
Towards the syntax and semantics
of higher dimensional type theory

Thorsten Altenkirch
Nicolai Kraus

Oxford, HoTT/UF’18, 8 July

[picture by Andrej Bauer, (CC BY-SA 2.5 SI)]

The goal: type theory in type theory

Plan: develop the metatheory of type theory in type theory
Why?

I A foundation should be able to model itself.
I “Template meta-programming”, this problem is in some

sense universal.
I Specify HITs.
I . . . ?

The goal: type theory in type theory

type
signatures

HIIT

constructors

Con : U
Ty : Con→ U
Tm : ΠΓ : Con.Ty(Γ)→ U
Tms : Con→ Con→ U
...

Pi : ΠA : Ty(Γ), B : Ty(Γ.A).Ty(Γ)

...
lam : Tm(Γ.A,B)→ Tm(Γ,Pi(A,B))

app : Tm(Γ,Pi(A,B))→ Tm(Γ.A,B)

...
β : Πt : Tm(Γ.A,B).app(lam(t)) = t

Past work. . .
Altenkirch-Kaposi, POPL 2016:
Type theory in type theory using quotient inductive types

But this was done assuming UIP/K. How to do it in HoTT?

Why not just set-truncate everything?

Breaks when we want to define the “standard model”, i.e.
functions con : Con→ U

ty : (Γ : Con)→ con(Γ)→ Ty(γ)→ U
tms : . . .

tm : . . .

Past work. . .
Altenkirch-Kaposi, POPL 2016:
Type theory in type theory using quotient inductive types

But this was done assuming UIP/K. How to do it in HoTT?

Why not just set-truncate everything?

Breaks when we want to define the “standard model”, i.e.
functions con : Con→ U

ty : (Γ : Con)→ con(Γ)→ Ty(γ)→ U
tms : . . .

tm : . . .

Categories with families
A category with families (CwF) is given by:

I A category of contexts and substitutions Con.
I A presheaf of types Ty : Conop → U

I A presheaf of terms over contexts and types
∫

Tyop → U
I . . .

The “quotient inductive-inductive type” (QIIT) from before
defines the initial CwF.

Thorsten’s plan for the “HoTT in HoTT” problem:
Just replace “category” by “(∞, 1)-category” and replace all no-
tions by the relevant ∞-notions. The syntax will still be a set
because the sytax will still have decidable equality. Done.

The End (of the part where I
talk about Thorsten’s ideas).

Categories with families
A category with families (CwF) is given by:

I A category of contexts and substitutions Con.
I A presheaf of types Ty : Conop → U

I A presheaf of terms over contexts and types
∫

Tyop → U
I . . .

The “quotient inductive-inductive type” (QIIT) from before
defines the initial CwF.

Thorsten’s plan for the “HoTT in HoTT” problem:
Just replace “category” by “(∞, 1)-category” and replace all no-
tions by the relevant ∞-notions. The syntax will still be a set
because the sytax will still have decidable equality. Done.

The End (of the part where I
talk about Thorsten’s ideas).

What are ∞-categories in HoTT?
Independently of type theory:

∞-categories
(Boardman-Vogt /
Joyal / Lurie)

complete
Segal spaces
(Rezk)

complete semi-
Segal spaces

based on
∆op → Set

based on
∆op → Spaces

based on
∆op

+ → Spaces

Joyal-Tierney Harpaz

Works well in type theory!
Capriotti-Kraus, POPL 2018:
Higher univalent categories
via complete semi-Segal types

What are ∞-categories in HoTT?
Independently of type theory:

∞-categories
(Boardman-Vogt /
Joyal / Lurie)

complete
Segal spaces
(Rezk)

complete semi-
Segal spaces

based on
∆op → Set

based on
∆op → Spaces

based on
∆op

+ → Spaces

Joyal-Tierney Harpaz

Works well in type theory!
Capriotti-Kraus, POPL 2018:
Higher univalent categories
via complete semi-Segal types

How do complete semi-Segal types work?

I First, we need A : ∆op
+ → U ; encoding the Reedy fibrant

ones is very natural in type theory (semisimplicial types):
A0 : U
A1 : A0 → A0 → U
A2 : (x, y, z : A0)→ A1(x, y)→ A1(y, z)→ A1(x, z)→ U

I Add the Segal condition: For any inner horn, the type of
fillers is contractible.

(composition!)

(associativity!)

How do complete semi-Segal types work?

I First, we need A : ∆op
+ → U ; encoding the Reedy fibrant

ones is very natural in type theory (semisimplicial types):
A0 : U
A1 : A0 → A0 → U
A2 : (x, y, z : A0)→ A1(x, y)→ A1(y, z)→ A1(x, z)→ U

I Add the Segal condition: For any inner horn, the type of
fillers is contractible.

(composition!)

(associativity!)

How do complete semi-Segal types work? (2)

I Identities via Harpaz’ (Lurie’s) trick.
Definition: f : A1(x, y) is an equivalence if − ◦ f and
f ◦ − are equivalences.
Condition: exactly one outgoing equivalence for every
object.

Πx : A0, isContr(Σ(y : A0), (e : A1(x, y)), isequiv(e))

I Construct identities:

x x

y

x x

y

(identity found!)

⇒ This gives univalent (∞, 1)-categories. (Can remove
univalence by removing isContr.)

How do complete semi-Segal types work? (2)

I Identities via Harpaz’ (Lurie’s) trick.
Definition: f : A1(x, y) is an equivalence if − ◦ f and
f ◦ − are equivalences.
Condition: exactly one outgoing equivalence for every
object.

Πx : A0, isContr(Σ(y : A0), (e : A1(x, y)), isequiv(e))

I Construct identities:

x x

y

x x

y

(identity found!)

⇒ This gives univalent (∞, 1)-categories. (Can remove
univalence by removing isContr.)

How do complete semi-Segal types work? (2)

I Identities via Harpaz’ (Lurie’s) trick.
Definition: f : A1(x, y) is an equivalence if − ◦ f and
f ◦ − are equivalences.
Condition: exactly one outgoing equivalence for every
object.

Πx : A0, isContr(Σ(y : A0), (e : A1(x, y)), isequiv(e))

I Construct identities:

x x

y

x x

y

(identity found!)

⇒ This gives univalent (∞, 1)-categories. (Can remove
univalence by removing isContr.)

What if we want an explicit identity structure?
Try again to define simplicial types. Two possibilities are given
in:

Kraus-Sattler 2017:
Space-valued diagrams, type-theoretically

Possibility 1: a direct
replacement of ∆ which
is finite if restricted to
finite levels.

(1) (1, 1) (1, 1, 1)

(2) (2, 1)
(1, 2)

(3)

Direct replacement of ∆

(1) (1, 1) (1, 1, 1)

(2) (2, 1)
(1, 2)

(3)A(1) : U
A(1,1) : A(1) → A(1) → U
A(1,1,1) : (x, y, z : A(1))→ A(1,1)(x, y)

→ A(1,1)(y, z)→ A(1,1)(x, z)→ U
A(2) : (x : A(1))→ A(1,1)(x, x)→ U
h(2) : (x : A(1))→ isContr(Σ(l : A(1,1)(x, x), A(2)(x, l)))

.

Homotopy coherent diagrams

Second possibility to get “simplicial types”: Write down
functors ∆op → U with all coherences.

This can be done by looking at the nerve of ∆op:
I a type for every [n] : ∆op

I a function for every [n]
f−→ [m]

I a commutative triangle for every [n]
f−→ [m]

g−→ [k]

I a tetrahedron for every [n]
f−→ [m]

g−→ [k]
h−→ [j]

I
Note: Similar constructions have been used before for higher

categories (“D construction”), e.g. Rădulescu-Banu’09,
Szumiło’14.

I plus: every [n]
id−→ [n] is mapped to an equivalence

Homotopy coherent diagrams

Second possibility to get “simplicial types”: Write down
functors ∆op → U with all coherences.

This can be done by looking at the nerve of ∆op:
I a type for every [n] : ∆op

I a function for every [n]
f−→ [m]

I a commutative triangle for every [n]
f−→ [m]

g−→ [k]

I a tetrahedron for every [n]
f−→ [m]

g−→ [k]
h−→ [j]

I
Note: Similar constructions have been used before for higher

categories (“D construction”), e.g. Rădulescu-Banu’09,
Szumiło’14.

I plus: every [n]
id−→ [n] is mapped to an equivalence

Homotopy coherent diagrams

Second possibility to get “simplicial types”: Write down
functors ∆op → U with all coherences.

This can be done by looking at the nerve of ∆op:
I a type for every [n] : ∆op

I a function for every [n]
f−→ [m]

I a commutative triangle for every [n]
f−→ [m]

g−→ [k]

I a tetrahedron for every [n]
f−→ [m]

g−→ [k]
h−→ [j]

I
Note: Similar constructions have been used before for higher

categories (“D construction”), e.g. Rădulescu-Banu’09,
Szumiło’14.

I plus: every [n]
id−→ [n] is mapped to an equivalence

Higher categories without univalence

Result:
These two notions of simplicial types are equivalent.

We can use either of them to define (∞, 1)-categories
(without built-in univalence).

Now we can go back and attempt to construct what Thorsten
suggested.

The End (of the talk).

Higher categories without univalence

Result:
These two notions of simplicial types are equivalent.

We can use either of them to define (∞, 1)-categories
(without built-in univalence).

Now we can go back and attempt to construct what Thorsten
suggested.

The End (of the talk).

References
Thorsten Altenkirch and Ambrus Kaposi.
Type theory in type theory using quotient inductive types.
POPL’16, 2016.

Danil Annenkov, Paolo Capriotti, and Nicolai Kraus.
Two-level type theory and applications.
ArXiv e-prints, 2017.

Paolo Capriotti and Nicolai Kraus.
Univalent higher categories via complete semi-segal types.
POPL’18, 2017.

Yonatan Harpaz.
Quasi-unital ∞–categories.
Algebraic & Geometric Topology, 2015.

André Joyal.
The theory of quasi-categories and its applications.
2008.

André Joyal and Myles Tierney.
Quasi-categories vs segal spaces.
Contemp. Math, 2006.

Nicolai Kraus and Christian Sattler.
Space-valued diagrams, type-theoretically.
ArXiv e-prints, 2017.

Jacob Lurie.
Higher Topos Theory.
2009.

