Induction for Cycles

Nicolai Kraus

jww Jakob von Raumer

Types in Munich '20
(online substitution thereof)
11 March 2020

based on arxiv.org/abs/2001.07655

https://arxiv.org/abs/2001.07655

General Problem

Consider paths in a graph.

If we want to prove a property. ..
— for all paths: Induction!
— for all closed paths: how???

General Problem

Consider paths in a graph.

If we want to prove a property. ..
— for all paths: Induction!
— for all closed paths: how???

Aim of this project:
approach for a special case
+ applications in HoTT.

Quotients in Type Theory (Hofmann)

Given: A : Set
~: A= A— Set

We get: A/~ : Set
Property: for B : Set,

f:A—B
h:(ay ~ az) = flar) = f(az)
g:(A/~) — B

~

Quotients in Type Theory (Hofmann)

Given: A : Set
~: A= A— Set

We get: A/~ : Set
Property: for B : Set,

f:A—B
h: (a1 ~ a2) = f(a1) = f(az)

~

g:(A/~) =B

In homotopy type theory:

All of this is for sets
(aka O-truncated types,
types satisfying UIP),
“set-quotients”

What if B is only
1-truncated

(e.g. the universe of
sets)?

Set-Quotients in HoTT

Given: A : Type
~:A— A— Type

We get: A/~ : Set
Property: for B : 1-Type,
f:A—B

h:(ay ~az) = f(a1) = f(az)
c:(p:a~"a) — h¥(p) = reflyq

~

g:(A/~) — B

Set-Quotients in HoTT

Given: A : Type
~:A— A— Type

We get: A/~ : Set
Property: for B : 1-Type,
f:A—B

h:(ay ~az) = f(a1) = f(az)
c:(p:a~"a)— h¥™(p) = reflyq

~

g:(A/~) — B

The cycle p in A:

as
P3 P4
/ \

a2 Ay

ay —— Qo
P1

Its image in B:

h(p3>-1/f (a3>\h(p4)

fla2) f(as)

Set-Quotients in HoT T

Given:

A : Type
~:A— A— Type

We get: A/~ : Set

Instance of the general problem!! |

Pro,

c:(p:a~"a)— h¥™(p) = reflyq

~

f:A—B
h:(ay ~az) = f(a1) = f(az)

g:(A/~) = B

The cycle p in A:

a3
P3 P4
/ \

(45} Qg

a; —— Qo
p1

Its image in B:

h(PB)_l/f(CLg)\h(m)

fla2) f(as)

c(p)
h(p2) h(ps)

f(algl(g,f(%)

An Example in HoTT

Given: M : Set
Want: Free Group on M

In Sets (ordinary free group):
Set-quotient List(M + M)/~

—1
[T0s .oy Tty Ty Ty s Thits - - - 5 T
~Y

[xO"'uxk—la xk—‘rla"wxn]

An Example in HoTT
Given: M : Set

Want: Free Group on M
In Sets (ordinary free group): Higher-categorical free group:
Set-quotient List(M + M)/~ Q(hcolim(M = 1))
(205 -+ s Tty Ty Ty Tt -+ 5 T

[$0"'7xk—17 xk—‘rla"‘wrn]

An Example in HoTT

Given: M : Set
Want: Free Group on M

In Sets (ordinary free group):
Set-quotient List(M + M)/~

—1
[T0s .oy Tty Ty Ty s Thits - - - 5 T
~Y

[‘T;O“'7xl€—17 xk—‘rla"wxn]

Higher-categorical free group:
Q(hcolim(M = 1))

H := hcolim(M = 1)
can be implemented as a
higher inductive type:

inductive H
base : H

loops : M — base = base

Free Groups

Sets Types
(1-category) ((00, 1)-category)

Y Y

FreeGroups Free co-Groups
(1-category) ((00, 1)-category)

Y

List(M + M)/~

12

Q(hcolim(M = 1))

?
Yes, with excluded middle.
Unknown (conjecture: independent) otherwise.

Free Groups

Sets Types
(1-category) ((00, 1)-category)

Y Y

FreeGroups Free co-Groups
(1-category) ((00, 1)-category)

Y

List(M + M)/~

12

Q(hcolim(M = 1))

Needed: map from set-quotient into (a priori) higher type!

Free Groups

Sets Types
(1-category) ((00, 1)-category)

Y Y

FreeGroups Free co-Groups
(1-category) ((00, 1)-category)

Y

List(M + M)/~

12

Q(hcolim(M = 1))

Needed: map from set-quotient into (a priori) higher type!
First approximation: Does Q(hcolim(M = 1)) have trivial
fundamental groups? (~ ||2(hcolim(M = 1))]},)

What would we need?
Recall: List(M + M)/~ — ||Q(hcolim(M = 1))||,

is given by: f o List(M + M) — ||Q(hcolim(M = 1))||;
hie (b~ o) = f(l) = [(ls)

¢ : h maps every closed zig-zag to reflexivity

What would we need?
Recall: List(M + M)/~ — ||Q(hcolim(M = 1))||,

is given by: f o List(M + M) — ||Q(hcolim(M = 1))||;
hie (b~ o) = f(l) = [(ls)

¢ : h maps every closed zig-zag to reflexivity

easy parts:
f([+mo, —my, +ma]) := loops(myg) * loops(m;) ™" « loops(ms)
h : (use that inverses cancel, recall the def of ~:

[+m0, —my, —|—m1, +m2, —mg] ~ [+m0, —|—m2, —mg])

What would we need?
Recall: List(M + M)/~ — ||Q(hcolim(M = 1))||,

is given by: f o List(M + M) — ||Q(hcolim(M = 1))||;
hie (b~ o) = f(l) = [(ls)

¢ : h maps every closed zig-zag to reflexivity

easy parts:
f([+mo, —my, +ma]) := loops(myg) * loops(m;) ™" « loops(ms)
h : (use that inverses cancel, recall the def of ~:
[+m0, —mzy, +Mmq, +ma, —mg] ~ [+m0, +ma, —mg])
¢ : (should be true, but how to prove it?)

Back to Slide 1

Problem: Prove a property
¢ — o for every cycle in a graph.

° \\ Assumption: The graph is

./// ° given by the symmetric closure
O\ L / of a relation

Back to Slide 1

Problem: Prove a property
for every cycle in a graph.

o \ Assumption: The graph is
// \ [] ' H
given by the symmetric closure

[
° of a relation which is:
N /
\ [] [
o~ S e locally confluent
o e Noetherian (co-wellfounded).
[_m07 +m17 —my, —Mg, —M3, +m3]

— T

[—mo, — g, —ms, +mg] [—mg, +mq, —my, —mo)

Back to Slide 1

Problem: Prove a property
* — for every cycle in a graph.

[J
// ° \\ Assumptlon: The gr_aph is
o / ° given by the symmetric closure

Q ,® / of a relation which is:

\ [[

o~ S e locally confluent

o e Noetherian (co-wellfounded).

Our proposed solution:

1. Given a relation ~~ on A, we define a new relation ~~° on

cycles a ~~°* a.

2. If ~» is Noetherian, then so is ~°.

3. If ~» further is locally confluent, then any cycle can be
split into a ~~°-smaller cycle and a confluence cycle

= Induction is possible!

Step 1
Definition. Let ~» be a relation on A.
Then, ~% on List(A) is generated by

— — L — —
[alvava’Q] A [&1,$0,l’1,...,$k,&2]
for all z; with a ~ z;.

Step 1
Definition. Let ~ be a relation on A.
Then, ~% on List(A) is generated by
[a_iv a, a—é] WL [a'—i7 Loy L1y, T, af_é]
for all z; with a ~ z;.

Lemma. (~ Noetherian) = (~* Noetherian).

Step 1
Definition. Let ~» be a relation on A.
Then, ~% on List(A) is generated by

- - L -
[alvaaa’Q] A [a17$07x17"'7xkaa2]
for all z; with a ~ z;.

Lemma. (~ Noetherian) = (~* Noetherian).

Proof.

1. If ¢; and ¢ are both ~»-accessible, then so is {1 + (5.
(Proof: by double “accessibility induction”.)

Step 1
Definition. Let ~» be a relation on A.
Then, ~% on List(A) is generated by

- o L~ o
[al,a,G/Q] A [G1,$0,$1,...,$k,&2]
for all z; with a ~ z;.

Lemma. (~ Noetherian) = (~* Noetherian).

Proof.

1. If ¢; and ¢ are both ~»-accessible, then so is {1 + (5.
(Proof: by double “accessibility induction”.)

2. If a: Ais ~+-accessible, then [a] is ~~"-accessible. (Proof:
[a] ~" [xg, ..., x4]; induction hypothesis + above.)

Step 1
Definition. Let ~» be a relation on A.
Then, ~% on List(A) is generated by

- o L~ o
[(Il,a,CLQ] A [(I’l?xO)xla"'?xkaa’Q]
for all z; with a ~ z;.

Lemma. (~ Noetherian) = (~* Noetherian).

Proof.
1. If ¢, and ¢5 are both ~~-accessible, then so is ¢1 + {5.
(Proof: by double “accessibility induction”.)
2. If a: Ais ~-accessible, then [a] is ~+"-accessible. (Proof:
[a] ~" [xg, ..., x4]; induction hypothesis + above.)
3. If every a; is ~»-accessible, then [ag, ..., a,] is
~~T-accessible. (Proof: first point.)

Step 2

Lemma. (~ Noetherian) =
(any cycle is either empty or contains a span).

ay
~a
a2

. / "
ao T Span: d «~a~a
as

/
Qy

Step 2

Lemma. (~ Noetherian) =
(any cycle is either empty or contains a span).

a
T~
Qg
. / "
ao T Span: d «~a~a

as
ay “
Definition. For v a cycle, write ¢(7) for the vertex sequence
of .
Write v ~° 6 if () ~% ¢(0") for any rotation ¢ of 4.

Step 2

Lemma. (~ Noetherian) =
(any cycle is either empty or contains a span).

a
T~
Qg
. / "
ag T Span: d «~a~a

as
ay “
Definition. For v a cycle, write ¢(7) for the vertex sequence
of .
Write v ~° 6 if () ~% ¢(0") for any rotation ¢ of 4.

Lemma. (~ Noetherian) = (~"°" Noetherian).

Step 3

Theorem. (~~ Noetherian and locally confluent) =
(any cycle can be written as the “merge” of a ~T°%
cycle and a confluence cycle).

-smaller

Step 3

Theorem. (~~ Noetherian and locally confluent) =
(any cycle can be written as the “merge” of a ~T°%
cycle and a confluence cycle).

-smaller

as
/

ay \

7
. /

™S o

al‘/

Step 3

Theorem. (~~ Noetherian and locally confluent) =
(any cycle can be written as the “merge” of a ~T°%
cycle and a confluence cycle).

-smaller

Back to type theory: consequence

Theorem (Noetherian Cycle Induction).
Given: A : Type
(v):A— A— Type
P : cycles — Type.
Assume further: e relation ~» Noetherian and locally confluent
e P stable under rotating of cycles:
P(v) — P(some rotation of)
e P stable under “merging” of cycles:
P(a) = P(B) = P(a+7)

Then: P(empty) and P(confluence cycle) = P(any cycle).

Back to type theory: consequence

Theorem (Noetherian Cycle Induction).
Given: A : Type
(v):A— A— Type
P : cycles — Type.
Assume further: e relation ~» Noetherian and locally confluent
e P stable under rotating of cycles:
P(v) — P(some rotation of)
e P stable under “merging” of cycles:
P(a) = P(B) = P(a+7)

Then: P(empty) and P(confluence cycle) = P(any cycle)

v

These conditions are easily checked in our HoT T-examples,
where P(7) := the cycle v is mapped to a trivial equality.

Conclusions

» Paper: NK and Jakob von Raumer, Coherence via
Wellfoundedness, arxiv.org/abs/2001.07655.

» Can show approximations to other open questions in
HoTT with this.

» Non-type theoretic applications? E.g. in graph rewriting,
cf. Michael Léwe, Van-Kampen pushouts for sets and
graphs, 2010.

» Formalised in Lean (great job by Jakob!).
Thanks!

https://arxiv.org/abs/2001.07655

