Free Higher Groups in Homotopy Type Theory

Nicolai Kraus

jww Thorsten Altenkirch, thanks to Paolo Capriotti

University of Nottingham

Oxford, LICS'18, 9 July

Equalities in intensional type theory

If x, y are two terms of the same type:

 $x \equiv y$

- definitional/judgmental equality;
- meta-theoretic;
- used for type-checking.

 $\mathbf{x} = \mathbf{y}$

- ightharpoonup a.k.a. Id(x,y);
- equality type;
- can be proved internally.

Hofmann-Streicher: We cannot show UIP, which says

 $\Pi(p, q : x = y), (p = q).$

extensions add UIP

as an axiom

add univalence

→ HoTT

(homotopy type theory)

Free groups (set-based)

The HoTT book¹ defines the *free group* over a type/set A as a higher inductive type FA₀ with constructors:

```
\begin{array}{ll} \eta:A\to \mathsf{FA}_0\\ e:\mathsf{FA}_0 & \textit{(neutral element)}\\ m:\mathsf{FA}_0\times \mathsf{FA}_0\to \mathsf{FA}_0 & \textit{(multiplication)}\\ \alpha:m(x,m(y,z))=m(m(x,y),z) & \textit{(associativity)}\\ \vdots\\ h:(p,q:x=y)\to p=q & \textit{(set truncation)} \end{array}
```

This is purely based on sets (h-sets). Can we do *free* ∞ -groups?

¹The Univalent Foundations Program, *Homotopy Type Theory: Univalent Foundations of Mathematics*, 2013.

What is an ∞ -group in homotopy type theory?

Simple observation:

Assume A is a type, x : A. Then:

- $ightharpoonup refl_r: x = x$
- if p, q: x = x, then $p \cdot q: x = x$
- **...**

Note : One often writes ΩA or $\Omega(A,x)$ for (x=x).

Define: ∞ -group $\stackrel{\mathsf{def}}{=}$ a type of the form ΩA (for pointed connected A). See next talk.

\dots and what's a free ∞ -group?

Wedge of A-many circles

HIT WA where

b: WA

 $l: A \rightarrow b = b$

 $A \Longrightarrow \mathbf{Unit} \dashrightarrow WA$

Potential definition: Free higher group is $\Omega(WA)$. Directly as a HIT

Intuition: "lists where elements can be negative"

HIT FA where

nil : FA

 $\mathsf{cons}:A\to\mathsf{FA}\to\mathsf{FA}$

 $i:(a:A) \rightarrow isequiv(cons_a)$

Potential definition:

Free higher group is FA.

These two definitions are equivalent!

Have we generalised the set-based free group?

For a type A, we now have:

- (1) the set-based free group FA_0
- (2) the free ∞ -group FA (equivalently, $\Omega(WA)$).

Question: Does (2) generalise (1)?

That is: if A is a set, do we have $FA_0 \simeq FA$?

This boils down to:

If A is a set, is FA (equivalently, $\Omega(\mathit{WA})$) also a set? (Because the rest is easy.)

This is a known open problem in homotopy type theory. Our result:

Thm: All fundamental groups of FA are trivial.

Idea of the proof

Thm: All fundamental groups of FA are trivial.

- ▶ There is a canonical map $\eta: \mathsf{List}(A \times \mathbf{2}) \to \mathsf{FA}$. $N_{-1} :\equiv \mathsf{List}(A \times \mathbf{2})$ is a (very bad) approximation of FA. More precisely: $\|\mathsf{List}(A \times \mathbf{2})\|_{-1} \simeq \|\mathsf{FA}\|_{-1}$.
- Next step: Define relation \sim on lists, by $[\dots,x,a^+,a^-,y,\dots] \sim [\dots,x,y,\dots]$ (or +/- exchanged). Define HIT N_0 with points given by lists, paths by \sim ("quotient without coherences").
 - Easy to show: $\|N_0\|_0 \simeq \|\mathsf{FA}\|_0$.
- Next step: add one level of coherences to define N_1 . We show (a weakened but sufficient variant of) $||N_1||_1 \simeq ||\mathsf{FA}||_1$.

Idea of the proof (2)

- ightharpoonup "Rewriting combinatorics" plus "weak constancy" argument shows: N_1 has trivial fundamental group at nil.
- lacktriangle This implies that all fundamental groups of N_1 are trivial.
- ▶ Since $||N_1||_1 \simeq ||\mathsf{FA}||_1$, all fundamental groups of FA are trivial.

Conjecture: In HTS/2LTT (allowing semisimplicial types), we can define a canonical sequence

$$N_{-1} \rightarrow N_0 \rightarrow N_1 \rightarrow N_2 \rightarrow \dots$$

(no truncations), show that it is weakly constant on path spaces, and show that FA is a retract of its colimit.

This would solve the open problem (for HTS/2LTT).

Thank you for your attention!