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Abstract

We show that any de�nable function from the type of Cauchy se-
quences into a discrete type is constant, provided that the function re-
spects the usual equivalence relation on Cauchy sequences. The core rea-
son is that the real numbers, viewed as a space in standard mathematics,
are connected.

In particular, there is no de�nable normalization function on the set of
Cauchy sequences in any extension of basic MLTT which admits the stan-
dard property that de�nable functions are continuous. In the language of
[AAL], this means that the Reals are not de�nable.

For homotopy type theory, a consequence is that any de�nable function
from the real numbers into a discrete type is constant. This also implies
that it is not possible to calculate an approximation for a real number.

For technical reasons, we use N+, the set of positive natural numbers, instead
of N. We assume familiarity with the standard topological structure that can
be given to the type of sequences over a discrete type; for example, the distance
of two functions f, g : N+ → Q can be de�ned as

d(f, g) :≡ 2−inf{k∈N
+ | f(k)6=g(k)}, (1)

making N+ → Q a metric space. It is folklore that, with this notation, de�nable
functions are continuous: for example, for a de�nable endofunction on N+ → Q,
a �nite part of the output can always be calculated using only a �nite part of
the input.

De�nition 1. We call a function f : N+ → Q a Cauchy Sequence if it satis�es

isCauchy(f) :≡ ∀(n : N+).∀(m : N+).m > n→ |f(n)− f(m)| < 1

n
. (2)

The type of Cauchy Sequences is thus

R0 :≡ Σf :N+→QisCauchy(f).

Remark 1. Alternative de�nitions of the property of being a Cauchy Sequence
(which lead to an �essentially equivalent� type R0) include

∀(n : N+).∀(m1m2 : N+).m1,m2 > n→ |f(m1)− f(m2)| < 1

n
(3)

as well as

∀(ε : Q). ε > 0→ Σn:N+ ∀(m1m2 : N+).m1,m2 > n→ |f(m1)−f(m2)| < ε (4)
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and

∀(ε : Q). ε > 0→ Σn:N+∀(m : N+).m > n→ |f(n)− f(m)| < ε. (5)

In particular, 3, 2 have the property that the proof of f being a Cauchy sequence
is propositional, which might be desirable for various reasons. What we prove
in this note is valid for each of these possible de�nitions as well.

Remark 2. For another possible de�nition, see [UF]. Note that what they call
Cauchy approximation is essentially our Cauchy sequence.

Remark 3. In [AAL], R0 is de�ned using 5 with an existential quanti�er, that
is, starting with Σn, everything is truncated. We would argue that this is not a
good idea as we want to be able to approximate the real number represented by
a Cauchy sequence.1 In [UF, Chapter 11], an argument in the same direction
is made. Besides, it requires truncation to be part of the theory and we try to
be minimalistic in this note. Truncation would simplify the proof of this note's
main result signi�cantly.

De�nition 2. If (f, p), (g, q) are two Cauchy sequences, we say (f, p) ∼ (g, q) if

∀(n : N+). |f(n)− g(n)| ≤ 1

n
. (6)

Remark 4. Note that this property is propositional again. For 5, the de�nition
would have to be something like

Πε:Q,ε>0Σn:N+Πm:N+m > n→ |f(m)− g(m)| < ε. (7)

Let us introduce the following auxiliary de�nition:

De�nition 3. For a sequence f : N+ → Q, we say that f is Cauchy with factor
k, written isCauchyk, for some k ∈ Q, k > 0, if

isCauchyk(f) :≡ ∀(nm : N+).m > n→ |f(n)− f(m)| < 1

k · n
. (8)

The usual Cauchy condition isCauchy is therefore �Cauchy with factor 1�.

Proposition 4. R0/ ∼ is connected. In type theory, this means: Assume

f : R0 → 2 (9)

is a continuous2 function.3 Assume f respects ∼, that is we have a proof

p : Πc1,c2:R0
c1 ∼ c2 → f(c1) = f(c2). (10)

Under these assumptions, f is constant in the sense that it is impossible to �nd
c1, c2 : R0 such that f(c1) 6= f(c2).4

1This is actually partially possible; for example, it will be possible to prove that a given
Cauchy sequence represents a positive number i� this is the case. However, it will not be
possible to calculate an approximation directly: a priori there will be no way for us to �nd
out whether a given natural number is approximately −17 or 149.

2The justi�cation is, of course: De�nable functions are continuous.
3The metric of R0 comes from the �rst component. Technically, if R0 is de�ned by 5, this

would not make it a metric space (as the distance between non-equal elements could be 0);
however, this would not matter, and for our de�nition, there is no problem anyway.

4This is a meta-theoretic statement. I do not expect much of the argument to be internal-
izable, but it would be interesting to explore this. (With the �truncated� de�nition of isCauchy
5, the proof becomes much simpler.)
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Proof. Assume f, p are given.
Consider the �naive� set model (with �classical standard mathematics� as

meta-theory). This clearly works if we are in a minimalisitic type theory with
Π, Σ, W, =, N; however, if we restrict ourselves to the types in the lowest
universe of homotopy type theory (which is enough), it also works for HoTT.
We use J·K as an interpreation function; for example, we write R for the �eld
of real numbers which can be de�ned as JR0K/J∼K. By abuse of notation, we
write JR0K for the set of Cauchy sequences in the model that ful�ll the Cauchy
condition, without the actual proof thereof. This is justi�ed as this property is
propositional.

For readability, we use the symbol = for equality in the theory as well in the
model, and we do not use the semantic brackets for natural numbers such as 2
or 4. In the model, we use · : JR0K → R as the function that gives us the limit
of a Cauchy sequence. Thus, for r : R0, we write JrK ∈ R for the real number it
represents.

We prove that JfK : JR0K → J2K is constant in the model, which implies
the statement of Proposition 4. Thus, assume there are c1, c2 : JR0K with
JfK(c1) 6= JfK(c2).

De�ne

m1 :≡ sup{d ∈ R | d ∈ JR0K, d ≤ max(c1, c2), JfK(d) = J12K} (11)

m2 :≡ sup{d ∈ R | d ∈ JR0K, d ≤ max(c1, c2), JfK(d) = J02K} (12)

(note that one of these two necessarily has to be c1 or c2, whichever is bigger).
Set m :≡ min(m1,m2).

Let c ∈ JR0K be a Cauchy sequence such that c is equal to m. We may
assume that c satis�es the condition JisCauchy5K.

As f (and thereby JfK) is continuous, there is n0 ∈ JN+K such that for
any Cauchy sequence c′ ∈ JR0K, if the �rst n0 sequence elements of c′ coincide
with those of c, then JfK(c′) = JfK(c). Write U ⊂ JR0K for the set of Cauchy
sequences which ful�ll this property, and U :≡ {d | d ∈ U} for the set of reals
that U corresponds to.

We claim that U is a neighborhood of m. More precisely, we prove: The
interval (m − 1

2n0
,m + 1

2n0
) is contained in U . Let x ∈ R be in that interval.

There is a sequence t : JN+ → QK such that JisCauchy5n0
K(t) and t = x. Let us

now �concatenate� the �rst n0 elements of the sequence c with t, that is, de�ne

g : JN+ → QK (13)

g(n) =

{
c(n) if n ≤ n0
t(n− n0) else.

(14)

Observe that g is a Cauchy sequence, i.e. JisCauchyK(g): The only thing that
needs to be checked is whether the two �parts� of g work well together. Let
0 < n ≤ n0 and m > n0 be two natural numbers. We need to show that

|g(n)− g(m)| < 1

n
. (15)
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Calculate

|g(n)− g(m)| (16)

= |c(n)− t(m− n0)| (17)

= |c(n)− c+ c− t+ t− t(m− n0)| (18)

≤ |c(n)− c|+ |c− t|+ |t− t(m− n0)| (19)

≤ 1

5n
+

1

2n0
+

1

5n0 · (m− n0)
(20)

≤ 1

5n
+

1

2n
+

1

5n0
(21)

<
1

n
. (22)

Clearly, g = t = x ∈ (m− 1
2n0

,m+ 1
2n0

). By the condition that f (and thereby

JfK) repects ∼, all s ∈ JR0K with |s−m| < 1
2n0

satisfy JfK(s) = JfK(c).
However, the de�nition of m implies that in every neighborhood of m, and

thus in particular in (m− 1
2n0

,m+ 1
2n0

), there is an x such that x = e (for some
e) with JfK(e) 6= JfK(c), in contradiction to the just established statement.

Theorem 5. Any continuous endofunction f on R0 that respects ∼ in the sense
of

p : Πc1,c2:R0c1 ∼ c2 → m(c1) = m(c2). (23)

is constant (in the sense of proposition 4).

Proof. We only need to show that π1 ◦ f (the actual sequence) is constant as
the proof of being a Cauchy sequence is propositional.5 Again, by slight abuse
of notation, we write JfK : JR0K→ JR0K, omitting the proof part of f .

Given c : JR0K, we want to show JfK(c) = JfK(0), where 0 is the sequence
that is constantly 0. To do so, it is enough to show that, for a given k : JN+K,
we have JfK(c)(k) = JfK(0)(k). If this was not true, we would have a function
JR0K→ J2K, de�ned by

λc.isEquval (JfK(c)(k)) (JfK(0)(k))

that is not constant, contradicting Proposition 4.

Corollary 6. There is no de�nable normalization function on R0, that is, there
is no function

m : R0 → R0 (24)

with the property

p : Πc1,c2:R0
c1 ∼ c2 → m(c1) = m(c2). (25)

such that
Πc:R0

c ∼ m(c). (26)

Corollary 7. R0/ ∼ is not de�nable in the sense of [AAL].

5Even if isCauchy is not a propositional predicate (as in 5), it will still be true that m is
constant. This is simply because ∼ is de�ned only in terms of the actual sequence part.
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Corollary 8 (Corollary of Proposition 4). In Homotopy Type Theory, every
de�nable function from the real numbers R (as de�ned in [UF, Chapter 11])
into a discrete type is constant. In particular, it is not possible to approximate
a real number: We can not de�ne a function f : R→ Q such that, for all r : R,
we have f(r)− 1 < r < f(r) + 1.6

Conjecture 9. If T is a de�nable type in the minimalisitic type theory with
Σ, Π, W , =, N, and T does have two distinguishable elements, then T is not
connected (note that this is much weaker than the original wrong conjecture of
[AAL]). This in particular implies that the reals are not a de�nable type.
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6For any [reasonable] de�nition of < and as long as HoTT admits the principle that de�n-
able functions are continuous, which is certainly true, but of which I do not know a proof.
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