Towards the syntax and semantics
of higher dimensional type theory

Fhersten—-Altenldreh
Nicolai Kraus
Oxford, HoTT/UF'18, 8 July

Bas: Thorsten Altenkirch, Towards higher models and syntax of type
theory
Dan Christensen * 106 views * 1 month ago

Homotapy Type Theory Electronic Seminar Talks, 201§

[picture by Andrej Bauer, (CC BY-SA 2.5 Sl)]

The goal: type theory in type theory

Plan: develop the metatheory of type theory in type theory
Why?
» A foundation should be able to model itself.

» “Template meta-programming’, this problem is in some
sense universal.

» Specify HITs.
> .7

The goal: type theory in type theory

Con: U
type
signatures Ty: Con—U
Tm: II': Con.Ty(I') = U
Tms : Con — Con — U
HIT
Pi: IIA:Ty(l),B: Ty(l'.A).Ty(I)
constructors lam : Tm(I".4, B) — Tm(T', Pi(4, B))

app : Tm(I',Pi(A, B)) - Tm(I". A, B)

B. . It : Tm(T. A, B).app(lam(t)) =t

Past work. . .

Altenkirch-Kaposi, POPL 2016:
Type theory in type theory using quotient inductive types

But this was done assuming UIP/K. How to do it in HoTT?

Past work. . .

Altenkirch-Kaposi, POPL 2016:
Type theory in type theory using quotient inductive types

But this was done assuming UIP/K. How to do it in HoTT?

Why not just set-truncate everything?

Breaks when we want to define the ““standard model”, i.e.

functions con: Con — U

ty: (I': Con) = con(I") — Ty(y) = U
tms: ...

tm: ...

Categories with families

A category with families (CwF) is given by:
» A category of contexts and substitutions Con.
» A presheaf of types Ty : Con”® — U

» A presheaf of terms over contexts and types /TyOp —U

> ..

The “quotient inductive-inductive type” (QIIT) from before
defines the initial CwF.

Categories with families

A category with families (CwF) is given by:
» A category of contexts and substitutions Con.
» A presheaf of types Ty : Con”® — U

» A presheaf of terms over contexts and types /TyOp —U
> ...

The “quotient inductive-inductive type” (QIIT) from before
defines the initial CwF.

Thorsten’s plan for the “HoTT in HoTT"” problem:
Just replace “category” by “(oo, 1)-category” and replace all no-
tions by the relevant co-notions. The syntax will still be a set
because the sytax will still have decidable equality. Done.

The End (of the part where |
talk about Thorsten's ideas).

What are oo-categories in HoTT7

Independently of type theory:

Joyal—Tierney Harpaz
oo-categories complete } lete semi
(Boardman-Vogt / Segal spaces S ﬁ I
Joyal / Lurie) (Rezk) ©ga’ spaces

based on

based on based on

AS? — Spaces
A°P — Set A°P — Spaces

What are oo-categories in HoTT7

Independently of type theory:

Joyal-Tierney

Harpaz
oo-categories complete \ | :
(Boardman-Vogt / Segal spaces comﬁ ete semi-
Joyal / Lurie) (Rezk) Segal spaces
based on
based on based on A% Spaces
AP — Set A°P — Spaces +

/

Works well in type theory!

Capriotti-Kraus, POPL 2018:
Higher univalent categories
via complete semi-Segal types

How do complete semi-Segal types work?

» First, we need A : A% — U; encoding the Reedy fibrant

ones is very natural in type theory (semisimplicial types):
AO U

Al : AO — AO —U
A2 : (x,y,z : AO) — Al(xay) — Al(y7z) — A1($,2> - U

How do complete semi-Segal types work?

» First, we need A : A% — U; encoding the Reedy fibrant
ones is very natural in type theory (semisimplicial types):
Ag: U
Ay Ag— Ay — U
Ay (z,y,2 1 Ag) = Ar(z,y) = A1(y, 2) = Ar(x, 2) = U

» Add the Segal condition: For any inner horn, the type of
fillers is contractible.

\ ||> ::"\ (composition!)
{/ \ ||> o;//\ \ (associativity!)

How do complete semi-Segal types work? (2)

» ldentities via Harpaz' (Lurie's) trick.
Definition: f : Ai(z,y) is an equivalence if — o f and
f o — are equivalences.
Condition: exactly one outgoing equivalence for every
object.

[z : Ag,isContr(X(y : Ap), (e : Ai(z,y)), isequiv(e))

How do complete semi-Segal types work? (2)

» ldentities via Harpaz' (Lurie's) trick.
Definition: f : Ai(z,y) is an equivalence if — o f and
f o — are equivalences.
Condition: exactly one outgoing equivalence for every
object.

[z : Ag,isContr(X(y : Ap), (e : Ai(z,y)), isequiv(e))

> Construct identities:

/\ ||> /\ (identity found!)

Xllll

How do complete semi-Segal types work? (2)

» ldentities via Harpaz' (Lurie's) trick.
Definition: f : Ai(z,y) is an equivalence if — o f and
f o — are equivalences.
Condition: exactly one outgoing equivalence for every
object.

[z : Ag,isContr(X(y : Ap), (e : Ai(z,y)), isequiv(e))

> Construct identities:

/\ ||> /\ (identity found!)

Xllll

= This gives univalent (oo, 1)—categorles. (Can remove
univalence by removing isContr.)

What if we want an explicit identity structure?
Try again to define simplicial types. Two possibilities are given
in:

Kraus-Sattler 2017:
Space-valued diagrams, type-theoretically

(1) = (1,1,1)
Possibility 1: a direct l X l /
replacement of A which . 1
is finite if restricted to (2)
finite levels. 3 / ()2

Direct replacement of A

= (1,1,1)

X T /
(,2)

Aqy U ()/

Ayt Aqy = Ay = U

Aary s (29,20 Agy) = Aay(,y)
— A(l’l)(y, Z) — A(Ll)(l’, Z) —U
A(Q) : (:E : A(l)) — A(Ll)(ﬂf, ZL‘) —U
h(g) : (ZE : A(l)) — isContr(E(l : A(Ll)(x,x),A(Q) (1‘7[)))

(1)
A
(2)
3

Homotopy coherent diagrams

Second possibility to get “simplicial types”: Write down
functors A°P — U/ with all coherences.

Homotopy coherent diagrams
Second possibility to get “simplicial types”: Write down
functors A°® — U with all coherences.
This can be done by looking at the nerve of A°P:
» a type for every [n] : AP
» a function for every [n] ERN [m]
» a commutative triangle for every [n] EN [m] 2 [K]

> a tetrahedron for every [n] ER [m] & [k] = [j]

Note: Similar constructions have been used before for higher
categories (D construction”), e.g. Ridulescu-Banu'09,
Szumito'14.

Homotopy coherent diagrams
Second possibility to get “simplicial types”: Write down
functors A°® — U with all coherences.
This can be done by looking at the nerve of A°P:
» a type for every [n] : AP
» a function for every [n] ERN [m]
» a commutative triangle for every [n] EN [m] 2 [K]

> a tetrahedron for every [n] ER [m] & [k] = [j]

Note: Similar constructions have been used before for higher
categories (D construction”), e.g. Ridulescu-Banu'09,
Szumito'14.

» plus: every [n] LN [n] is mapped to an equivalence

Higher categories without univalence

Result:
These two notions of simplicial types are equivalent.

We can use either of them to define (oo, 1)-categories
(without built-in univalence).

Higher categories without univalence

Result:
These two notions of simplicial types are equivalent.

We can use either of them to define (oo, 1)-categories
(without built-in univalence).

Now we can go back and attempt to construct what Thorsten
suggested.

The End (of the talk).

References

B

) W W D W &

Thorsten Altenkirch and Ambrus Kaposi.

Type theory in type theory using quotient inductive types.
POPL'16, 2016.

Danil Annenkov, Paolo Capriotti, and Nicolai Kraus.
Two-level type theory and applications.

ArXiv e-prints, 2017.

Paolo Capriotti and Nicolai Kraus.

Univalent higher categories via complete semi-segal types.
POPL'18, 2017.

Yonatan Harpaz.

Quasi-unital co—categories.
Algebraic & Geometric Topology, 2015.

André Joyal.

The theory of quasi-categories and its applications.
2008.

André Joyal and Myles Tierney.

Quasi-categories vs segal spaces.

Contemp. Math, 2006.

Nicolai Kraus and Christian Sattler.

Space-valued diagrams, type-theoretically.

ArXiv e-prints, 2017.

Jacob Lurie.

Higher Topos Theory.
2009.

