
universe type. The hierarchy of universes determines for which levels
a type exists, such that the type is provable not of the corresponding
level.

9.3 Weak Equivalences

To understand the notion of a weak equivalence, homotopical intuition is,
again, quite helpful. First of all, if f : A — B is a function and b € B, we
define the preimage of b:

Definition 9.4 (Preimage of f : A — B). The preimage of a function at b
is defined as the set of pairs of a point, together with a proof that this point
is indeed mapped to b:

fb:=%,.4.1dp b f(a)

Definition 9.5 (Weak equivalence property). A function f : A — B is
called a weak equivalence if all preimages are contractible:

isWeq f := .. Contractible (f_lb)

Definition 9.6 (Weak equivalence). We define a weak equivalence between
types A, B to be a map, together with a proof that this map is indeed a
weak equivalence:

WeqA B :=Yf.4,p.isWeq f

Definition 9.7 (Weak equivalence, alternative). An alternative definition
for a weak equivalence between types A, B is a tuple consisting of a map in
each direction, together with a proof that each composition is (extensionally
equal to) the identity:

WqultAB = E¢:A~>B,¢:BHA-Ha:A-IdA (w o ¢(a)) a X Hb:B-IdB ((b ] ¢(b)) b

Remark 9.8. The two notions of weak equivalence are logically equivalent,
but not isomorphic. However, it is a (proven?) conjecture that we can make
them isomorphic by adding a concrete coherence proof to the second one,
thereby making the 4-tuple a 5-tuple. The coherence condition follows from
the other terms, but the crucial point is that no unique proof follows.

Lemma 9.9 (Composition with weak equivalences is weak equivalence).
Assume A, B,C are types. If w : Weq B C is a weak equivalence, then
composition with w is a weak equivalence, i.e Weq (A — B) (A — C) is
inhabited.
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Proof. If u is the inverse of w in the alternative definition of a weak equiv-
alence, it is enough to show that Af.w o f and Af.u o f are inverse. More
precisely, it is sufficient to prove that their composition is extensionally equal
to the identity on A — B respective A — C, which is straightforward. [

9.4 The Univalence Axiom

From the previous section, it is clear that the identity function on any type
A is always a weak equivalence (more precisely, can be completed canoni-
cally to a weak equivalence); by idlsWeq , we denote the canonical map of
type VA. Weq AA. Assume A, B are types. Furthermore, assume p is an
inhabitant of Id A B. From p, we can construct a weak equivalence between
A and B: Using the J eliminator, we only have to give this construction if
p is the reflexivity proof; but in that case, idlsWeq is just what we need.
The Univalence Aziom states that this map is again a weak equivalence.

The contents of this sections are, by the best of my knowledge, originally
by Voevodsky; they are nicely presented in Bauer & Lumsdaine’s notes |28].

We first define the “canonical map” precisely:

Definition 9.10. There is map of type VAB.IdAB — Weq AB, con-
structed as

eqToWeq = J(AMAB.(p: IdAB) — Weq AB)idlsWeq

Definition 9.11 (Univalence Axiom). The map eqToWeq is a weak equiv-
alence. In other words, the Univalence axiom postulates a term of type

VA B .isWeqeqToWeq

The Univalence Axiom provides us with the possibility to treat weak
equivalences similarly as propositional equalities. To make this clear, we
prove the following:

Theorem 9.12 (Induction on weak equivalences). Given some
P YUV .WeqUV — Type,

assume we can construct a term for “canonical weak equivalences”. More
precisely, assume we can construct a term of the type

m VT .PTT (idlsWeqT)

Then we can also construct an inhabitant of P.
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Proof. Define
P YUV .IdUV — Type

by
P =AUV q.PUV (eqToWeq q)

Now, YU . P'U U refly; is inhabited by m (this uses the 3 rule of identity
types). By J, P’ is inhabited. Given any U, V as well as w : Weq UV
and univalence, we get a proof p : IdU V. But eqToWeq p is equal to w, so
using the constructed inhabitant of P'UV p and J (or just a substitution
rule that follows from J), we get an inhabitant of PU V w. O

We want to conclude with a proof that Univalence implies Extensionality
of functions, i.e., if two functions are pointwise equal, we can prove that they
are equal. We summarise the main argument of [28].

Lemma 9.13 (source and targent are Weak Equivalences). Recall that we
write Al for Yapa-ldaab. Given a type A, the canonical projection maps
srcq: AT — A and trg, : AT — A are weak equivalences.

Proof. We only give a sketch of the proof for the src function. Here, it seems
to be advantageous to use definition We want to prove that the map
ra: A — Al is an inverse of srcy (vecall r4 = Aa.(a,a,refl,). It is clear
that srcq ora is extensionally equal to id4. For the other direction, we have
to show that every term (a,b,p) : Al equals (a,a, refl,). But, using the .J
eliminator, it is enough to show this if (a,b,p) is (a,a,refl,), and in this
case, it follows by reflexivity. O

Theorem 9.14 (Univalence and 1 imply Extensionality). Assume we have,
for types A, B and functions f,qg: A — B, a proof that f and g are pointwise
equal; i.e. we have p : . 4.1da (fa) (ga). Using the Univalence aziom (and
the usual n law for functions), we can construct an inhabitant of Ida—p f g.

Proof. We sketch the proof that is given in [28]. Define

d:=Xa.(fa, fa,refls,)

e:= Xa.(fa,ga,pa)
Now, srca od = Aa. fa = srcy o e. But for any weak equivalence s, Idde is
inhabited iff Id (s o d)(s o e) is, which is easily shown by induction on weak
equivalences. We therefore just need to apply lemmal[9.12]to see that Idd e is

inhabited and also Id(trg, o d) (trg4 o e), which is just Id(Aa. fa) (Aa.ga),
so the n law solves it. O

Remark 9.15. For simplicity, we have only stated the nondependend form of
extensionality. The dependent version holds as well, but is more involved.
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10 Hedberg’s Theorem

In 1998, Michael Hedberg has published a proof that, for a given type, decid-
able equality implies uniqueness of identity proofs [18|. His original proof is
quite lengthy, though it provides a couple of very interesting insights. Here,
I want to present a much more direct proof, which I have also formalised in
Coq (available on my homepage). There is also a post on the HoTT blog
[1] on the topic.

Definition 10.1 (decidability). A type A is said to be decidable if there is
either a proof that it is inhabited or a proof that it is not:

Decidabley = A+ —A

where, of course, —A is just short-hand for A — L. Decidable equality means
that we can, for each pair of terms, decide their equality type:

DecEquy =Vab. Decidable 14, o)

Uniqueness of identity proofs has already been introduced at the very
beginning of this composition, we just repeat the definition in the form of a

type:
Definition 10.2 (uip).

UIPy =Vab:A.Vpq : Idapq.Idpq

Hedberg’s theorem states that decidable equality implies UIP:
Theorem 10.3 (Hedberg).

DecEqu, — UIPy

Proof. Assume dec: deceqA (in some context I'). Further, assume (a,b,p) :
AT (in the context). We can now “ask” the “deciding function” dec what
it “thinks” about a,b respectively a, a; it will either tell us that they are
equal or unequal. The latter case would, however, immediately lead to a
contradiction, as we already know that a and b are equal. Therefore,

decab =1inl ¢ for some q1 : Idaab

decaa = inl ¢ for some qs : Idaaa

We claim that p equals g1 0qy L propositionally (using the notation of remark
[2.2)). But applying J, we only need to prove it for (a,b,p) = (a,a, refl,), in
which case ¢; and g2 are the same, so that it suffices to observe that g2 0q, 1
equals reflexivity. As every inhabitant of Id4 a b equals gj0qsy ! there cannot
be more than one. O
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