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The goal: type theory in type theory

Plan: develop the metatheory of type theory in type theory
Why?

I A foundation should be able to model itself.
I “Template meta-programming”, this problem is in some

sense universal.
I Specify HITs.
I . . . ?



The goal: type theory in type theory

type
signatures

HIIT

constructors

Con : U
Ty : Con→ U
Tm : ΠΓ : Con.Ty(Γ)→ U
Tms : Con→ Con→ U
...

Pi : ΠA : Ty(Γ), B : Ty(Γ.A).Ty(Γ)

...
lam : Tm(Γ.A,B)→ Tm(Γ,Pi(A,B))

app : Tm(Γ,Pi(A,B))→ Tm(Γ.A,B)

...
β : Πt : Tm(Γ.A,B).app(lam(t)) = t



Past work. . .
Altenkirch-Kaposi, POPL 2016:
Type theory in type theory using quotient inductive types

But this was done assuming UIP/K. How to do it in HoTT?

Why not just set-truncate everything?

Breaks when we want to define the “standard model”, i.e.
functions con : Con→ U

ty : (Γ : Con)→ con(Γ)→ Ty(γ)→ U
tms : . . .

tm : . . .
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Categories with families
A category with families (CwF) is given by:

I A category of contexts and substitutions Con.
I A presheaf of types Ty : Conop → U

I A presheaf of terms over contexts and types
∫

Tyop → U
I . . .

The “quotient inductive-inductive type” (QIIT) from before
defines the initial CwF.

Thorsten’s plan for the “HoTT in HoTT” problem:
Just replace “category” by “(∞, 1)-category” and replace all no-
tions by the relevant ∞-notions. The syntax will still be a set
because the sytax will still have decidable equality. Done.

The End (of the part where I
talk about Thorsten’s ideas).
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What are ∞-categories in HoTT?
Independently of type theory:

∞-categories
(Boardman-Vogt /
Joyal / Lurie)

complete
Segal spaces
(Rezk)

complete semi-
Segal spaces

based on
∆op → Set

based on
∆op → Spaces

based on
∆op

+ → Spaces

Joyal-Tierney Harpaz

Works well in type theory!
Capriotti-Kraus, POPL 2018:
Higher univalent categories
via complete semi-Segal types
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How do complete semi-Segal types work?

I First, we need A : ∆op
+ → U ; encoding the Reedy fibrant

ones is very natural in type theory (semisimplicial types):
A0 : U
A1 : A0 → A0 → U
A2 : (x, y, z : A0)→ A1(x, y)→ A1(y, z)→ A1(x, z)→ U

I Add the Segal condition: For any inner horn, the type of
fillers is contractible.

(composition!)

(associativity!)



How do complete semi-Segal types work?

I First, we need A : ∆op
+ → U ; encoding the Reedy fibrant

ones is very natural in type theory (semisimplicial types):
A0 : U
A1 : A0 → A0 → U
A2 : (x, y, z : A0)→ A1(x, y)→ A1(y, z)→ A1(x, z)→ U

I Add the Segal condition: For any inner horn, the type of
fillers is contractible.

(composition!)

(associativity!)



How do complete semi-Segal types work? (2)

I Identities via Harpaz’ (Lurie’s) trick.
Definition: f : A1(x, y) is an equivalence if − ◦ f and
f ◦ − are equivalences.
Condition: exactly one outgoing equivalence for every
object.

Πx : A0, isContr(Σ(y : A0), (e : A1(x, y)), isequiv(e))

I Construct identities:

x x

y

x x

y

(identity found!)

⇒ This gives univalent (∞, 1)-categories. (Can remove
univalence by removing isContr.)
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What if we want an explicit identity structure?
Try again to define simplicial types. Two possibilities are given
in:

Kraus-Sattler 2017:
Space-valued diagrams, type-theoretically

Possibility 1: a direct
replacement of ∆ which
is finite if restricted to
finite levels.

(1) (1, 1) (1, 1, 1)

(2) (2, 1)
(1, 2)

(3)



Direct replacement of ∆

(1) (1, 1) (1, 1, 1)

(2) (2, 1)
(1, 2)

(3)A(1) : U
A(1,1) : A(1) → A(1) → U
A(1,1,1) : (x, y, z : A(1))→ A(1,1)(x, y)

→ A(1,1)(y, z)→ A(1,1)(x, z)→ U
A(2) : (x : A(1))→ A(1,1)(x, x)→ U
h(2) : (x : A(1))→ isContr(Σ(l : A(1,1)(x, x), A(2)(x, l)))

. . . . . . . . .



Homotopy coherent diagrams

Second possibility to get “simplicial types”: Write down
functors ∆op → U with all coherences.

This can be done by looking at the nerve of ∆op:
I a type for every [n] : ∆op

I a function for every [n]
f−→ [m]

I a commutative triangle for every [n]
f−→ [m]

g−→ [k]

I a tetrahedron for every [n]
f−→ [m]

g−→ [k]
h−→ [j]

I . . . . . .
Note: Similar constructions have been used before for higher

categories (“D construction”), e.g. Rădulescu-Banu’09,
Szumiło’14.

I plus: every [n]
id−→ [n] is mapped to an equivalence
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Higher categories without univalence

Result:
These two notions of simplicial types are equivalent.

We can use either of them to define (∞, 1)-categories
(without built-in univalence).

Now we can go back and attempt to construct what Thorsten
suggested.

The End (of the talk).
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