
Induction for Cycles

Nicolai Kraus

jww Jakob von Raumer

Types in Munich ’20
(online substitution thereof)

11 March 2020

based on arxiv.org/abs/2001.07655

https://arxiv.org/abs/2001.07655

General Problem

•

•
•

••

• •

•

••

Consider paths in a graph.

If we want to prove a property. . .
− for all paths: Induction!
− for all closed paths: how???

Aim of this project:
approach for a special case
+ applications in HoTT.

General Problem

•

•
•

••

• •

•

••

Consider paths in a graph.

If we want to prove a property. . .
− for all paths: Induction!
− for all closed paths: how???

Aim of this project:
approach for a special case
+ applications in HoTT.

Quotients in Type Theory (Hofmann)

Given: A : Set
∼ : A→ A→ Set

We get: A/∼ : Set

Property: for B : Set,

'

f : A→ B
h : (a1 ∼ a2)→ f(a1) = f(a2)

g : (A/∼) → B

In homotopy type theory:

All of this is for sets
(aka 0-truncated types,
types satisfying UIP),
“set-quotients”

What if B is only
1-truncated
(e.g. the universe of
sets)?

Quotients in Type Theory (Hofmann)

Given: A : Set
∼ : A→ A→ Set

We get: A/∼ : Set

Property: for B : Set,

'

f : A→ B
h : (a1 ∼ a2)→ f(a1) = f(a2)

g : (A/∼) → B

In homotopy type theory:

All of this is for sets
(aka 0-truncated types,
types satisfying UIP),
“set-quotients”

What if B is only
1-truncated
(e.g. the universe of
sets)?

Set-Quotients in HoTT

Given: A : Type
∼ : A→ A→ Type

We get: A/∼ : Set

Property: for B : 1-Type,

'

f : A→ B
h : (a1 ∼ a2)→ f(a1) = f(a2)

c : (p : a ∼s∗ a)→ hs∗(p) = reflf(a)

g : (A/∼) → B

The cycle p in A:

a0a1

a2

a3

a4

p1

p2

p3 p4

p0

Its image in B:

f(a0)f(a1)

f(a2)

f(a3)

f(a4)
c(p)

h(p1)
−1

h(p2)

h(p3)
−1 h(p4)

h(p5)

Instance of the general problem!!

Set-Quotients in HoTT

Given: A : Type
∼ : A→ A→ Type

We get: A/∼ : Set

Property: for B : 1-Type,

'

f : A→ B
h : (a1 ∼ a2)→ f(a1) = f(a2)

c : (p : a ∼s∗ a)→ hs∗(p) = reflf(a)

g : (A/∼) → B

The cycle p in A:

a0a1

a2

a3

a4

p1

p2

p3 p4

p0

Its image in B:

f(a0)f(a1)

f(a2)

f(a3)

f(a4)
c(p)

h(p1)
−1

h(p2)

h(p3)
−1 h(p4)

h(p5)

Instance of the general problem!!

Set-Quotients in HoTT

Given: A : Type
∼ : A→ A→ Type

We get: A/∼ : Set

Property: for B : 1-Type,

'

f : A→ B
h : (a1 ∼ a2)→ f(a1) = f(a2)

c : (p : a ∼s∗ a)→ hs∗(p) = reflf(a)

g : (A/∼) → B

The cycle p in A:

a0a1

a2

a3

a4

p1

p2

p3 p4

p0

Its image in B:

f(a0)f(a1)

f(a2)

f(a3)

f(a4)
c(p)

h(p1)
−1

h(p2)

h(p3)
−1 h(p4)

h(p5)

Instance of the general problem!!

An Example in HoTT
Given: M : Set
Want: Free Group on M

In Sets (ordinary free group):

Set-quotient List(M +M)/∼

[x0, . . . , xk−1, xk, x
−1
k , xk+1, . . . , xn]

∼
[x0 . . . , xk−1, xk+1, . . . , xn]

Higher-categorical free group:

Ω(hcolim(M ⇒ 1))

H :≡ hcolim(M ⇒ 1)
can be implemented as a
higher inductive type:

inductive H
base : H
loops : M → base = base

An Example in HoTT
Given: M : Set
Want: Free Group on M

In Sets (ordinary free group):

Set-quotient List(M +M)/∼

[x0, . . . , xk−1, xk, x
−1
k , xk+1, . . . , xn]

∼
[x0 . . . , xk−1, xk+1, . . . , xn]

Higher-categorical free group:

Ω(hcolim(M ⇒ 1))

H :≡ hcolim(M ⇒ 1)
can be implemented as a
higher inductive type:

inductive H
base : H
loops : M → base = base

An Example in HoTT
Given: M : Set
Want: Free Group on M

In Sets (ordinary free group):

Set-quotient List(M +M)/∼

[x0, . . . , xk−1, xk, x
−1
k , xk+1, . . . , xn]

∼
[x0 . . . , xk−1, xk+1, . . . , xn]

Higher-categorical free group:

Ω(hcolim(M ⇒ 1))

H :≡ hcolim(M ⇒ 1)
can be implemented as a
higher inductive type:

inductive H
base : H
loops : M → base = base

Free Groups

Sets
(1-category)

Types
((∞, 1)-category)

FreeGroups
(1-category)

Free∞-Groups
((∞, 1)-category)

?

List(M +M)/∼ ' Ω(hcolim(M ⇒ 1))

?
Yes, with excluded middle.

Unknown (conjecture: independent) otherwise.

Free Groups

Sets
(1-category)

Types
((∞, 1)-category)

FreeGroups
(1-category)

Free∞-Groups
((∞, 1)-category)

?

List(M +M)/∼ ' Ω(hcolim(M ⇒ 1))

Needed: map from set-quotient into (a priori) higher type!

Free Groups

Sets
(1-category)

Types
((∞, 1)-category)

FreeGroups
(1-category)

Free∞-Groups
((∞, 1)-category)

?

List(M +M)/∼ ' Ω(hcolim(M ⇒ 1))

Needed: map from set-quotient into (a priori) higher type!
First approximation: Does Ω(hcolim(M ⇒ 1)) have trivial

fundamental groups? (‖Ω(hcolim(M ⇒ 1))‖1)

What would we need?
Recall: List(M +M)/∼ → ‖Ω(hcolim(M ⇒ 1))‖1
is given by: f : List(M +M)→ ‖Ω(hcolim(M ⇒ 1))‖1

h : (`1 ∼ `2)→ f(`1) = f(`2)
c : h maps every closed zig-zag to reflexivity

easy parts:
f([+m0,−m1,+m2]) :≡ loops(m0) � loops(m1)

−1 � loops(m2)
h : (use that inverses cancel, recall the def of ∼:

[+m0,−m1,+m1,+m2,−m3] ∼ [+m0,+m2,−m3])
c : (should be true, but how to prove it?)

What would we need?
Recall: List(M +M)/∼ → ‖Ω(hcolim(M ⇒ 1))‖1
is given by: f : List(M +M)→ ‖Ω(hcolim(M ⇒ 1))‖1

h : (`1 ∼ `2)→ f(`1) = f(`2)
c : h maps every closed zig-zag to reflexivity

easy parts:
f([+m0,−m1,+m2]) :≡ loops(m0) � loops(m1)

−1 � loops(m2)
h : (use that inverses cancel, recall the def of ∼:

[+m0,−m1,+m1,+m2,−m3] ∼ [+m0,+m2,−m3])

c : (should be true, but how to prove it?)

What would we need?
Recall: List(M +M)/∼ → ‖Ω(hcolim(M ⇒ 1))‖1
is given by: f : List(M +M)→ ‖Ω(hcolim(M ⇒ 1))‖1

h : (`1 ∼ `2)→ f(`1) = f(`2)
c : h maps every closed zig-zag to reflexivity

easy parts:
f([+m0,−m1,+m2]) :≡ loops(m0) � loops(m1)

−1 � loops(m2)
h : (use that inverses cancel, recall the def of ∼:

[+m0,−m1,+m1,+m2,−m3] ∼ [+m0,+m2,−m3])
c : (should be true, but how to prove it?)

Back to Slide 1

•

•
•

••

• •

•

••

Problem: Prove a property
for every cycle in a graph.

Assumption: The graph is
given by the symmetric closure
of a relation

which is:

• locally confluent
• Noetherian (co-wellfounded).

Back to Slide 1

•

•
•

••

• •

•

••

Problem: Prove a property
for every cycle in a graph.

Assumption: The graph is
given by the symmetric closure
of a relation which is:

• locally confluent
• Noetherian (co-wellfounded).

[−m0,+m1,−m1,−m2,−m3,+m3]

[−m0,−m2,−m3,+m3] [−m0,+m1,−m1,−m2]

[−m0,−m2]

Back to Slide 1

•

•
•

••

• •

•

••

Problem: Prove a property
for every cycle in a graph.

Assumption: The graph is
given by the symmetric closure
of a relation which is:

• locally confluent
• Noetherian (co-wellfounded).

Our proposed solution:
1. Given a relation on A, we define a new relation ◦ on

cycles a s∗ a.
2. If is Noetherian, then so is ◦.
3. If further is locally confluent, then any cycle can be

split into a ◦-smaller cycle and a confluence cycle
⇒ Induction is possible!

Step 1
Definition. Let be a relation on A.
Then, L on List(A) is generated by

[~a1, a, ~a2]
L [~a1, x0, x1, . . . , xk, ~a2]

for all xi with a xi.

Lemma. (Noetherian) ⇒ (L Noetherian).

Proof.
1. If `1 and `2 are both L-accessible, then so is `1 + `2.

(Proof: by double “accessibility induction”.)
2. If a : A is -accessible, then [a] is L-accessible. (Proof:

[a] L [x0, . . . , xk]; induction hypothesis + above.)
3. If every ai is -accessible, then [a0, . . . , an] is
 L-accessible. (Proof: first point.)

Step 1
Definition. Let be a relation on A.
Then, L on List(A) is generated by

[~a1, a, ~a2]
L [~a1, x0, x1, . . . , xk, ~a2]

for all xi with a xi.

Lemma. (Noetherian) ⇒ (L Noetherian).

Proof.
1. If `1 and `2 are both L-accessible, then so is `1 + `2.

(Proof: by double “accessibility induction”.)
2. If a : A is -accessible, then [a] is L-accessible. (Proof:

[a] L [x0, . . . , xk]; induction hypothesis + above.)
3. If every ai is -accessible, then [a0, . . . , an] is
 L-accessible. (Proof: first point.)

Step 1
Definition. Let be a relation on A.
Then, L on List(A) is generated by

[~a1, a, ~a2]
L [~a1, x0, x1, . . . , xk, ~a2]

for all xi with a xi.

Lemma. (Noetherian) ⇒ (L Noetherian).

Proof.
1. If `1 and `2 are both L-accessible, then so is `1 + `2.

(Proof: by double “accessibility induction”.)

2. If a : A is -accessible, then [a] is L-accessible. (Proof:
[a] L [x0, . . . , xk]; induction hypothesis + above.)

3. If every ai is -accessible, then [a0, . . . , an] is
 L-accessible. (Proof: first point.)

Step 1
Definition. Let be a relation on A.
Then, L on List(A) is generated by

[~a1, a, ~a2]
L [~a1, x0, x1, . . . , xk, ~a2]

for all xi with a xi.

Lemma. (Noetherian) ⇒ (L Noetherian).

Proof.
1. If `1 and `2 are both L-accessible, then so is `1 + `2.

(Proof: by double “accessibility induction”.)
2. If a : A is -accessible, then [a] is L-accessible. (Proof:

[a] L [x0, . . . , xk]; induction hypothesis + above.)

3. If every ai is -accessible, then [a0, . . . , an] is
 L-accessible. (Proof: first point.)

Step 1
Definition. Let be a relation on A.
Then, L on List(A) is generated by

[~a1, a, ~a2]
L [~a1, x0, x1, . . . , xk, ~a2]

for all xi with a xi.

Lemma. (Noetherian) ⇒ (L Noetherian).

Proof.
1. If `1 and `2 are both L-accessible, then so is `1 + `2.

(Proof: by double “accessibility induction”.)
2. If a : A is -accessible, then [a] is L-accessible. (Proof:

[a] L [x0, . . . , xk]; induction hypothesis + above.)
3. If every ai is -accessible, then [a0, . . . , an] is
 L-accessible. (Proof: first point.)

Step 2
Lemma. (Noetherian) ⇒
(any cycle is either empty or contains a span).

a0

a1
a2

a3
a4

Span : a′ a a′′

Definition. For γ a cycle, write ϕ(γ) for the vertex sequence
of γ.
Write γ ◦ δ if ϕ(γ) L ϕ(δ′) for any rotation δ′ of δ.

Lemma. (Noetherian) ⇒ (+◦+ Noetherian).

Step 2
Lemma. (Noetherian) ⇒
(any cycle is either empty or contains a span).

a0

a1
a2

a3
a4

Span : a′ a a′′

Definition. For γ a cycle, write ϕ(γ) for the vertex sequence
of γ.
Write γ ◦ δ if ϕ(γ) L ϕ(δ′) for any rotation δ′ of δ.

Lemma. (Noetherian) ⇒ (+◦+ Noetherian).

Step 2
Lemma. (Noetherian) ⇒
(any cycle is either empty or contains a span).

a0

a1
a2

a3
a4

Span : a′ a a′′

Definition. For γ a cycle, write ϕ(γ) for the vertex sequence
of γ.
Write γ ◦ δ if ϕ(γ) L ϕ(δ′) for any rotation δ′ of δ.

Lemma. (Noetherian) ⇒ (+◦+ Noetherian).

Step 3
Theorem. (Noetherian and locally confluent) ⇒
(any cycle can be written as the “merge” of a +◦+-smaller
cycle and a confluence cycle).

a0
a1

a2

a3

a4
a5

a6

a7

a8

a9

Step 3
Theorem. (Noetherian and locally confluent) ⇒
(any cycle can be written as the “merge” of a +◦+-smaller
cycle and a confluence cycle).

a0
a1

a2

a3

a4
a5

a6

a7

a8

a9

Step 3
Theorem. (Noetherian and locally confluent) ⇒
(any cycle can be written as the “merge” of a +◦+-smaller
cycle and a confluence cycle).

a0
a1

a2

a3

a4
a5

a6

a7a8

a9

Back to type theory: consequence
Theorem (Noetherian Cycle Induction).
Given: A : Type

() : A→ A→ Type
P : cycles→ Type.

Assume further: • relation Noetherian and locally confluent
• P stable under rotating of cycles:

P (γ)→ P (some rotation of γ)
• P stable under “merging” of cycles:

P (α)→ P (β)→ P (α + γ)

Then: P (empty) and P (confluence cycle) ⇒ P (any cycle).

These conditions are easily checked in our HoTT-examples,
where P (γ) :≡ the cycle γ is mapped to a trivial equality.

Back to type theory: consequence
Theorem (Noetherian Cycle Induction).
Given: A : Type

() : A→ A→ Type
P : cycles→ Type.

Assume further: • relation Noetherian and locally confluent
• P stable under rotating of cycles:

P (γ)→ P (some rotation of γ)
• P stable under “merging” of cycles:

P (α)→ P (β)→ P (α + γ)

Then: P (empty) and P (confluence cycle) ⇒ P (any cycle).

These conditions are easily checked in our HoTT-examples,
where P (γ) :≡ the cycle γ is mapped to a trivial equality.

Conclusions
I Paper: NK and Jakob von Raumer, Coherence via

Wellfoundedness, arxiv.org/abs/2001.07655.
I Can show approximations to other open questions in

HoTT with this.
I Non-type theoretic applications? E.g. in graph rewriting,

cf. Michael Löwe, Van-Kampen pushouts for sets and
graphs, 2010.

I Formalised in Lean (great job by Jakob!).

Thanks!

https://arxiv.org/abs/2001.07655

