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Abstract

We give an introduction to higher dimensional or homotopy type theory,
trying to provide a comprehensive overview on this research direction that
combines type theory, algebraic topology and higher category theory. Fur-
ther, we describe the content and the results of several other unrelated,
smaller research projects.

This report presents the topics the author has worked on during the first
year as a PhD student.



Preface

During my first year, I have spent a lot of time learning the concepts of my
PhD topic, Higher Dimensional Type Theory or Homotopy Type Theory.
The first part of my report is therefore an introduction to this fairly new
field in between of mathematics and theoretical computer science. The foun-
dations for this subject were, in some way, laid by an article of Hofmann and
Streicher [32] 1 by showing that in Intentional Type Theory, it is reasonable
to consider different proofs of the same identity. Their strategy was to use
groupoids for an interpretation of type theory. Pushing this idea forward,
Lumsdaine [44] and van den Berg & Garner [15] noticed independently that
a type bears the structure of a weak omega groupoid, a structure that is
well-known in algebraic topology.

In recent years, Voevodsky proposed his Univalence axiom, basically
aiming to ensure nice properties that traditional mathemticians use regulary,
such as the ability to treat isomorphic structures as equal. Claiming that
set theory has inherent disadvantages, he started to develop his Univalent
Foundations of Mathematics, drawing a notable amount of attention from
researchers in many different fields: homotopy theory, constructive logic,
type theory and higher dimensional category theory, to mention the most
important.

The first part of this report is an abridged version of an exposition I am
writing2. Originally, my motivation for writing up these contents has been
to teach them to myself. At the same time, I had to notice that no detailed
written introduction seems to exist, maybe due to the fact that the research
branch is fairly new. There are several good introductions to certain aspects,
but most of them require the reader to already have a good knowledge of
the underlying deep-going theoretical concepts. Therefore, I hope that this
introduction could be helpful for everyone interested in the subject without
too much specific knowledge. I start from the very beginning and try to
give a self-contained presentation. However, I believe that this attribute
is somewhat inherently ill-defined. Of course, it is necessary to assume

1this is not the original one, but an improved version
2it can be found on my homepage, http://red.cs.nott.ac.uk/~ngk/
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a certain level of knowledge before getting started, and here, I choose to
essentially take my own, including a (however very basic) amount of type
theory, homotopy theory, topology in general, and category theory. A more
detailed overview over the contents is given at the beginning of the first part.

The second part consists of several smaller research projects I have
worked on during my first year: First, a lambda term representation that
is a continuation of my (computer science) Bachelor’s thesis. This joint
work with Andreas Abel has been made a workshop contribution. Second,
I present the joint work with Christian Sattler on string rewriting (where
the main interest lies on systems with one single rule) and third, I describe
Christian Sattler’s and my work on searchability of subsets of the Cantor
space in Gödel’s System T. The second part concludes with a presentation
of my Yoneda Groupoids and their higher quotient, as well as with a discus-
sion of a possibly (independently of type theory) fundamental question that
I call the Root of Equality.

Finally, I outline my future work-plan.
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Part 1

Homotopy Type Theory

1.1 Overview

In Section 2, we give very short introductions to type theory with identity
types, homotopy theory, higher dimensional category theory and how they
are connected. Section 3 contains a summary of the standard categorical
semantics of the simply typed lambda calculus, as originally given by Lam-
bek and Scott [39]. In Section 4, we discuss in which way the generalization
described by Seely [61] can model dependently typed theories. Further, we
give an introduction to the construction of homotopic models with the tools
of weak factorization systems (Section 5) and model categories (Section 6),
as it is done in many recent publications (including [9], [11], [13], [14], [34]).
One example of a model category is the category of small groupoids, that
was used by Hofmann & Streicher [32] to show that uniqueness of identity
proofs is not implied by J (Section 7). Another model category is the one
of simplicial sets, which plays a very central role in Voevodsky’s model of
type theory. We introduce it in Section 8. Section 9 deals with the notion
of contractibility, homotopy levels, weak equivalences, univalence and con-
cludes with a proof that univalence implies function extensionality. Finally,
in Section 10, a proof of Hedberg’s theorem is presented.

1.2 Type Theory, Homotopy Theory, Higher Cat-
egory Theory and basic Intuition

We want to give a very brief introduction to the main topics we deal with.
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1.2.1 Type Theory

Type theory, as described by Per Martin-Löf ([48], [46], [47]), is an extension
of the simply typed Lambda calculus. Types may depend on terms of other
types. Especially, if A is a type and B depends on A, then there is the depen-
dent sum Σx:A.B and the dependent function type Πx:A.B. From the point
of view of the Curry-Howard-Isomorphism, these type formers correspond
to the existential and universal quantifier.

Concerning equality of terms and types, it has turned out to be very
reasonable to distinguish between two main kinds: First, the definitional
equality that type checking depends on. It is usually required to be decidable
and can be used for computation. For example, β equality is often a subset
of the definitional equality.

Obviously, not every interesting equality can be decidable. Instead, it is
often necessary to give a concrete proof if it is claimed that two terms (or
types) are equal. This is where identity types play a role: If a and b are of the
same type A (possibly in some context), then IdA a b is a new type (in this
context), the type of proofs that a equals b (we often write a ≡A b instead of
IdA a b, and further, the index A may be omitted). The only constructor is
reflexivity, stating that a term always equals itself. The natural elimination
principle says that if a type depends on Σa,b:A.IdA a b, then we only need
to construct an inhabitant for the reflexivity cases; and finally, the usual
computation rule states that using the elimination rule to create a term
over the reflexivity proof, we just get the same term that we have provided
in the first place. The following inference rules make this precise, but there
are two things to emphasize: First, we omit the assumption Γ ` A : type in
each rule, and second, we only state the weak form of the elimination rule.
The strong one would not require the equality proof to be at the very end
of the context. Of course, in the presence of dependent functions (which we
always assume), the two forms are equivalent.

Formation
Γ ` a, b : A

Γ ` IdA a b : type

Introduction
Γ ` a : A

Γ ` refla : IdA a a

Elimination J

Γ ` P : (a, b : A)→ IdA a b→ Type
Γ ` m : ∀a.P (a, a, refla)

Γ ` (a, b, q) : Σa,b:A.IdA a b

Γ ` JP,m,(a,b,q) : P (a, b, q)

2



Computation β

Γ ` P : (a, b : A)→ IdA a b→ Type
Γ ` m : ∀a.P (a, a, refla)

Γ ` a : A
Γ ` JP,m,(a,a,refla) =β ma : P (a, b, q)

The following is a simple, though crucial, fact:

Theorem 1.2.1 (equality is equ. rel.). Propositional equality is an equiva-
lence relation, i. e. there are terms of the following types:

1. refl : ∀a . IdA a a

2. sym : ∀a b . IdA a b→ IdA b a

3. trans : ∀a b c : IdA b c→ IdA a b→ IdA a c

Proof. The first is part of the definition, the second and the third are easily
shown by applying J .

Remark 1.2.2. It is convenient to write p−1 instead of sym p and p◦q instead
of trans p q. Of course, the three terms are all parametrized over the type
(which is A here). To improve the readability (especially in later formulas
that make heavy use of reflexivity), we do not make this explicit.

The above theorem can be improved to the statement that propositional
equality comes with the structure of a groupoid, or even a higher groupoid,
if an appropriate formalization is given. For example, we can prove that
p ◦ p−1 equals reflexivity, or that refla ◦ p equals p.

Sometimes, a second eliminator is used. It does not arise naturally from
the definition of equality as an inductive type, so it has to be understood as
an additional axiom:

Streicher’s Axiom K

Γ ` a : A
Γ ` P : IdA a a→ Type

Γ ` m : P (refla)
Γ ` q : IdA a a

Γ ` Ka,P,m,q : P (q)

It is not difficult to check that K is actually equivalent to the principle
uniqueness of identity proofs that states that for any valid type IdA a b, there
is at most one inhabitant:

3



UIP

Γ ` a, b : A
Γ ` p, q : IdA a b

Γ ` uipp,q : IdId a b p q

The eliminators J and K look quite similar; and for some time, it was
open whether the principle UIP or, equivalently, K were derivable from J .
They are indeed not, as shown by Hofmann and Streicher [32]. The crucial
difference is that J can eliminate if we have some type that depends on
Id a b for any a, b, while K can eliminate in the restricted case where the
type depends on Id a a. The usage of K is questionable. While it was,
for some time, considered a natural property, a (sufficiently strong) type
theory with Voevodsky’s univalence (which we will introduce later) and K
is inconsistent. As McBride [49] has shown, the assumption of K allows
the usage of stronger pattern matching. This might make it useful in some
way. By default, the proof assistant and dependently typed programming
language Agda makes use of K, while Coq does not.

Finally, we want to mention the reflection rule

reflection

Γ ` a, b : A
Γ ` p : IdA a b

a = b

that makes a theory extensional by merging definitional and propositional
equality (note that, clearly, every definitional equality can be proven by
reflexivity and is therefore propositionally valid). This yields (in sufficiently
strong theories) undecidable typechecking and is therefore in general not at
all feasible.

1.2.2 Homotopy Theory

A standard reference for a totally elementary and basic introduction to al-
gebraic topology is Hatcher’s book [27]. However, for the reader with a
background in category theory, it might not be an economical choice. There
are many other introductions available, for example [36]. Here, we only give
the most basic definitions for reference, and our few paragraphs are in no
way a helpful introduction to the topic.

Definition 1.2.3 (topological space). A topological space, or, if no confusion
is to be expected, just a space, is a tuple (X, τ) of a set X and a set τ of
subsets of X, called a topology of X, that is closed under finite intersections
and arbitrary unions.
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Remark 1.2.4. In the above definition, τ contains in particular the empty
set and X itself. The elements of τ are called open sets of X, while their
complements are called closed. It is common to omit the topology τ in the
notation and just write X instead of (X, τ).

Definition 1.2.5 (continuity). A function f : (X1, τ1) → (X2, τ2) between
two spaces is a map X1 → X2 (which is, by abuse of notation, also called
f) satisfying that the inverse image of each open set (i. e. element of τ2) is
again open (i. e. in τ2).

A very special case of a topological space is a metric space:

Definition 1.2.6 (metric space). A metric space is a tuple (X, d) of a set
X and a metric (or distance function) d : X × X → R, which has to have
the following properties, for all x, y, z in X:

• d(x, y) = 0 if and only if x = y (coincidence)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) + d(y, z) ≤ d(x, z) (triangular inequality)

Remark 1.2.7. A metric space (X, d) induces a topological space (X, τ),
where

τ = {U | ∀u ∈ U .∃ε > 0 .∀v ∈ X . d(u, v) < ε→ v ∈ U}.

Example 1.2.8. R or any subset of it is a metric space, where d(x, y) =
|x− y|, and therefore also a topological space.

Definition 1.2.9 (point, path, homotopy and higher homotopy). Given a
topological space X. By I, we denote the unit interval [0, 1] ⊂ R.

• A point is an element x ∈ X, or equivalently, a map I0 → X.

• A path is a continuous map I → X. In particular, if a, b are points,
then a map p : I → X with p(0) = a, p(1) = b is a path from a to b.

• If a, b are points and p, q are paths from a to b, then a map H : I2 → X
with H(0) = p and H(1) = p and ∀t .H(t, 0) = a ∧ H(t, 1) = b is a
homotopy from p to q.

Note that we use implicit currying / uncurrying in the obvious way. Higher
homotopies can be defined by the straightforward generalization as maps
In → X.
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1.2.3 Higher Category Theory

The notion of higher categories is a generalization of ordinary category the-
ory. Intuitively, a 2-category is an ordinary category, enriched over the
category of small categories. This means, given any two objects X,Y in a
2-category C, the “hom-set” C(X,Y ) is an ordinary category, the objects of
which are the morphisms of C. Instead of talking about objects and mor-
phisms, it is reasonable to call them cells, where the objects of C are the
0-cells, the morphisms are the 1-cells and the morphisms in the “hom-set”
categories are the 2-cells. A standard example of a 2-category is Cat, the
category of all small categories, where the small categories are the 0-cells,
the functors are the 1-cells and the natural transformations are the 2-cells.

In case of 2-categories, there are two possibilities: The associativity and
identity laws might hold “as usual”, in which case we talk about strict
2-categories, or only up to isomorphism, which gives us weak 2-categories.
Similarly, a functor between 2-categories is usually weak, so that the functor
laws only again hold up to isomorphism.

The situation becomes even more complicated if we look at categories
of higher dimensions: 3-categories, 4-categories, 5-categories and so on. An
n-category can be described as a category enriched over (n-1)-categories.
The case we are most interested in is the one of a ω-category, which has in-
finitely many levels of cells. Basically, an ω-category is an ordinary category,
enriched over ω-categories. While they seem to be incredibly complicated,
which is unfortunately not totally incorrect, the bright side is that there is a
certain symmetry - there are ω-categories on each level, so all levels behave
the same.

Fortunately, our requirements are actually a bit simpler: We are mainly
interested in (ω)-groupoids, where every cell is an isomorphism (a 0-cell is
always an isomorphism by definition).

1.2.4 The Connection, intuitively

The reason why homotopy theory and type theory can be brought together
is that both spaces and types are instances of weak ω-groupoids.

In the case of a space, the 0-cells are the points of the space, the 1-cells
the paths, the 2-cells the homotopies and in general, an n-cell is a map
In → X with the properties listed in definition 1.2.9.

Van den Berg & Garner [15] and Lumsdaine [44] have independently
proved that a type also forms a weak ω-groupoid: The 0-cells are terms and
given two n-cells, the equality proves between them form the n+ 1-cells.
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This can be seen as an indication for the existence of a model of type
theory in topological spaces; and indeed, as Voevodsky [65] has shown, such
a model exists in simplicial sets, which is very much related to the category
of CW-complexes, the category of “nice” topological spaces. We want to
describe the most basic intuition.

A (base) type A is modelled as a space JAK. Terms of this base type are
just points of JAK. Given two terms s, t, the type IdA a b is modelled as the
space of paths between JaK and JbK. Given paths p, q, the type Id p q is, of
course, just the space of homotopies between JpK and JqK; and so on.

In this model, the eliminator J holds, while K does not, and this is
exactly what we aim for. The first time I have understood this intuition
completely was when I read a post by Dan Licata [40] on the HoTT blog
[23], which I highly recommend. K expresses that every proof in Id a a is
equal to refla, which is not the case for paths in spaces: Obviously, not every
path in some space is homotopic to the constant path. On the other hand,
for J , it is enough if every element of Σab:A.Id a b is equal to (a, a, refla). In
the homotopy model, this means that for any path p between JaK and JbK,
there is a “weak homotopy” to the constant path const at JaK, where “weak
homotopy” means a map h : I2 → JAK with h(0) = p, h(1) = const. But
this is clearly true. A (canonical) choice for h is

h(t, s) = p((1− t) · s).

In my talk [37] for the FP Away Day 2012, I have tried to give some expla-
nations of these things.

1.3 Semantics of the Simply Typed Lambda Cal-
culus

In this section, we want to give an introduction to the standard categorical
semantics of the simply typed lambda calculus. This content is traditional
and well-known. A standard reference is [39].

To get started, consider a set S of base types, function types, finite
products and coproducts. Concretely, this means that the empty type ∅
and the unit type {?} are types, every element of S is a type and if A, B
are types, then so are A→ B, A×B and A+B. Further, every base type
o ∈ S is inhabited by a number of constants, which we denote by consto.
Of course, for every type former, we assume the usual introduction and
elimination rules.

Let C be a bicartesian closed category1. The standard categorical se-

1Concretely, we want C to have all finite products, finite coproducts and exponentials.
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mantics, as, for example, described in [3], is now given as follows:

For every base type o ∈ S, let JoK be an object in C. Let J∅K = 0 be
the initial object and J{?}K = 1 the terminal object of the category. Every
constant c ∈ consto gets interpreted as a morphism JcK : 1 → JoK. In
addition, the unique inhabitant of the unite type is modelled by the identity
morphism id1.

Types. On types, the interpretation is expanded naturally :

JA×BK = JAK× JBK, the categorical product
JA+BK = JAK + JBK, the categorical coproduct

JA→ BK = JBKJAK, the categorical exponential.

Contexts. Similarly, contexts are interpreted as

J()K = 1, where () is the empty context
JΓ, x : AK = JΓK× JAK.

This should not be surprising, as a context x : A, y : B can be seen as
the type A×B (together with a variable of that type).

Terms. As implied above, we want to interpret terms as morphisms.
More precisely, the term judgement Γ ` t : A will be a morphism with
domain JΓK and codomain JAK. This is consistent to our definition of the
interpretation of constants:

J() ` c : oK = JcK
JΓ ` ? : {?}K = JΓK 1−→ 1
JΓ, x : A ` x : AK = π2

JΓ, x : A ` y : BK = JΓ ` y : BK ◦ π1 if x 6= y
JΓ ` fst t : AK = π1 ◦ JΓ ` t : A×BK
JΓ ` snd t : BK = π2 ◦ JΓ ` t : A×BK
JΓ ` (r, s) : A×BK = 〈JΓ ` r : AK, JΓ ` s : BK〉
JΓ ` inl r : A+BK = in1 ◦ JΓ ` r : AK
JΓ ` inr s : A+BK = in2 ◦ JΓ ` s : BK
JΓ ` case(f, g) : A+B → CK = [JΓ ` f : A→ CK, JΓ ` g : B → CK]

Here, A
π1←− A × B

π2−→ B are the projections of the product, dually,

A
in1−−→ A + B

in2←−− B the injections into the coproduct. Given A
f−→ C

and B
g−→ C, we write [f, g] for the corresponding morphism A + B → C.

Similarly, we write 〈h, k〉 : C → A×B, if C
h−→ A and C

k−→ B are given.

Note that the bracketing in Jx : A, y : B, z : C,w : DK = ((JAK× JBK)×
JCK)× JDK is important.

To interpret the introduction and elimination of functions, it is necessary
to recall that exponentials are right adjoint to products. More precisely, for
any object A, the functor · × A : C → C, B 7→ B × A is left adjoint to the
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functor ·A : C→ C, B 7→ BA.

The language of category theory now offers multiple possibilities to de-
scribe what is going on. We want to be very detailed, as we believe that
this in an important point:

• The adjunction · × A a ·A comes along with its hom-set isomorphism

ΦA,X,Y : C(X × A, Y )
∼=−→ C(X,Y A) (natural in all arguments). This

isomorphism is sometimes (e. g. [3]) called curryA,X,Y .

• Application. If we are given Γ ` f : A → B and Γ ` a : A we can
define:

JΓ ` f a : BK = curry−1
JAK,JΓK,JBK (JΓ ` f : A→ BK)◦〈idJΓK, JΓ ` a : AK〉

• The adjunction has a counit εA : ·A × A → 1C. This counit is often
called applyA. The following definition is equivalent to the one just
given:

JΓ ` f a : BK = applyJAK(JBK) ◦ 〈JΓ ` f : A→ BK, JΓ ` a : AK〉

This is the definition given in [3]. Note that many authors, including
[3] and Awodey [10], introduce exponentials as an object together with
the morphism apply and its universal property. Here, we need to see
the “big picture” in order to be able to discuss the generalized setting
of dependent types later.

• Abstraction. Again, assuming we are given Γ, x : A ` t : B, we define

JΓ ` λx.t : A→ BK = curryJAK,JΓK,JBK (JΓ, x : A ` t : BK)

Substition/Context morphisms. Again, note that we do not make a
real difference between a context such as x : A, y : B, x : C and the type
A×B×C (with a variable of this type). Therefore, a substitution or context
morphism is, more or less, the same as a (“generalized”) term:

JΓ ` σ : ()K = JΓK 1−→ 1 the same as JΓ ` ? : {?}K
JΓ ` σ : ∆, t : AK = 〈JΓ ` σ : ∆K, JΓ ` t : AK〉

Lemma 1.3.1 (Substitution is composition). Given ∆ ` t : A and Γ ` σ :
∆, the equality J∆ ` t : AK ◦ JΓ ` σ : ∆K = JΓ ` t[σ] : AK holds, where t[σ]
denotes the usual parallel substitution.

Proof. By induction on (t,∆). See [3], section 5.4.3.

Theorem 1.3.2 (Correctness). If Γ ` s =βη t : A, then JΓ ` s : AK =
JΓ ` t : AK.

9



Proof. The most interesting part of the proof is the correctness of βη equality
for functions. We show this part here; for the rest, see [3], section 5.4.4.

According to Lemma 1.3.1, we have

JΓ ` t[a/x] : BK = JΓ, x : A ` t : BK ◦ 〈idJΓK, JΓ ` a : AK〉

On the other hand, we have by the definitions (for the sake of readability,
we omit the indices of curry)

JΓ ` (λx.t) a : BK = curry−1 (JΓ ` λx.t : A→ BK) ◦ 〈idJΓK, JΓ ` a : AK〉
= curry−1 (curry (JΓ, x : A ` t : BK)) ◦ 〈idJΓK, JΓ ` a : AK〉

This show that the β-law is given by curry−1 ◦ curry = id.

Concerning η, note that

JΓ ` λx.f x : A→ BK = curry (JΓ, x : A ` f x : BK)

= curry
(
curry−1 (JΓ ` f : A→ BK)

)
So, η is just the other direction of the hom-set isomorphism curry.

(Co-) Inductive types. In our setting, an inductive type is the initial
algebra of a functor F , while a coinductive type is the terminal coalgebra.
The usual restriction is that we only deal with strictly positive functors. For
example, we get the natural numbers as the initial algebra of NX = 1 +X,
lists over A by ListAX = 1 + A × X and so on. The codomain of the
initial algebra (domain of the terminal coalgebra) of F is usually denoted
by µF (resp. νF ); the algebra itself is an isomorphism F (µF )→ µF (resp.
νF → F (νF ) that gives us the constructors for the type while the universal
property provides the eliminator, together with the β and η rule. For an
explanation on that topic, see Sattler’s notes [60].

Here, we do not go any further but introduce semantics of dependent
types instead.

1.4 Semantics of Dependent Type Theory

The basic idea for moving from simple types to dependent types is surpris-
ingly straightforward. In the above setting, we have been viewing a type as
an object. However, the situation is more involved in the dependent case as
a type might only be a type in a certain context, not in the empty one.

In the preceding section, a type has always been seen as a singleton
context, while a term was just the same thing as a context morphism. Note

10



that an object in C is just the same as an object in the slice category C/1.
The main difference in the interpretation of dependent type theory is that
we can no longer use C/1 all the time. Instead, we have to “switch between
slices” whenever necessary. Assume now that C is not only bicartesian
closed, but also locally cartesian closed and has pullbacks (or, equivalently,
all finite limits).

Again, we model every context as an object of the category, in partic-
ular, the empty context is interpreted as the terminal objectand context
morphisms as morphisms between them.

We interpret a type A in context Γ as a morphism with codomain JΓK.
More precisely, the statement

Γ ` A : type

is modelled as a morphism

JΓ, x : AK
JAK−−→ JΓK.

Here, the morphism JAK should in fact really be named JΓ ` A : typeK, we
chose the simpler name for convenience. The required condition is therefore
that for any type A over Γ, there has to be a morphism with codomain JΓK.
The domain of this morphism just becomes JΓ, x : AK.

Consequently, the statement

` x0 : A0, x1 : A1, . . . , xn : An : context

which requires statements of the form

x0 : A0, x1 : A1, . . . , xi−1 : Ai−1 ` Ai : type

is naturally modelled as a chain of morphisms

JΓnK
JAnK−−−→ JΓn−1K

JAn−1K−−−−→ . . .
JA2K−−−→ JΓ1K

JA1K−−−→ JΓ0K
JA0K−−−→ J()K,

where Γi = x0 : A0, x1 : A1, . . . , xi : Ai.

Note that a type in context Γ is nothing else but an object in the slice cat-
egory over the context JΓK, just as it is an object in the slice over the empty
context J()K = 1 in the simply typed calculus. Clearly, the interpretation of
a type is just the one of a “special” context morphism or substitution.

The same is true for a term. The intuition should be that a type is a
projection (sometimes called a display map), making the context shorter by
forgetting about the last entry, while a term does the opposite by construct-
ing an inhabitant of a type, thereby prolonging the context. More precisely,
the statement

Γ ` t : A

11



is modelled as a section of JΓ, x : AK
JAK−−→ JΓK, i. e. a morphism JtK : JΓK→ JΓ, x : AK

that makes

JΓ, x : AK id // JΓ, x : AK

JAK
xxqqqqqqqqqqqq

JΓK

JtK

OO

commute.

Therefore, in this construction, a morphism can be both the interpreta-
tion of a type and of a term. This is not a problem and it is easy to see that
if a morphism is indeed the interpretation of an inhabited type and a term,
then it has to be an isomorphism.

Substitutions. Compared to the simply typed case, substitution is fairly
tricky. We do not only have the substitutions for terms, but also on the type
level, which we discuss first. The natural way is the solution of Seely [61],
which is interpreting substitution with σ : Γ → ∆ as the pullback functor
JσK∗. Concretely, given ∆ ` A : type, we would model Γ ` A[σ] : type as
follows:

JσK∗J∆.AK

JA[σ]K

���
�
�
�
�
�

//______ J∆.AK

JAK

��
JΓK

JσK
// J∆K

For a term ∆ ` a : A, that is interpreted as a section of JAK, we immediately
get the interpretation JΓ ` a[σ] : A[σ]K as a section of JA[σ]K by the pullback
property.

Here are a couple of issues to be considered. First, pullbacks are clearly
only unique up to isomorphism, while substitution in type theory is, for ex-
ample, strictly associative. Authors such as Hofmann [30] argue that, given

Θ
ρ−→ Γ

σ−→ ∆ and Γ ` A : type, it is hard to ensure that JρK∗(JσK∗(JΓ, x : AK))
and Jρ ◦ σK∗(JΓ, x : AK) are strictly equal. The situation is presented in the
following diagram, where all the dotted lines are constructed as pullbacks.
We shorten Γ, x : A to Γ.A:

Jρ ◦ σK∗J∆.AK

,,ZZZZZZZZZZZZZZZZZZZZZZ

""E
E

E
E

E
E

E
E

E
E

E

JρK∗ ◦ JσK∗JΓ.AK //

��

JσK∗JΓ.AK //___

���
�
�

J∆.AK

JAK
��

JΘK
JρK

// JΓK
JσK

// J∆K

12



But clearly, these two upper left objects are isomorphic and it is questionable
if more than that should be required in a categorical setting anyway. How-
ever, we always have to be able to recover the unique isomorphism satisfying
a couple of coherence conditions.

The question how to solve these issues have given rise to a couple of
suggestions. Curien [18] suggests that substitution can be modelled using
an explicit pseudo-functor, while Hofmann [30] proposes categories with at-
tributes (or the very similar categories with families [31]), which can be
understood as a locally bicartesian closed category together with some ad-
ditional data. The latter does the job of “choosing the correct pullbacks”
and providing the coherence information.

In the case of the model in Simplicial Sets which is, in some sense, much
more concrete, a very clean way how to solve these issues was given by Vo-
evodsky. A good and clear presentation was given by Kapulkin, Lumsdaine
and Voevodsky [33].

Dependent Sum and Function types. Again, all of the content described
below was, to the best of our knowledge, first described by Seeley [61]. We
first discuss dependent sums. Consider the judgements

Γ ` A : type

Γ ` a : A

Γ, x : A ` B : type

Γ ` b : A[a/x]

and, consequently

Γ ` Σx:A.B : type

Γ ` (a, b) : Σx:A.B

Assume we have defined the interpretation for the first four judgements.
We then want to define JΓ ` Σx:A.B : typeK. Clearly, the codomain of this
morphism has to be JΓK. As the domain, we choose JΓ, x : A, y : BK and
define:

JΓ ` Σx:A.B : typeK = JΓ ` A : typeK ◦ JΓ, x : A ` B : typeK.

Note that in a category C that has pullbacks, there is, for any f : X → Y ,
the pullback functor f∗ : C/Y → C/X between the slices. Actually, it
is dangerous to talk about “the” pullback functor, as pullbacks are only
unique up to isomorphism; but as we need something like “chosen pullbacks”
for the substitution anyway, we do not worry about that2. Then, the left

2actually, it is common to specify functors only up to isomorphism anyway: i. e., there
is also “the” product functor.
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adjoint of f∗ is given by composition and usually denoted by Σf . The above
interpretation can now be written as

JΓ ` Σx:A.B : typeK = ΣJΓ`A : typeKJΓ, x : A ` B : typeK.

We now need to construct the interpretation of Γ ` (a, b) : Σx:A.B. From
our discussion of the substitution, we know that in the diagram

JΓ, y : B[a/x]K //

��

JΓ, (x, y) : Σx:A.BK = JΓ, x : A, y : BK

JBK

��

ΣJAKJBK

uuk k k k k k k k k k k k k k k k

JΓK
JaK //mm

JAK

[ \ \ ] ] ^ ^ _ ` ` a a b JΓ, x : AK

the solid square is a pullback. From the interpretation of Γ ` b : A[a/x],
which is a section of the leftmost morphism, we get (by composition with
the uppermost morphism) the interpretation of Γ ` (a, b) : Σx:A.B.

When it comes to dependent functions, it finally becomes clear why we
want C to be locally cartesian closed. An important property (for many
authors actually the definition) of a locally cartesian closed category is that
each pullback functor f∗ has a right adjoint f∗ a Πf . More precisely: Let
f : X → Y be a morphism. Then, we have the following morphisms in the
slice categories:

Σf : C/Y → C/X
f∗ : C/X → C/Y
Πf : C/Y → C/X

with the property that
Σf a f∗ a Πf

where we have already used the first functor to interpret dependent sums.
The last one will become the interpretation of dependent function types.

This connection is not surprising at all: In the simply typed setting,
function types are interpreted as exponentials, the right adjoints of products.
But the product with X → 1 in C/1 is just the pullback along X → 1.
In the dependently typed case, it could therefore have been expected that
dependent types are modelled using the right adjoints of pullbacks.

We define

JΓ ` Πx:A.B : typeK = ΠJΓ`A : typeKJΓ, x : A ` B : typeK.

14



The interpretations of the rules for terms is given by adjunction very
similarly to the simply typed case. We proceed completely analogously as
above:

• Given f : A → X, the adjunction f∗ a Πf has an associated hom-set
isomorphism. This time, we have to talk about the slice categories:

curry
B
g−→A

f−→X
: C/A(f∗idX , B

g−→ A)
∼=−→ C/X(idX ,ΠfB)

However, one easily notices that f∗idX = idA, so that the above pre-
sentation simplifies to

curry
B
g−→A

f−→X
: C/A(idA, B

g−→ A)
∼=−→ C/X(idX ,ΠfB).

• Application. If we are given Γ ` f : Πx:A.B and Γ ` a : A, we
define the application in nearly the same way as before. However, if
we precede exactly as above, we get a section of JBK ◦ JAK, i. e. a
morphism JΓK→ JΓ.A.BK, which is not precisely what we want. This
can be fixed by by defining

JΓ ` f a : B aK

to be the unique morphism JΓK → JΓ.B[a/x]K that is induced by the
dotted morphisms and the fact that the solid square is by definition
of the substitution a pullback:

JΓ.B[a/x]K //

��

JΓK

JaK
��

JΓ.A.BK
JBK // JΓ.AK

curry−1

JΓ.A.BK
JBK−−→JΓ.AK

JAK−−→JΓK

(JΓ`f : Πx:A.BK)
mm

• As before, it is possible to express this interpretation using the counit
applyJΓ`A : typeK : JAK∗

(
ΠJAK·

)
→ 1C/JΓ.AK. Given Γ ` f : Πx:A.B

and Γ ` a : A, these two induce the unique dotted map in the solid
pullback square:

JAK∗JΓ.Πx:A.BK

��

//
ee

JΓ.AK

JAK

��

SS

JaK

'
$

�

�
�

JΓ.Πx:A.BK
JΠx:A.BK //mm

JfK
] _ a b d JΓK

15



• Abstraction. As before, assume we are given Γ, x : A ` t : B. Then,
we define

JΓ ` λx.t : Πx:A.BK = curryJAK,JΓK,JBK (JΓ, x : A ` t : BK)

Identity types. In this part, we show that the “naive” interpretation of
type theory in locally cartesian closed categories automatically results in an
extensional model, i. e. a model that cannot distinguish between proposi-
tional and definitional equality. The proof we give here is, to the best of my
knowledge, originally due to Awodey and Warren [13]. It can also be found in
Awodey’s survey paper [11], Kapulkin’s master thesis [34], and Arndt’s and
Kapulkin’s and Arndt’s paper [9]. I myself understand it as a justification
for the (rather complicated) construction of homotopic categorical models.

First, note that if Γ.A is a context, A itself is a valid type in this context.
Further, there is the “diagonal map” δA : Γ.A→ Γ.A.A, a term of this type.

The formation rule for identity types states that, given Γ.A.Acontext,
the judgement Γ, x : A, y : A ` IdA x y : type is valid. In shortened notation,
we have

JΓ.A.A.IdAK
JIdAK−−−→ JΓ.A.AK

in the model. The introduction rule tells us that there is, in context Γ, a
term reflA : λa.IdA a a. This makes sure that there is a term (or, better,
context morphism)

JΓ.AK
JreflAK−−−−→ JΓ.A.A.IdAK

that is a section of

JΓ.A.A.IdAK
JIdAK−−−→ JΓ.A.AK

JAK−−→ JΓ.AK

JreflAK also has the (stronger) property that, composed with the display map
JIdAK, it is equal to the term δA; i. e. the following commutes:

JΓ.A.A.IdAK

JIdAK
��

JΓ.A.AK
JA+K //mm
δA

JΓ.AK

JreflAK
ff

Note that we shorten Γ ` A : type to A in general, but as we really want to
be able to distinguish Γ ` A : type and Γ.A ` A : type, we write A+ for the
latter.

The elimination rule J says that, given a type P that depends on an
identity type, i e. Γ, x : A, y : A, p : IdA x y ` P : type, a term m of type
∀a.P [a/x, a/y, reflA/p] in context Γ, is enough to derive a term of type P in
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any context Γ.A.A.IdA. This gets translated to the statement that, whenever
we have a commuting square

JΓ.AK

JreflAK
��

JmK // JΓ.A.A.IdA.P K

JP K
��

JΓ.A.A.IdAK
id

// JΓ.A.A.IdAK

the there is a diagonal filler j that makes everything commute:

JΓ.AK

JreflAK
��

JmK // JΓ.A.A.IdA.P K

JP K
��

JΓ.A.A.IdAK
id

//
j

66

JΓ.A.A.IdAK

Note that we do not require j do be functorial or unique in any way, but for
a model of type theory, it should of course be possible to get one of these
diagonal fillers constructively. I is also worth noting that the lower diagram
just makes sure that j is a term of the correct type, while the upper triangle
represents the computation rule or the β-rule of the identity type: If we use
J with some term m to construct an inhabitant of P [a/x, a/y, refla/p], then
this is just m itself (in type theory, definitionally, in the model, equal as
hom-set morphisms).

But here is a problem: We do not want this diagonal filler j to exist in
general, we only need it if the right vertical morphism JP K is a type. If we
require the existence of j just for any morphism on the right side as long as
we have JreflAK in the left side, it would in particular exist in the following
diagram:

JΓ.AK

JreflAK
��

id // JΓ.AK

JreflAK
��

JΓ.A.A.IdAK
id

// JΓ.A.A.IdAK

Now, commutativity of the diagram implies that JreflAK is an isomorphism.
The sources cited above immediately conclude that the model is extensional.
However, it took me quite some time to really understand it; after all,
reflA : A → Σx:A,y:A.IdA x y is a “type theoretical” isomorphism. “Type
theoretical isomorphism” (or “bijection” [19]) means that there is a term
t and terms of type ∀a.a ≡ t ◦ reflAa as well as ∀p.p ≡ reflA ◦ tp.3 How-
ever, these “type theoretic” isomorphisms are not necessarily modelled by

3This is equivalent to saying that reflA is a weak equivalence and, assuming univalence,
A and Σx:A,y:A.IdA x y are actually equal types.
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isomorphisms! After all, their compositions are only in a very weak sense
equal to the identity.

Assume we have Γ ` s0, s1 : A and Γ ` p′ : Id s0 s1. We set p =
(s0, s1, p

′). Let us draw another diagram:

JΓ.AK

δ
��

JreflAK// JΓ.A.A.IdAK
JIdAK

wwppppppppppp

JΓ.A.AK JΓK
J(s0,s1)K
oo

JpK

OO

Note that the labelling of the bottom vertical arrow is slightly inaccurate,
better (but less readable) would be JAK∗(Js1K)◦Js0K.4 The commutativity of
the lower diagram means that p = (s0, s1, p

′) is really a proof that s0 and s1

are equal terms. Commutativity of the upper triangle is just the property of
reflA discussed above. But now, we have (if we omit the substitution again
which does not change anything) J(s0, s1)K = δ ◦ JreflAK−1 ◦ JpK and therefore
Js0K = JreflAK−1◦JpK = Js1K. Summarized: If there is a proof that two terms
are propositionally equal, then they are modelled by the same morphism.

It is therefore not possible to model proper intensional type theory in this
naiv way. The problem is that we have required the diagonal filler j to exist
whenever the vertical left arrow is a reflexivity proof; a straightforward idea
to fix it is restricting this requirement to a class of morphisms containing
every interpretation of a type. However, it turns out to be very hard to give
a good nontrivial characterization of such a class; and actually, all the work
on homotopic-theoretical models can to some extend be seen as attempts to
find those characterizations.

1.5 Homotopic Models

The main sources for this section are van den Berg & Garner [14], Arndt &
Kapulkin [9] and Awodey & Warren [13]. For some concepts, the nlab [64]
is very useful.

1.5.1 Weak Factorization Systems

Weak factorization systems provide a useful setting for models of identity
types. As described in the section about semantics, the critical point is
to find a suitable subclass of morphisms that have the properties of types,
and weak factorization system address exactly at this issue. It also works

4Γ.A.A is isomorphic to Γ.A×A. This justifies our simplification.
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the other way round: As shown by Gambino & Garner [25], the classifying
category of a type theory with identity types admits always a (nontrivial)
weak factorization system.

We use the definitions stated in [53]. The concepts are well-known and
wildly accepted, but to the best of my own knowledge, they are originally
due to Bousfield [16].

It will turn out later that a basic requirement for identity types is the
following lifting property.

Definition 1.5.1 (Lifting Property). Let c, f be morphisms in a category.
c has the left lifting property with respect to f (equivalently, f has the right
lifting property with respect to c) if, for any commutative square

A //

c

��

X

f

��
B // Y

a diagonal filler, i.e. a morphism j : B → X, exists, making the whole
diagram commutative. This filler does not have to be unique (though this
would be a useful property later).

Having this concept in hand, we are able to define the mentioned systems:

Definition 1.5.2 (weak factorization system). Given a category C, a weak
factorization system on C is a pair (L,R) of sets of morphisms of C such
that

(W1) every morphism in C can be written as p ◦ i, where p ∈ R, i ∈ L (not
necessarily unique)

(W2) every morphism in L has the left lifting property with respect to every
morphism in R

(W3) L and R are maximal with this property (i.e. we cannot add any
morphisms without violating the above requirements)

Example 1.5.3. A basic (but nonconstructive) example of a weak factor-
ization system on the category of sets is (monos, epis), i.e. the set of injective
(monomorphisms) and surjective maps (epimorphisms). The factorization
of f : A→ B is given by

A
f //

a7→(in1a,f(a)) %%K
K

K
K

K B

(1 +A)×B
(a,b) 7→b

99s
s

s
s

s
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Note that the somewhat nasty 1+ is necessary as there would be a problem if
A = ∅ 6= B otherwise. For the lifting j, given an injective c and a surjective
f in

A
u //

c

��

X

f

��
B v

// Y

define j(b) = u(a) if a = c(a) and, if such an a does not exist, j(b) = x for
some x that satisfies f(x) = v(b). Note that this is possible if and only if
the Axiom of Choice holds true. Finally, the maximality condition is clearly
satisfied.

This can also be done in a constructive way by requiring that all the
monos and epis are split (and carry information about the corresponding
retraction resp. section), thus essentially making a (deterministic) construc-
tion of the diagonal filler possible.

As an easy exercise and because it is important for further explanations,
we prove the following:

Lemma 1.5.4. Given a weak factorization system (L,R), the class R is
closed under pullbacks (whenever they exist).

Proof. Let f : B → A ∈ R and σ : X → A any morphism. Then, for
Y = X ×A B, we have to show that in the pullback square

Y
τ //

g

��

B

f

��
X σ

// A

the morphism g is in R. Therefore, let c : S → T ∈ L be any morphism and
s : S → Y , t : T → X be morphisms that make the left square and therefore
the whole diagram commute:

S
s //

c

��

Y
τ //

g

��

B

f
��

T
t

// X σ
// A

As f ∈ R, there exists a diagonal filler:

S
s //

c

��

Y
τ // B

f

��
T

t
//

i

77nnnnnnnn
X σ

// A

20



Together with the pair (i, t), the property of the pullback guarantees that
there is a morphism j:

S
s //

c

��

Y

g

��

τ // B

f

��
T

t
//

j
>>

X σ
// A

By our construction, we have g ◦ j = t, so the only thing to check is whether
s equals j ◦ c. We know that g ◦ s = g ◦ j ◦ c and that τ ◦ s = i ◦ c = τ ◦ j ◦ c,
so the pairs (τ ◦ s, g ◦ s) and (τ ◦ j ◦ c, g ◦ j ◦ c) are equal. Because of the
pullback property, each of the two pairs provides a unique morphism S → Y
making everything commutative, but for the first pair, this is obviously s
and for the second pair, this is j ◦ c. Consequently, they are equal and we
are done.

The above lemma enables us to interpret substitution of types as pull-
backs, as described in the section about semantics of dependent type theory.

1.5.2 Identity types in Weak Factorization Systems

I have learnt the content of this subsection by reading the (highly recom-
mended) survey article [11]. Unfortunately, it is not very detailed, so I try
to give a slightly longer explanation.

From now on, let us write AI as short-hand for Σa,b:A.IdA a b. Clearly, if
A is a type in context Γ, then so is AI5.

So, let us now discuss the interpretation of identity types. Given a bi-
cartesian closed categoriy C with a weak factorization system (L,R), assume
we have interpreted everything apart from identity types as described in the
semantics section. If Γ ` A : type, then there is the context morphism
δA : Γ.A → Γ.A.A. In C, the morphism JδKA can, according to the laws of
a weak factorization system, be written as

JδAK = JΓ.AK c∈L−−→ X
f∈R−−−→ JΓ.A.AK.

Assume we have a possibility to choose one of the (possible multiple) factor-
izations in a coherent way. Then, we can choose to model Γ.AI by X, and
c will be the interpretation of λa . (a, a, refla), while f is the interpretation
of the equality type (that depends on Γ.A.A).

For an easier notation, let us write rA instead of λa : A . (a, a, refla).

5This is usually the notation for the path object in abstract homotopy theory of model
categories; this coincidence is, of course, not random!
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The property of the weak factorization system makes sure that we can
interpret the eliminator. Consider a type P that depends on AI in context Γ
and assume we have a term m of type ∀a.P (a, a, refla) as in the commutative
diagram

JΓ.AK
JmK //

JrAK

��

JΓ.AI .P K

JP K

��
JΓ.AIK 1 // JΓ.AIK

This diagram represents exactly the assumptions of the J rule. We know
that the left and the right morphism are in L resp. in R. Therefore, the
properties of the weak factorization system guarantee the existence of a
morphism j making the diagram commutative:

JΓ.AK
JmK //

JrAK

��

JΓ.AI .P K

JP K

��
JΓ.AIK 1 //

j

;;wwwwwwwwwwwwwwwwwww
JΓ.AIK

If we have a coherent possibility to choose the filler j, we can use it
as the interpretation of the elimination rule. Note that the upper triangle
represents the computation rule, stating j ◦ JrAK = JmK.

1.5.3 Homotopy Theoretic Models of Identity Types

Let us state the above discussion in form of a theorem. Is is due to Awodey &
Warren [13] and makes use of some abstract homotopy theory (in particular,
path objects, which we do not repeat here; a good source is [21]):

Theorem 1.5.5. Let C be a finitely complete category with a weak factor-
ization system and a functorial choice (·)I of path objects in C, and all of
its slices, which is stable under substitution. I.e., given any A → Γ and
σ : Γ′ → Γ,

σ∗(AI) ∼= (σ∗A)I .

Then C is a model of a form of Martin-Löf type theory with identity types.

Note that AI is now defined in both the cases that A is a type and that
A is an object in a category, which will hopefully not lead to confusion. The
intuition is that the former should be modelled by the latter.
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Here is a diagram that illustrates the theorem. Given an f ∈ R and a
morphism σ, which are painted as solid arrows, we can construct the pull-
backs (dashed arrows) and factorizations of the diagonals (dotted arrows):

σ∗A×Γ′ σ
∗A

(σ∗A)I

gg

σ∗A

rσ∗A
ee

//_______

���
�
�
�
�
�
� Γ′

σ

��

σ∗(AI)

22eeeeeeeeeeeeeeeeeeeee

��0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

@�
@�

A
f // Γ

A×Γ A

OO�
�
�
�
�
�

//______ A

f

OO

AI

99

A

rA

77

As shown in the diagram, σ∗(AI) and (σ∗A)I have to be isomorphic in
order to fulfil the assumptions of the theorem.

The proof given in [13] is basically a summary of our explanations in the
previous sections.

Remark 1.5.6. At first sight, one might wonder if the choices of j in Awodey
& Warren’s theorem have to fulfil some coherence conditions. The authors
do not mention any, but personally, I am still not completely sure about
this.

1.6 Model Categories

In this section, we want to provide some background on model categories, a
structure that can be found in many mathematical constructions and has two
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weak factorization systems built-in. They were first mentioned by Quillen
[57]. Many authors ([9], [11], [13], [14], [34], [43]) make use of model cate-
gories, but in fact, one of the two weak factorization systems is never used.
However, if something has the structure of a weak factorization system, it
nearly always is a model category as well, so not much harm is done if the
stronger notion is assumed. The advantage is that model categories are a
well-established concept in mathematics.

We first state the definition given in the nlab [52]:

Definition 1.6.1 (Model Category). A model structure on a category C
consists of three distinguished classes of morphisms of C, namely the cofi-
brations C, the fibrations F and the weak equivalences W, satisfying:

(M1) 2-out-of-3 : If, for any two composable morphisms f , g, two of the
three morphisms f, g, g ◦ f are weak equivalences, then so is the third.

(M2) there are two weak factorization systems, (C,W ∩ F) and (C ∩W,F).

A model category is a complete (all small limits exist) and cocomplete (all
small colimits exist) category that carries a model structure.

Like most authors, we call a map that is a fibration and a weak equiv-
alence at the same time an acyclic fibration (not that trivial fibration is
also common), similarly, a cofibration that is a weak equivalence is called
an acyclic cofibration. If A → 1 is a fibration, then the object A is called
fibrant. If 0→ B is a cofibration, B is called cofibrant.

We allow us to make three comments here, all of which are well-known
and are, for example, stated in [45].

Example 1.6.2. For any category C, let two of the three classes F,C,W be
the class of all morphisms and let the third be the class of all isomorphisms.
This gives us three different model structures on C. If C has all small limits
and colimits, each of these constructions forms a model category.

Example 1.6.3. The product of model categories is, in the obvious way, a
model category.

Remark 1.6.4. The concept of a model category is self-dual.

Nontrivial examples include the categories of groupoids, simplicial sets
and topological spaces, which will be discussed later.

As we will need it soon, we want to state the the following proposition
([21] Proposition 3.14):

Proposition 1.6.5. Let C be a model category. Then the following state-
ments are true:
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(i) C is closed under cobase change, i.e. if c is a cofibration in the fol-
lowing pushout diagram, then so is c′:

A

c

��

// C

c′

���
�
�

B //___ D

(ii) W∩C is closed under cobase change, i.e. if c is an acyclic cofibration
in the diagram above, then so is c′.

(iii) F is closed under base change, which is the dual statement of (i), i.e.
the pushout is replaced by a pullback.

(iv) f ∩W is closed under base change.

Proof. The statement (ii) can be proved analogously to (i) and (iii), (iv)
are clearly dual to (i), (ii), so we only prove (i). To prove that c′ in the
given diagram is a cofibration, let f be an acyclic fibration.

A

c

��

// C

c′

���
�
�

u // E

f
��

B s
//___ D

t
// F

As c is a cofibration and f an acyclic fibration, there exists a lifting j :
B → E. Together with u and the pushout property, j implies that there is
a morphism j′ : D → E. While [21] concludes the proof by stating that j′

is the required lifting, the authors do not find it obvious that both triangles
commute.

A

c

��

// C

���
�
�

u // E

f
��

B

j

77

s
//___ D

j′

>>

t
// F

While the commutativity of the upper triangle, i.e. u = j′ ◦ c′ is indeed a
direct consequence of the pullback property, it is less clear that t = f ◦ j′.
However, note that f ◦ j′ ◦ c′ = f ◦ u = t ◦ c′ and f ◦ j′ ◦ s = f ◦ j = t ◦ s do
directly follow from the commutativity of the diagram, where commutativity
of the lower triangle is not assumed. We have therefore shown that the

pairs (C
f◦j′◦c′−−−−→ F,B

f◦j′◦s−−−−→ F ) and (C
t◦c′−−→ F,B

t◦s−−→ F ) are identical,
which means that they induce (by the pushout property) the same unique
morphism D → F , but as those morphisms are f ◦ j′ respective t, those are
equal.
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We want to state another often used definition, used, for example, in
[21] and [45] (however, both times slightly differently). One thing should be
mentioned before:

Definition 1.6.6 (Retract). If X,Y are two objects in a category C, we say
that Y is a retract of X if there exists maps Y

s−→ X
r−→ Y with r◦s = idY . If

f, g are maps, we call g a retract of f if this holds true in the arrow category
C→, i.e. if there is a commuting diagram

A

g

��

i1 // W

f
��

p1 // A

g

��
B

i2
// Z p2

// B

satisfying p1 ◦ i1 = idA and p2 ◦ i2 = idB.

Definition 1.6.7 (Model Category, alternative definition). As above, a
model structure on C consists of three classes C,F,W, so that:

(N1) C,F,W are all closed under composition and include all identity maps

(N2) 2-out-of-three is satisfied as above: If two of f , g, g ◦ f are in W, then
so is the third

(N3) C,F,W are also closed under retracts, i.e. if g is a retract of f and f
is in one of the classes, then g is in the same class

(N4) if c ∈ C and f ∈ F, then c has the left lifting property with respect to
f if at least one of them is also in W

(N5) any morphism m can be factored in two ways:

A
m−→ B = A

c∈C∩W−−−−→ X
f∈F−−→ B = A

c′∈C−−−→ X ′
f ′∈F∩W−−−−−→ B

A model category is a category with all small limits and colimits together
with a model structure.

Remark 1.6.8. There are a couple of variants to these definitions. For exam-
ple, Dwyer & Spalinski [21] only requires the existence of finite limits and
colimits. Also, Hovey [45] wants the factorizations to be functorial. The
nlab [52] states: “Quillens original definition required only finite limits and
colimits, which are enough for the basic constructions. Colimits of larger
cardinality are sometimes required for the small object argument, however.”

As an exercise, we want to prove that each of the above definitions can
be replaced by the other.
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Proposition 1.6.9. The definitions 1.6.1 and 1.6.7 are equivalent.

Proof. For the first direction, we have to show that (M1) and (M2) imply
(N1)− (N5). For (N2), (N4) and (N5), there is nothing to do.

Concerning (N1), the maximality condition in the definition of a weak
factorization system clearly implies that each class contains all identity
maps. The closedness under composition of W follows from 2-out-of-3. For
the rest, let f1, f2 be composable fibrations. To show that f2 ◦ f1 is a fibra-
tion as well, assume that c is any acyclic cofibration. Given a commuting
diagram

A

c

��

s // X

f1

��
Z

f2

��
B

t
// Y

In this situation, (M2), applied on c and f2, guarantees the existence of a lift
B → Z. Using this lift, we can apply the same argument again on c and f1,
obtaining a lift B → X as required. Using the maximality condition of weak
factorization systems again, we conclude that f2 ◦ f1 is indeed a fibration.
The rest of (N1) follows analogously.

Concerning (N3), we first show that F is closed under retracts. Assume
f ∈ F and g is a retract of f . Let c be any acyclic cofibration. We have to
show that the diagonal filler exists in

A

g

��

s // X

c

��
B

t
// Y

The fact that g is a retract of f yields an extension of this diagram, namely

A

g

��

i1 // W

f

��

p1 // A

g

��

s // X

c

��
B

i2
// Z p2

// B
t

// Y

where p1 ◦ i1 = idA and p2 ◦ i2 = idB. As f is a fibration, we get a filler
j : Z → A and consequently, j ◦ i2 is a valid filler for the original square.
Using the maximality property of F proves g ∈ F. If we require c only to
be a cofibration, not necessarily acyclic, the same argumentation shows that
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F ∩W is closed under retracts. Dually, C and W ∩ C are both closed under
retracts.

Surprisingly, closeness of W under retracts is a bit tricky. This case is
actually the reason why we stated proposition 1.6.5 above. Assume f ∈W
and g is a retract of f . Using (M2), we factorize g as g = p ◦ i, where i ∈ C
and p ∈W ∩ F, yielding the following commutative diagram:

A

i
��

i1 // W

f

��

p1 // A

i∈C
��

K

p

��

K

p∈W∩F
��

B
i2

// Z p2

// N

We now take the pullback of p along p2. As shown in proposition 1.6.5, the
map Z ×B K → Z is in W ∩ F:

A

i
��

i1 // W
p1 // A

i∈C
��

K

p

��

Z ×B K
p′∈W∩F

���
�
�

v //___ K

p∈W∩F
��

B
i2

// Z p2

// N

Because of the pullback property, the pairs (idK , i2 ◦p) and (f, i◦p1) induce
the following maps

A

i
��

i1 // W

i′∈W
��

p1 // A

i∈C
��

K
u //

p

��

Z ×B K
p′∈W∩F

���
�
�

v //___ K

p∈W∩F
��

B
i2

// Z p2

// N

where p′ ◦ i′ = f and v ◦u = idK . The reason for i′ being in W is two-out-of-
three, as p′ and f are both weak equivalences. We now focus on the top half

of the diagram. We can factorise i′ as i′ = W
i′′∈C∩W−−−−−→ X

p′′∈W∩F−−−−−→ Z ×B K,
where two-out-of-three is again the reason why we may assume that both i′′

and p′′ are weak equivalences. Further, by the lifting property, we get the
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morphism j:

A

i∈C

��

i1 // W

i′∈W

��

i′′∈C∩W

zz

p1 // A

i∈C

��

X

p′′∈F∩W $$
K

j
>>~

~
~

~

u
// Z ×B K v

//______ K

As (v ◦ p′′) ◦ j = idK , we can conclude that i is a retract of i′′. But we
already know that C ∩W is closed under retracts, so i ∈ W, and therefore
f = p ◦ i ∈W as required.

To complete the proof, we have to show that (N1) − (N5) imply (M1)
(which is trivial) and (M2) (which we do now). Because of duality, it is
enough to prove that (C ∩W,F) is a weak factorization system. The fac-
torization property (W1) is just the same as (N5), while the lifting property
(W2) is an immediate consequence of (N4). Only the maximality (W3) re-
mains to be shown: Assume the morphism f has the right lifting property
with respect to every morphism in C∩W. By (M5), we have a factorization
f = p ◦ i, where i is an acyclic cofibration and p a cofibration. According to
our assumption, the diagonal filler in the following diagram exists:

A

i
��

idA // A

f
��

X

j
>>}

}
}

}

p
// B

The following diagram proves that f is a retract of p.

A

f

��

i // X

p

��

j // A

f

��
B

idB
// B

idB
// B

By (N3), we conclude f ∈ F, proving one part of the maximality condition
(W3). The other part follows by duality.

1.7 Groupoids

The Groupoid model is the easiest one of those we want to present here. At
the same time, it is the oldest one ([32]) and has inspired the whole research
field of homotopy type theory.
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The basic setting is the category Grp with (small) groupoids as objects
and functors as morphisms. More precisely, we are talking about the “evil”
version of Grp, which does not arise as the truncation of the natural 2-
category of groupoids, functors and natural transformations. Instead, the
equality on the hom-sets, i. e. the functors, is strict functor equality: Two
functors F,G : A → B are only equal if F (a) = G(a) and F (m) = G(m)
for every object a and morphism m of the groupoid A, while the “non-evil”
version of the category of groupoids would identify F and G if they are
natural isomorphic.

In category theory, there exist the so-called Grothendieck fibrations [51]
and these are the fibrations we need, as described in [11], though it might be
more appropriate to talk about isofibrations. As both concepts are the same
in the simple case of groupoids, we do not make the distinction. We only
give the definition for groupoids, not the more general one for categories.

Definition 1.7.1 (Fibrations in Grp). A functor p : E → B between
groupoids is a fibration if for any e ∈ E and f : b → p(e), there is a
morphism g : e′ → e with p(g) = f . This immediately implies that every
groupoid is fibrant.

The definition implies that any connected component of B is either dis-
joint from the image of p or completely objectwise contained in this image.

Groupoids carry the structure of a weak factorization system in the fol-
lowing way:

• L is the class of functors which are injective and equivalences in the
categorical meaning (i. e. embeddings which are injective on objects).

• R are the fibrations defined above.

Theorem 1.7.2. The structure (C,F) is a weak factorization system on the
category of small groupoids.

Proof. In my original composition, I had a very long and unnecessarily com-
plicated proof here. I have decided to skip it, as there are much more elegant
proofs available, for example at the nlab [22].

We may define AI to be the arrow groupoid A→. Then, refl maps objects
a ∈ |A| canonically on ida ∈ |A→| and morphisms m : a → b on (m,m). It
is easy to check that this is indeed an injective equivalence between A and
A→, i.e. a trivial cofibration. Moreover, there is an obvious fibration A→ →
A×Γ A that represents the Identity Type. Summarised, our decomposition
of the diagonal is

A
a7→ida−−−−→ A→

p 7→(dom(p),codom(p))−−−−−−−−−−−−−→ A×A
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This model has in some way marked the beginning of the whole develop-
ment. It is due to Martin Hofmann and Thomas Streicher’s work [32], who
used it to answer an important question about the uniqueness of identity
proofs:

Corollary 1.7.3 (UIP is not provable from J , M. Hofmann and T. Stre-
icher). Given two terms a, b : A and two proofs p, q : IdA a b, it is not possible
to construct an inhabitant of IdIdA a b p q without using axioms beyond J .

Proof. We use the weak factorization system given above, together with
theorem 1.5.5. We do not work out the details here. A subtle point is the
question if it is possible to model dependent function spaces, as the category
of small groupoids is not locally cartesian closed. In fact, it is, as shown by
Hofmann & Streicher [32], and Palmgren [55] explains this by discussing
that pullbacks along fibrations have “semi-strict pseudo-adjunctions”.

Remark. It causes regularly some confusion that two objects in AI such

as a
f−→ b and a

g−→ b, are always propositionally equal, since AI = A→ and
the diagram

a
f //

ida

���
�
� b

g◦f−1

���
�
�

a
g // b

is obviously commutative. This should, however, not be too surprising, as
[32] already mentioned that UIP tuple is provable: Any (a, b, p) is equal to
(a, a, refla), the crucial point is that p is not equal to refla.

Remark 1.7.4. While we have only used that small groupoids form a weak
factorization system, they are even an example of a model category. To
get this structure, take all the functors which are injective on objects as
cofibrations and the usual categorical equivalences as weak equivalences.

1.8 Simplicial Sets

A simplicial set is a presheaf over the category of (isomorphy classes of)
finite totally ordered nonempty sets and monotone functions. We want to
introduce the most important concepts and provide some intuition.

1.8.1 General introduction to simplicial sets

Our main source for this subsection is Greg Friedman’s article[24]. Another
valuable article is [58] which is somewhat more direct but also discusses
fewer concepts. As simplicial sets play an important role in homology and
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related topics, books such as [56], [27] and [45] can also serve as references.
Here, we only give a brief summary. For everything beyond that, we highly
recommend Friedman’s article.

Definition 1.8.1 (category ∆). For every natural number n > 0, we define
[n] to be the set {0, 1, . . . , n− 1} (equivalently, the finite ordinal). ∆ is the
category that has the [n] as objects and all monotone maps (l ≤ k implies
f(l) ≤ f(k)) as morphisms.

Remark 1.8.2. Caveat: The literature does not completely agree on the def-
inition of ∆, but the different definitions are equivalent. It is still necessary
to pay attention to avoid confusion. In particular, [n] is sometimes defined
to be {0, . . . , n} and the condition n > 0 is dropped, thereby shifting every-
thing by 1. However, the empty set is usually never seen as an object of the
category, i. e. ∆ does not have an initial object.

Definition 1.8.3 (category sSet). sSet is the functor category Set∆op
.

Although the above definition is short and precise, it is sometimes helpful
to use a picture:

Given a simplicial set, i.e. a functor X : ∆op → Set, one can (to some
extend) visualise X[1] as a discrete set of points in the space. X[2] is a
set as well. We can visualise it as a set of directed connections, or lines,
between pairs of points in F [1]. To see how this can be justified, notice that
in ∆, there are two maps from the one-point set [1] to the two-point set [2].
Consequently, in ∆op, there are two maps from [2] to [1]. Applying X on
them, these are exactly the two maps that map every directed connection
on its source respectively its target. Further, in ∆, there is exactly one map
from [2] to [1]. After applying X, this map maps every point x ∈ X[1] on
the trivial connection from x to x. Therefore, the visualisation of only X[1]
and X[2] looks like a directed multigraph with loops. Similarly, an object of
the set X[3] will be the shape of a triangle whose border is already given in
the graph, X[4] can be visualised as a tetrahedron, and so on. In fact, the
image we have described can be seen as the Grothendieck construction

∫
X

(see )

In general, an element of X[n] is called an n-simplex of X. We also call
X[n] the set of n-simplices. By the Yoneda lemma, this set can also be
classified as Set∆op

(∆n, X).

It is handy to introduce a set of generators of the morphisms in ∆:

Definition 1.8.4. For i, n with i ≤ n, we write Di for the map [n]→ [n+1]
that is defined by

Di(j) =

{
j if j < i

j + 1 otherwise.
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Further, again for i < n, there is the map Si : [n+ 1]→ [n], defined by

Si(j) =

{
j if j ≤ i
j − 1 otherwise.

It is easy to see that those two classes of maps generate all the morphisms
in ∆. They are central in the theory of simplicial sets:

Definition 1.8.5 (face and degeneracy maps). Given a simplicial set X,
the morphism di := X(Di) : X[n + 1] → X[n] is called face map, while
si := X(Si) : [n]→ [n+ 1] is called degeneracy map.

The reason for these names can again be explained using the visualisa-
tion: di maps an element of X[n+ 1], i.e. an n+ 1-simplex, on its ith face.
This can also be expressed by saying that the ith corner is deleted, which
collapses the rest. For n = 1, we have already seen that this morphism maps
a directed line on one of its endpoints. For n = 2, it maps a triangle on one
of its three faces, for n = 3, a tetrahedron is mapped on one of its four faces,
and so on. Dually, si maps an n-simplex on an n+ 1-simplex by just using
the ith corner twice. In the case of n = 1, we have described s0 above as the
map that maps a 1-simplex on the trivial connection to itself, i.e. a point is
mapped on the degenerated line which has the point as both endpoints.

An n-simplex is therefore called degenerated if it can be written as si(x)
for some n− 1-simplex x, else it is called non-degenerated.

A morphism in sSet is, of course, just a natural transformation between
functors F,G : ∆op → Set. It maps points on points, lines on lines, triangles
on triangles and so on and is therefore easy visualise as well. If we specify
µ[n] for such a natural transformation, all µ[m] with m < n are determined.

There is one type of simplicial sets that can, in some sense, be seen as
the most basic type, often referred to as the standard simplices:

Definition 1.8.6 (standard simplex ∆n). For any positive integer n, we
define ∆n := y[n], where y is the Yoneda embedding y : C → SetC

op
for a

locally small category C. If we spell this out, ∆n is the simplicial set given
by the functor ∆(·, [n]) : ∆op → Set. Its visualised version looks like a
(regular) triangle of dimension n − 1; i.e., ∆1 looks like a single point, ∆2

like a line, ∆3 like a triangle (with its body), ∆4 like a tetrahedron, and so
on.

Note that ∆n always has exactly one non-degenerated n-simplex. More
general, for each m, ∆n contains exactly

(
n
m

)
non-degenerated elements as

any set of m distinct points (elements of ∆n[1]) form the boundary of exactly
one non-degenerated m-simplex. Also note that ∆1 is the terminal object of
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sSet. Caveat, again: With the alternative formalization of remark 1.8.2, ∆0

is the terminal object. Another possible way of dealing with this is defining
∆n to be y[n+ 1].

1.8.2 Kan fibrations

Basically, a Kan fibration is a simplicial map satisfying a certain lifting
property, which should not be surprising. Again, we recommend [24] and
the articles mentioned above as our main references.

Definition 1.8.7 (kth horn Λnk). For k < n, the kth horn (denoted by Λnk)
of the simplex ∆n can be defined by the full subcategory that is given by

Λnk [j] := {f : [j]→ [n]|∃i ∈ [n].i 6= k ∧ i 6∈ f [j]}.

Here, we make use of the Yoneda embedding again. Λnk is obtained by
removing the “interior” and the n−1-dimensional boundary piece at position
k. There is therefore an obvious inclusion Λnk ↪→ ∆n.

Definition 1.8.8 (Kan fibration). Finally, a morphism f : E → B in sSet
is a Kan fibration if, for any (k, n), any commutative diagram of the form

Λnk� _

��

// E

f

��
∆n // B

has a diagonal filler j : ∆n → E.

The idea is the same as for all fibrations: “If we can complete something
in B, then we can also complete it in E”. The fibrant objects, i.e. those
objects E such that E → ∆1 is a Kan fibration, are called Kan complexes.

Note that even such simple examples as ∆n fail to be Kan complexes
(see [24]):

Λ3
0� _

��

07→0,17→1,27→0 // ∆2

1

��
∆n // ∆1

Λ3
0 has the three constant functions as 1-simplices, which we have just called

0, 1, 2 above. It is a good idea to think about the triangle with vertices
labelled 0, 1, 2 and, as it is the 0th horn, without the body and without the
edge between 1 and 2. The given mapping for these constants determines the
whole simplicial map. ∆2 is, thinking this way, the line with two endpoints,
labelled 0 and 1. The upper morphism works well; however, there is no
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diagonal filler because we would have to map the edge between 1 and 2 to
the edge between 1 and 0, but in the wrong way (1 7→ 1, 2 7→ 0), which is
not a morphism in sSet.

1.8.3 Simplicial sets and spaces

Simplicial sets are used as a completely algebraic model of “nice” topological
spaces. To make the connection clear, we first need to become more serious
of what we have called “visualisation so far:

Definition 1.8.9 (Realisation of standard simplices). For all n > 0, we
denote by |∆n| the realisation of the standard simplex, that is the topological
space given by

|∆n| := {(x0, x1, . . . , xn ∈ Rn+1|0 ≤ xi ≤ 1,
∑

xi = 1}

This definition is straightforward and well-known. We can use it to define
a functor Top→ sSet:

Definition 1.8.10 (singular set functor). The singular set functor S :
Top→ sSet is given by

SY := Top(|∆n|, Y )

This means, if Y is a space, then SY is the set of “ways how ∆n can be
embedded in Y ”, i.e. the set of all “pictures” of ∆n. Of course, SY is very
large unless Y is discrete.

We now want to be more precise about the notion of realisation, or
“visualisation”. While intuitively easy, it is surprisingly hard to define a
functor that builds a space out of a simplicial set X in a reasonable way.
The definition we state is given in [58]. We choose it as it is compact and at
the same time not (much) more confusing than the “more down-to-earth”
definition given in [24]. Clearly, any set can be viewed as a discrete space, in
particular, X[n] is one. Consider the product of spaces |∆m| ×X[n]. Given
f : [n]→ [m] in ∆, there is a canonical continuous map f∗ : |∆m| ×X[n]→
|∆n| × X[n] doing nothing on X[n] and sending the standard simplex of
dimension m to the one of dimension n. Similarly, there is the map f∗ :
|∆m| ×X[n]→ |∆m| ×X[m]. We now define (where we write

∐
instead of

+ for the coproduct):

Definition 1.8.11 (geometric realisation functor). The geometric realisa-
tion functor | · | : sSet→ Top is given by

|X| := colimit

 ∐
f :[n]→[m]

|∆m| ×X[n]
f∗,f∗

⇒
∐
[n]

|∆n| ×X[n]


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Note that this is often always written as
∫ n |∆n| ×X[n].6

Intuitively, the realisation functor just does what it is supposed to do:
For every standard simplex occurring in the simplicial set, it constructs
its geometric version. This gives us quite a lot of “pyramids” in every
dimension and we have to make sure that all the face and degeneracy maps
are respected. This is done by taking the colimit.

Theorem 1.8.12 (|·| a S). The geometric realisation functor is left adjoint
to the singular set functor.

Proof. For an even more general statement see [58].

Especially interesting is that Kan complexes are actually in some way
the same as CW-complexes:

Theorem 1.8.13. The category of Kan complexes and homotopy classes
of maps between them is equivalent to the category of CW complexes and
homotopy classes of continuous maps, where the equivalences are given by
| · | and S.

Proof. See [56], theorem I.11.4.

In Section 1.2, we have tried to give intuition of what homotopy type
theory is about. While the ideas work nicely in our description, the category
Top is not very well-behaved, which raises a lot of problems when it comes
to the details of an interpretation of type theory. On the other hand, sSet is
a purely combinatorial formulation with much better properties. The above
theorem demonstrates how one should think, in summary: Work in sSet,
but get intuition from Top!

1.8.4 The model in sSet

Multiple sources (including [11], [13]) explain that there is the following
model structure on sSet:

1. cofibrations are the monomorphisms

2. weak equivalences are the weak homotopy equivalences (see below)

3. fibrations are the Kan fibrations

Therefore, the weak factorization system we should use is

6This is a generalized version of the Grothendieck construction (if I am not mistaken)
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• L = monos ∩ weak equivalences

• R = Kan fibrations

A morphism f : X → Y in sSet is a weak homotopy equivalence iff it
induces isomorphisms on all homotopy groups. For the homotopy groups of
a simplicial set X, there are several equivalent definitions (see [24], section
9), one of them saying that the nth homotopy group is defined to be the nth

homotopy group of the topological space that is obtained by applying the
realisation functor on X. Applying Whitehead’s theorem [68], we should
be able to conclude that a weak homotopy equivalence is just a map that
becomes, after realization, a homotopy equivalence.

Simplicial sets are used by Voevodsky to model univalent type theory
([65], [66], [67]). For a good explanation of the construction (which is un-
fortunately quite involved), we would like to recommend Kapulkin & Lums-
daine & Voevodsky’s [33] or Streicher’s [63].

1.9 Univalence

We now switch to a different aspect: Instead of discussing model construc-
tions, we examine interesting (possible) properties of identity types.

1.9.1 Contractibility

Contractibility is, in topology, a well-known property of topological spaces:
A space is called contractible if (and only if) it is homotopically equivalent to
the point. This means, a space X is contractible iff there exists a continuous
map H : X × [0, 1]→ X and a point a ∈ X so that, for all x ∈ X, we have
F (x, 0) = x and F (x, 1) = a; in other words, F is at ”time” 0 the identity
and at ”time” 1 constant.

For a type A, the notion is defined analogously:

Definition 1.9.1 (Contractibility). A type A is called contractible if the
type Contractible (A) := Σa:A.Πa′:A.IdA a a

′ is inhabited.

Unsurprisingly, this definition requires A to be inhabited by a distin-
guished element a. Furthermore, every other element has to be equal to a.
At first, this property might look a bit weak: The corresponding ω-groupoid
of A has, obviously, “up to propositional equality” exactly one 0-cell, but
what about higher cells? There is no need to worry, as we will soon under-
stand that this definition does indeed imply the same thing for all levels.
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In the homotopy interpretation, the above definition looks like the defini-
tion of path-connectedness. However, if we have a closer look, we notice that
it gets interpreted as There exists a point a ∈ A and a continuous function
f which maps every point x ∈ A on a path between a and x. The continuity
of f is the important detail. For example, consider the space S1 It can,
for example, be defined as the set of all points in the euclidean plane that
have distance 1 from the origin. Another possible definition is to define it as
the CW-complex with one 0-cell, where we attach one 1-cell in the obvious
way; and this meets the type theoretic definition of the circle as a higher
inductive type (see [42], [62]) quite well. For the moment, let us identify
the circle with [0, 2π], divided by the relation that unifies 0 and 2π. Assume
that there is a continuous map f mapping a point x of this interval to a path
from 0 to this point. f(0) is a path from 0 to 0. Now, increase the argument
x continuously; this makes the path f(x) change continuously. Therefore,
f(2π) is homotopic to the path from 0 to 2π, composed with f(0); but of
course, f(2π) is just f(0), which shows that any path from 0 to itself is null-
homotopic, contradicting the properties of the circle.

1.9.2 Homotopy Levels

The notion of homotopy levels corresponds (roughly) to the question which
homotopy groups of a space are nontrivial. Clearly, for a contractible space,
they are all trivial; and in fact, we define H-level0 just to be the same as
contractible. A space is still “relatively simple” if it becomes contractible
after replacing it by it’s path space (or iterating this step several times). For
types, we define analogously:

Definition 1.9.2 (homotopy level). A type A is said to be of homotopy
level 0 just if it is contractible:

H-level0 (A) := Contractible (A)

Moreover, if all the identity types are of homotopy level n, then A is of
homotopy level n+ 1.

H-leveln+1 (A) := Πab:A.H-leveln (IdA a b)

Remark 1.9.3. For small homotopy levels, the following notions are com-
monly used:

• A type of homotopy level 0 is a singleton type, (isomorphic to) the
unit type, or just contractible.

• A proposition, i.e. a type with at most one inhabitant, has homotopy
level 1.
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• The types of homotopy level 2 are called sets.

• Less frequently used, but reasonable, is writing groupoids for types of
homotopy level 3.

• Similarly, the homotopy level 4 types are 2-groupoids, those of level 5
are 3-groupoids, and so on. In general, types do not need to have a
finite homotopy level or the homotopy level might just not be prov-
able. Univalence ensures that there is a type of homotopy level 3, the
universe type. The hierarchy of universes determines for which levels
a type exists, such that the type is provable not of the corresponding
level.

1.9.3 Weak Equivalences

To understand the notion of a weak equivalence, homotopical intuition is,
again, quite helpful. First of all, if f : A → B is a function and b ∈ B, we
define the preimage of b:

Definition 1.9.4 (Preimage of f : A→ B). The preimage of a function at
b is defined as the set of pairs of a point, together with a proof that this
point is indeed mapped to b:

f−1b := Σa:A.IdB b f(a)

Definition 1.9.5 (Weak equivalence property). A function f : A → B is
called a weak equivalence if all preimages are contractible:

isWeq f := Πb:B.Contractible
(
f−1b

)
Definition 1.9.6 (Weak equivalence). We define a weak equivalence be-
tween types A, B to be a map, together with a proof that this map is
indeed a weak equivalence:

WeqAB := Σf :A→B.isWeq f

A second where natural definition is the one of an isomorphism:

Definition 1.9.7 (Isomorphism). An isomorphism between types A, B is a
tuple consisting of a map in each direction, together with a proof that each
composition is (extensionally equal to) the identity:

IsosAB := Σφ:A→B,ψ:B→A.Πa:A.IdA (ψ ◦ φ(a)) a×Πb:B.IdB (φ ◦ ψ(b)) b

Remark 1.9.8. The notions of a weak equivalence and an isomorphism are
logically equivalent, but not isomorphic: a weak equivalence always is an
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isomorphism and vice versa, but the two types Weq A B and IsosAB are
in general not isomorphic. However, it is the case that we can make them
isomorphic by adding a concrete coherence proof to the second one, thereby
making the 4-tuple a 5-tuple. This coherence condition does follow from the
other terms, but the crucial point is that no unique proof follows.

Lemma 1.9.9 (Composition with weak equivalences is weak equivalence).
Assume A,B,C are types. If w : Weq B C is a weak equivalence, then
composition with w is a weak equivalence, i.e Weq (A → B) (A → C) is
inhabited.

Proof. If u is the inverse of w in the alternative definition of a weak equiv-
alence, it is enough to show that λf.w ◦ f and λf.u ◦ f are inverse. More
precisely, it is sufficient to prove that their composition is extensionally equal
to the identity on A→ B respective A→ C, which is straightforward.

1.9.4 The Univalence Axiom

From the previous section, it is clear that the identity function on any type
A is always a weak equivalence (more precisely, can be completed canoni-
cally to a weak equivalence); by idIsWeq , we denote the canonical map of
type ∀A .Weq AA. Assume A, B are types. Furthermore, assume p is an
inhabitant of IdAB. From p, we can construct a weak equivalence between
A and B: Using the J eliminator, we only have to give this construction if
p is the reflexivity proof; but in that case, idIsWeq is just what we need.
The Univalence Axiom states that this map is again a weak equivalence.

The contents of this sections are, by the best of my knowledge, originally
by Voevodsky; they are nicely presented in Bauer & Lumsdaine’s notes [41].

We first define the “canonical map” precisely:

Definition 1.9.10. There is map of type ∀AB . IdAB → Weq AB, con-
structed as

eqToWeq = J (λAB . (p : IdAB)→Weq AB) idIsWeq

Definition 1.9.11 (Univalence Axiom). The map eqToWeq is a weak
equivalence. In other words, the Univalence axiom postulates a term of
type

∀AB . isWeq eqToWeq

The Univalence Axiom provides us with the possibility to treat weak
equivalences similarly as propositional equalities. To make this clear, we
prove the following:
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Theorem 1.9.12 (Induction on weak equivalences). Given some

P : ∀U, V .Weq U V → Type,

assume we can construct a term for “canonical weak equivalences”. More
precisely, assume we can construct a term of the type

m : ∀T . P T T (idIsWeq T )

Then we can also construct an inhabitant of P .

Proof. Define
P ′ : ∀U V . IdU V → Type

by
P ′ = λU V q . P U V (eqToWeq q)

Now, ∀U .P ′ U U reflU is inhabited by m (this uses the β rule of identity
types). By J , P ′ is inhabited. Given any U , V as well as w : Weq U V
and univalence, we get a proof p : IdU V . But eqToWeq p is equal to w, so
using the constructed inhabitant of P ′ U V p and J (or just a substitution
rule that follows from J), we get an inhabitant of P U V w.

We want to conclude with a proof that Univalence implies Extensionality
of functions, i.e., if two functions are pointwise equal, we can prove that they
are equal. We summarise the main argument of [41].

Lemma 1.9.13 (source and target are weak equivalences). Recall that we
write AI for Σa,b:A.IdA a b. Given a type A, the canonical projection maps
srcA : AI → A and trgA : AI → A are weak equivalences.

Proof. We only give a sketch of the proof for the src function. Here, it seems
to be advantageous to use definition 1.9.7. We want to prove that the map
rA : A → AI is an inverse of srcA (recall rA = λa . (a, a, refla). It is clear
that srcA ◦ rA is extensionally equal to idA. For the other direction, we have
to show that every term (a, b, p) : AI equals (a, a, refla). But, using the J
eliminator, it is enough to show this if (a, b, p) is (a, a, refla), and in this
case, it follows by reflexivity.

Theorem 1.9.14 (Univalence and η imply Extensionality). Assume we
have, for types A,B and functions f, g : A → B, a proof that f and g are
pointwise equal; i.e. we have p : Πa:A.IdA (fa) (ga). Using the Univalence
axiom (and the usual η law for functions), we can construct an inhabitant
of IdA→B f g.
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Proof. We sketch the proof that is given in [41]. Define

d := λa . (fa, fa, reflfa)

e := λa . (fa, ga, pa)

Now, srcA◦d = λa . fa = srcA◦e. But for any weak equivalence s, Id d e is in-
habited iff Id ( s◦d)(s◦e) is, which is easily shown by induction on weak equiv-
alences. We therefore just need to apply lemma 1.9.12 to see that Id d e is
inhabited and also Id (trgA ◦ d) (trgA ◦ e), which is just Id (λa . fa) (λa . ga),
so the η law solves it.

Remark 1.9.15. For simplicity, we have only stated the nondependend form
of extensionality. The dependent version holds as well, but is more involved.

1.10 Hedberg’s Theorem

In 1998, Michael Hedberg has published a proof that, for a given type, decid-
able equality implies uniqueness of identity proofs [28]. His original proof is
quite lengthy, though it provides a couple of very interesting insights. Here,
I want to present a much more direct proof, which I have also formalised in
Coq (available on my homepage). There is also a post on the HoTT blog
[1] on the topic.

Definition 1.10.1 (decidability). A type A is said to be decidable if there
is either a proof that it is inhabited or a proof that it is not:

DecidableA = A+ ¬A

where, of course, ¬A is just short-hand for A→ ⊥. Decidable equality means
that we can, for each pair of terms, decide their equality type:

DecEquA = ∀a b .Decidable(IdA a b)

Uniqueness of identity proofs has already been introduced at the very
beginning of this composition, we just repeat the definition in the form of a
type:

Definition 1.10.2 (uip).

UIPA = ∀a b : A .∀p q : IdA p q . Id p q

Hedberg’s theorem states that decidable equality implies UIP:

Theorem 1.10.3 (Hedberg).

DecEquA → UIPA
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Proof. Assume dec: deceqA (in some context Γ). Further, assume (a, b, p) :
AI (in the context). We can now “ask” the “deciding function” dec what
it “thinks” about a, b respectively a, a; it will either tell us that they are
equal or unequal. The latter case would, however, immediately lead to a
contradiction, as we already know that a and b are equal. Therefore,

dec a b = inl q1 for some q1 : IdA a b

dec a a = inl q2 for some q2 : IdA a a

We claim that p equals q1◦q−1
2 propositionally (using the notation of remark

1.2.2). But applying J , we only need to prove it for (a, b, p) = (a, a, refla), in
which case q1 and q2 are the same, so that it suffices to observe that q2 ◦ q−1

2

equals reflexivity. As every inhabitant of IdA a b equals q1◦q−1
2 , there cannot

be more than one.
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Part 2

Other Projects and Results

In this part, we describe three smaller projects we have worked on, two of
which can be considered “work in progress”.

2.1 A Lambda Term Representation Inspired by
Linear Ordered Logic

This project has been a continuation of my computer science Bachelor’s
thesis. It was joint work with Andreas Abel and appeared [2] in the pre-
cedings of the LFMTP 2011 workshop. The fundamental idea is that, in
order to avoid space leaks while evaluating a dependently typed expression
to a normal form, it is reasonable to make all the information about bound
variables available at the binder. Concretely, our approach can be seen as a
variant of the De Bruijn representation with the crucial difference that not
the variable carries the information, but the lambda (i. e. the binder).

To explain what we want to avoid, we give the following example of an
evaluation of a term with a typical evaluation strategy:

(λx. λy. a b y) g f

−→ (λy. a b y)[g/x] f

−→ (a b y)[g/x, f/y]

−→ (a b) [g/x, f/y] y [g/x, f/y]

−→ a [g/x, f/y] b [g/x, f/y] f

−→ a b f

As we have explained in the paper, the substitution [g/x] could be dropped
instantly. Further, there is no need to apply [f/y] to the term a b. However,
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the “naive” term representation used above comes along with the problem
that such an evaluation algorithm does not have the required information
in time. This is due to the fact that the binding information is always split
between the binder and the actual variable occurrence, as they both carry
the variable name. Our suggested representations gives all the information
to the lambda instead, in form of a list telling us which of the preceding
variables are bound by that specific lambda.

The paper is available on my homepage.1

2.2 One-Rule String Rewriting

This project is joint work with Christian Sattler. It is an approach to solve
two long-standing open problems of the Rewriting Techniques and Applica-
tions conference’s open problem list, especially Decidability of Termination
(problem 21) and the question on Termination/Looping (problem 95), which
have acquired quite some fame over the last 20 years.

Here, I only give a very brief overview or an abstract of our work. For
details, see the draft on my homepage. This draft has not been submitted
yet, as there are several possible improvements that still have to be examined
(it is also by no means in a publishable form).

String rewriting systems, also known as semi-Thue systems, consist of
a set of rules l → r, specifying valid replacements of substrings of strings
over a given alphabet. In the case of one single rule, it is an open problem
whether there is a system that is neither terminating nor looping. Another
open question is the decidability of termination. Difficulties arise especially
for non-confluent systems.

We have developed strategies for approaching non-confluent string rewrit-
ing in general, not necessarily requiring only one rule. For a given system,
we can define an equivalent system with confluence-like properties, enabling
us to develop some normal form theorems.

We have been able to apply our methods to present a partial solution
to the first of the mentioned problems, going one step further than Geser’s
previous result by only requiring that there is a unique overlap in one order,
but not making any restrictions for the other order. However, one case,
where the right side is mainly periodic with a very special period, remains
open.

Related work has been done by Dershowitz [20], Geser [26], Kurth [38],
Zantema [70] [69], Kobayashi [35] and McNaughton [50].

1http://red.cs.nott.ac.uk/~ngk/
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2.3 Searchability in System T

This projects has been motivated by the lecture series “Computing with
Infinite Objects” by Martin Escardo at the Midlands Graduate School 2012 2.
It is joint work in progress with Christian Sattler.

For an example of a result in the “field” of searchability, consider we have
a (computable) predicate p on the cantor space, i. e. we have p : (N→ 2)→
2. Then, it is decidable whether this predicate is constant 0. From some
point of view, this is a surprising result as the same question for predicates
on the natural numbers (N → 2) is equivalent to the halting problem. The
fundamental property of the Cantor Space that makes this possible is it’s
compactness.

In the above example, decidable means, of course, that there is a term
answering the question in a Turing-complete language such as Haskell. We
want to examine searchability of subspaces of the cantor space in possibly
weaker systems in general, especially in Gödel’s System T . The difficulty can
be increased further by not requiring that the predicate is computable. Of
course, just compactness is not a sufficient criterion anymore. However, we
believe that there is still a close connection to a purely topological notion,
which is some kind of a “higher density property”. So far, we have only
proved the connection of this “higher density property” to another prop-
erty that we call the “order” of a set. This alone is, admittedly, not very
interesting, but see part 3 of this report (future work-plan) for an outline
of our approach and some strong evidence for the connection of order and
searchability.

2.3.1 Definition of Searchability

Definition 2.3.1 (searchability). Fix a term calculus and its interpretation
J·K in a certain model. A subset A ⊆ J2NK is said to be searchable if there
is a term εA : (2N → 2) → 2N such that, for any v ∈ J2N → 2K, we have
JεK(v) ∈ A and furthermore ∃a ∈ A(v(a) = 1) ⇐⇒ v(JεK(v)) = 1.

2.3.2 Density and Order Type

Remark 2.3.2 (Notation). In the set model, J2NKset is to be understood as
the set of binary streams without further conditions. Given a ∈ J2NKset,
we write ak for the bit at position k, i. e. we have a = a0a1a2 . . .. The
canonical (ultra-)metric d : J2NKset × J2NKset → R is given by d(a, b) =
2− inf{k | ak 6=bk}, inducing the canonical topology on J2NKset itself and on every

2http://events.cs.bham.ac.uk/mgs2012/
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subspace. Further, J2∗Kset are the finite lists, or words, over 2. They are
naturally a partial order, where p ≥ q means that p is a prefix of q. It
is worth noting that J2NKset is compact and therefore also complete, while
neither of both holds true for J2∗Kset with the analogue metric which, in this
case, induces the discrete topology. By [] ∈ J2∗Kset, we denote the empty
word. For words p, q, we write pq for their concatenation, in particular, p0
is the word p with a single 0 appended.

Definition 2.3.3 (accumulation function δ). The accumulation function δ
is the endofunction on the powerset of J2NKset that maps every subspace to
the set of its accumulation points in J2NKset.

Definition 2.3.4 (iterated accumulation function δα). For every ordinal α,
we define the iterated accumulation function δα by

δzero M = M in the zero case
δsucα M = δ(δαM) in the case of a successor number
δα M =

⋂
β<α

(
δβM

)
if α is a limit.

Definition 2.3.5 (density type d). Given M ⊆ J2NKset, we define d∅ = ⊥
and dM to be the least ordinal α such that δαM is discrete. If no such
ordinal exists, set dM = >, where we consider ⊥ to be smaller and > to
be larger than any ordinal. We denote the class of ordinals together with ⊥
and > by O and call x ∈ O a proper ordinal if it is neither ⊥ nor >.

Remark 2.3.6. Clearly, the density type is monotone in the sense that A ⊆ B
implies dA ≤ dB. It is always the case that δA is a closed (or, equivalently,
compact) set. If A is closed, we have δA ⊆ A. By induction, it is easy to see
that for every closed A ⊆ J2NKset and ordinal α, the set δαA is closed and a
subset of A.

Further, if M is nonempty and closed, then δdMM is discrete, but
nonempty. This can be shown by case analysis. If dM = sucα is a suc-
cessor number, δsucαM = ∅ implies that δαM is discrete, contradicting the
minimality of dM . It is also true if α is a limit. β < γ clearly implies
δγM ⊆ δβM , so if δ(

⋂
β<α

(
δβM

)
) is empty, there has to be some β < α

such that δβM is discrete, again contradicting the minimality.

Lemma 2.3.7. Given p ∈ 2∗, we write p for the set of all binary streams
with prefix p, i. e. p = {q | q = ps for some s ∈ J2NKset}. Again, it is worth
a quick note that this set is compact and actually homeomorphic to J2NKset.
The following statements are true for all such p and A ⊆ J2NKset:

1. d (A ∩ p) = max
{
d
(
A ∩ p0

)
, d
(
A ∩ p1

)}
2. If γ := d (A ∩ p) is a proper ordinal, there is no infinite antichain

Q ⊆ 2∗ such that for every q ∈ Q, we have p ≥ q (i. e. p is a prefix of
q) and d (A ∩ q) = γ.
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Recall that an antichain is (here with respect to the partial ordering
induced by the prefix relation) a totally unordered subset.

Proof. The first statement is clear as p = p0 ∪ p1. To prove the second
statement, assume that such an infinite antichain Q exists. But then, note
that all the A ∩ q for q ∈ Q are disjoint. From Remark 2.3.6, we know that
there exists some eq ∈ δγ(A ∩ q). Now, {eq | q ∈ Q} is an infinite subset of
the compact set p, so it must not be discrete. However, it is also a subset of
δγ(A ∩ p), which is discrete by the definition of γ. This yields the required
contradiction.

Lemma 2.3.8. Let A be a closed subset of J2NKset as above and f : J2∗Kset →
O be a function satisfying f(p) ≥ max{f(p0), f(p1)} for all p and the second
condition of Lemma 2.3.7, with γ := f([]) a proper ordinal and f(p) = ⊥ ⇒
A ∩ p = ∅. Then δγA is discrete.

Proof. While intuition suggests that this lemma is very simple, our proof is
surprisingly involved. We do induction on γ.

If γ = zero, we have to show that A is discrete. However, if it is not, it
is infinite.

But for every Hausdorff space H, and consequently for J2NKset, it is true
that every infinite subset A has a discrete infinite subset. To prove this,
chose two points x, y ∈ A and disjoint open neighbourhoods Ux, Uy. At
least one of the spaces H −Ux and H −Uy has an infinite intersection with
A. Assume it is the first. Take y to be one of the points for the discrete
subset and iterate the process on H−U−x in order to find the other points.

From the infinite discrete subset of A, it is easy to construct the an-
tichain, in contradiction to the property (2) of Lemma 2.3.7.

In the case that γ is larger than zero, the induction hypothesis and the
fact that p is always open and closed implies that δγ(A ∩ p) = ∅ whenever
f(p) < γ. Consequently, we can deal with this case in exactly the same way
as we did with γ = zero.

Definition 2.3.9 (order function). Given A ⊆ J2NKset, we say that a func-
tion f : J2∗Kset → O is an ordering function with respect to A, if both of the
following conditions are satisfied for all p ∈ J2∗Kset:

1. f(p) = ⊥ ⇐⇒ A ∩ p = ∅

2. f(p) ≥ f(p0) and f(p) ≥ f(p1), where at least one of the inequalities
holds strictly, provided that f(p) is a proper ordinal.
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Definition 2.3.10 (order type o). Given A as above, we say that the order
type oA is the least ordinal (or > or ⊥) such that there exists an ordering
function which maps [] to this ordinal.

Lemma 2.3.11. dA is a proper ordinal if and only if oA is. Further, in the
case that they both are, the inequality dA ≤ oA < dA+ ωω holds true.

Proof. The first statement follows easily from the proof of the second.

First, note that every ordering function f satisfies the second condition
of Lemma 2.3.7: As, for any p, at least one of the inequalities f(p) ≥ f(p0)
and f(p) ≥ f(p1) holds strictly, the elements of J2∗Kset starting with p which
are mapped to the same proper ordinal as p form a chain. Therefore, any
such antichain can not have more than one element and is consequently
finite. Applying Lemma 2.3.8, we conclude that δf([]) is discrete. As this
holds in particular true for the ordering function satisfying f([]) = oA, the
part dA ≤ oA is proven.

For the other part, let g be the endofunction on ordinals defined by
g(α) = (

⋃
β<α g(β))+ω. Note that this means g(zero) = ω and for successor

numbers, it can be spelled out as g(suc β) = g(β) +ω. There are three steps
we take: We prove that g(α) ≤ ω · α + ω. Then, we show that this implies
g(α) ≤ α+ ωω and finally, we show oA ≤ g(dA).

We prove g(α) ≤ ω · α+ ω by simple calculation:

g(α) = (
⋃
β<α

g(β)) + ω

ind. hyp.
≤ (

⋃
β<α

ω · β + ω) + ω

= (
⋃
β<α

ω · (β + 1)) + ω

≤ (
⋃
γ≤α

ω · γ) + ω

= ω · α+ ω

Using the Cantor Normal Form with base ωω, we can write α = ν+µ in
a unique way such that µ < ωω and ν does not contain any summands less
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than ωω. But then,

g(α) ≤ ω · (ν + µ) + ω

= ω · ν + ω · µ+ ω

1
= ν + ω · µ+

2
≤ ν + ωω

≤ α+ ωω,

where (1) follows from the fact that ω · ωζ = ω1+ζ = ωζ for ζ ≥ ω, and (2)
is the case as µ < ωω implies ω · µ+ ω < ωω.

The only thing left to do is proving oA < g(dA). We do this by induction
on α := dA, simultaneously for all subsets of J2NKset, so assume the inequality
holds for all β < α. Consider the set P of all elements p ∈ J2∗Kset that satisfy
d(A ∩ p) = α. Lemma 2.3.7 (1) shows that P forms a tree rooted at [] the
branches of which are all infinite. At the same time, this tree has only
finitely many branches, as otherwise, there would exist an infinite antichain
in P whose existence is disproved by Lemma 2.3.7 (2).

The set of all p with d(A ∩ p) < α, i. e. J2∗Kset − P , can be seen as a
collection T of trees, and every such tree t ∈ T is rooted at a (different)
child ct of some element of P . Using the induction hypothesis, there exists
an ordering function ft on each of these trees, satisfying ft(ct) < g(d(A∩ct)).

We define our ordering function f for A to be equal to the corresponding
ft where it is defined, so for every q ∈ J2∗Kset − P , f(q) = ft(q) (for some
t ∈ T ), which is bound by λ :=

⋃
β<α g(β). We want to have f(p) ≥ λ + 1

for every p ∈ P , but as P is a finitely branching tree, there is an n ∈ ω such
that it is possible to set f([]) = λ+ n, proving that the order oA is smaller
that λ+ ω = g(α).

2.3.3 Density of countable compact sets

Remark 2.3.12. In the following, we deal with general metric spaces instead
of the special case of the cantor space, as this makes our presentation clearer.
Of course, the density function can be generalised to arbitrary topological
spaces in the obvious way.

Further, the following lemma can (probably) be generalised to a state-
ment that is very likely to be well-known (“ Let X be a compact and limit
complete T2.5 space, and A ⊂ X closed and countably infinite. Then A has
a discrete point. ”).

Lemma 2.3.13. Let (M,d) be a complete metric space and A a closed
countable infinite subset of M . Then δA is a proper subset of A in the sense
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of δA ( A.

Proof. By O, we denote the set of open subsets of M , i. e. the topology of
M .

Clearly, δA ⊆ A as A is closed. Assume δA = A. Then, every point
in A is an accumulation point. Pick any point a ∈ A. We construct a
map ι : J2∗Kset → A ×O inductively on the length of p ∈ J2∗Kset such that,
whenever (x,X) is in the image of ι, x is an inner point of X, i. e. there
exists some open neighbourhood of x that is a subset of X.

Set ι([]) = (a,M). If ι(p) is already defined to be (ap,Mp), we define
ι(p0) and ι(p1) as follows: As ap is an accumulation point of A, we can chose
two distinct points ap0, ap1 in Mp that also belong to A. As M is not only
Hausdorff, but also a metric space, there exist an open neighbourhood Mp0

of ap0 and Mp1 of ap1 inside Mp such that all of the following are satisfied:

1. Mp0 and Mp1 are not only disjoint, but also have a positive distance
to each other

2. Mp0 and Mp1 are not only subsets of Mp, but also have a positive
distance to the complement M −Mp of Mp

3. Mp0 ⊆ Bn+1(ap0) and Mp1 ⊆ Bn+1(ap1), where Bm(x) is the open ball
with radius radius 2−m and midpoint x, i. e. Bm(x) = {y | d(x, y) <
2−m}.

Set ι(p0) = (ap0,Mp0) and ι(p1) = (ap1,Mp1). This defines the map ι :
J2∗Kset → A×O.

Given a stream q ∈ J2NKset, define qn to be its prefix of length n. By
definition of ι, it holds always true that m > n ⇒ d(ι(qn), ι(qm) < 2−n.
Therefore, ι(q0), ι(q1), . . . is a Cauchy sequence and converges because M is
complete. As A is closed, its limit lies in A. We call this limit ι(q). In this
way, we get a function ι : J2NKset → A.

Further, we claim that ι is injective. To see this, note that ι(q) lies inside
Mqn for every n. But we have made sure that for any two r, s ∈ J2∗Kset, where
none is a prefix of the other, Mr and Ms have a positive distance, so a point
lying in Mr or its boundary cannot be the equal to a point lying in Ms or
its boundary.

This shows that A is uncountable, contradicting the conditions of the
lemma, thereby proving the statement.

Lemma 2.3.14. Let (M,d) be a complete metric space as in the lemma
above and A a closed nonempty countable subset of M . Then dA is a count-
able ordinal.
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Proof. It is sufficient to show that there exists some countable ordinal α such
that δαA = ∅. If A is finite, this is trivial. Otherwise, assume that for every
β < ℵ1, δβA is nonempty. But then, define ζ : ℵ1 → A, ζ(β) ∈ δβ(A)−δsuc β.
This is possible using Lemma 2.3.13 and the Axiom of Choice. But now, ζ is
an injective function, so A has to be uncountable, showing that the original
assumption was incorrect.

Corollary 2.3.15. Let A be a countable nonempty subspace of J2NKset. Then
dA is a countable ordinal and, in particular, dA 6= >.

2.4 Yoneda Groupoids, Higher Dimensional Quo-
tients and the Root of Equality

As the content of this section has originally been an independent note and
it has not been completely adapted to this report, it might contain a couple
of things that have been discussed before.

Ordinary quotients in type theory have already been examined ([6]).
These are just types modulo an equivalence relation, where an equivalence
relation can be seen as a setoid, i. e. as a type of homotopy level 2. With
the possibility to speak about types of a higher level at hand, it is natural to
ask what a higher quotient could be. Intuitively, we should be able to divide
a type not only by a setoid, but by a type of an arbitrary homotopy level.
However, this is quite involved: Already for the division by a groupoid, there
is not really a canonical generalization of the setoid case. The problem is,
as one might have expected, that the number of coherence conditions grows
rapidly with the number of levels. A nice, convincing formulation has not
been found yet.

We define the notion of a Yoneda Groupoid formally, the name of which
is inspired by the relation to the Yoneda lemma, and show how a weak ω
groupoid structure can be extracted. We also prove that, in the presence of
bracket types (in the sense of Awodey & Bauer [12]), every Yoneda Groupoid
gives rise to a higher quotient. All of this is done purely syntactically,
thereby making Yoneda Groupoids a very powerful concept inside the theory
itself and completely independent of the Meta theory.

The question whether and in which way a Yoneda Groupoid is a stronger
structure than an ordinary weak ω groupoid leads to the notion of the Root of
Equality, giving rise to a problem in (∞,∞)-category theory. This question
seems to be fundamental but has, to the best of our knowledge, not been
considered so far and is therefore an open problem.
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2.4.1 Introduction to this topic

With the development of Homotopy Type Theory, the notion of a weak ω
groupoid has gained central importance. As van den Berg & Garner [15] and
Lumsdaine [44] have proved, every type, together with its equality, carries
this structure.

A weak ω groupoid has, as the name suggests, three basic characterising
features. First, it is a higher category with one level of cells for every
natural number. While this might look like a complicated concept (which it
certainly is!), an ω-category is more symmetric and therefore more natural
than an ordinary or an n-category. Every level is an ω-category again,
meaning that every level has the same fundamental structure. Second, as a
groupoid, all the morphisms (which are usually referred to as non-zero cells)
are isomorphisms. Finally, the structure is called weak as the usual laws,
such as associativity, hold only “up to homotopy” (or “up to isomorphy”),
meaning that h ◦ (g ◦ f) and (h ◦ g) ◦ f are not strictly equal, but only
isomorphic. This is natural as category theorists do not speak about equality
on the object level, and here, every cell is, for some category, on the object
level.

While varies informal definitions of this concept exist, a formalization is
involved. One recent approach by Altenkirch & Rypacek [8] makes use of
globular sets. Another attempt are Coquand & Huber’s constructive Kan
complexes [17].

As homotopy type theory gives up the principle of uniqueness of identity
proofs, is is natural to ask how a type with a nontrivial higher structure can in
general be constructed. One interesting approach are higher inductive types
(pushed forward by many researchers in this area, including Peter LeFanu
Lumsdaine and Michael Shulman). Another approach, which is apparently
expressionwise less powerful, but also does not require the theory to provide
as many additional features (the semantics and computational rules of which
still have not completely been developed yet), are higher quotients. These
are a straightforward generalization of ordinary quotients in type theory (at
least as long as we only divide a set-like type). However, the problem is that
clearly, we can only quotient a type by a higher relation if this relation has
the structure of a weak ω groupoid, which, then again, has no reasonable
formalization so far.

In this work, we introduce the notion of a Yoneda Groupoid. Those
groupoids are weak ω groupoids and in fact, we can, purely syntactically,
extract the groupoid structure. All coherence conditions hold, the proof of
which can also be constructed without Meta-theoretic reasoning. Finally,
and we consider this the high point of our work, in the presence of bracket
types (in the sense of Awodey & Bauer [12]), we can purely syntactically
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construct the corresponding higher quotient from a Yoneda Groupoid. In
the special case of an equivalence relation, our quotient is the exact quotient
of Altenkirch, Anberrée & Li [6]. We can prove all of their conditions inside
the theory. Further, their definition can be straightforwardly generalised to
higher dimensions, and our Yoneda quotients still fulfil this definition.

We work in a univalent Intensional Type Theory, i. e. there are equality
types and the univalence axiom, but not axiom K or uniqueness of identity
proofs. Our theory has dependent sum and function types, (preferably) a
hierarchy of universes and is, in total, exactly the kind of theory that is
used for homotopy type theory and univalent foundations. For the type of
propositional equality proofs that a equals b, we write a ≡ b. The convention
is that ≡ binds stronger than →. We also use the symbol ∼ (for relations)
and ↔, where A ↔ B is a shorthand for (A → B) × (B → A). The
decreasing order of binding strength of the symbols is ∼, ≡, →, ↔.

Given a type A , we can talk about a higher relation

∼: A→ A→ U,

where U is some universe. At the moment, we restrict ourselves to the
smallest universe which we call Type. We are interested in the question
whether this relation can be given the structure of a weak ω groupoid, where
the 0-cells are just the terms of A, the 1-cells between a and b are just the
terms of a ∼ b, the 2-cells between s, t : a ∼ b are just the proofs that s
equals t, and so on.

This question is very closely related of a problem stated by Thorsten
Altenkirch:

Question 2.4.1 (Altenkirch). Given ∼: A→ A→ Type with terms

• refl∼ : ∀a . a ∼ a,

• sym∼ : ∀a , b . a ∼ b→ b ∼ a,

• trans∼ : ∀a , b , c . a ∼ b→ b ∼ c→ a ∼ c,

how can we formalise the proposition that it is a weak ω groupoid?

A straightforward idea of approaching this question is stating all the
coherence conditions. For example,

λ : ∀p . (trans∼ refl∼p) ≡ p
ρ : ∀p . p ≡ (trans∼ refl∼p)
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(where we hide arguments that can be inferred for readability) are necessary
coherence conditions. But now, we get a new coherence condition,

λ refl∼ ≡ ρ refl∼,

and in general, every new condition gives rise to even more new conditions.
Nevertheless, a similar approach was taken by Altenkirch & Rypacek [8].

2.4.2 Yoneda Groupoids

Compared to the strategy described above, we chose a different approach.
If a relation ∼: A → A → Type is well-behaved, it should satisfy some
kind of Yoneda property. The condition we state is quite strong and, in
particular, sufficient, but not necessary. For the rest of the section, assume
∼: A→ A→ Type is a given higher relation.

Definition 2.4.2 (Yoneda Groupoid). A relation ∼ is a Yoneda Groupoid
if there is a function mapping every a : A to a pair (n,X), where n is the
“label” of its equivalence class and X represents this class’s structure (we
discuss the latter point later in detail).

isGrp(∼) = ΣF : A→ N×U . ∀a , b : A . a ∼ b ≡ (F a ≡ F b)

U could be any available universe or type. However, if U is just some
type Q : Type, then Q would already have to be some sort of super-quotient
(meaning that a subtype of Q is the quotient), and therefore, we consider
this case rather uninteresting. Our focus shall lie on the possibility that U
is a universe, as univalence provides then additional equality proofs. For
our discussion, we find it convenient to choose U = Type, so let us assume
that we are using the smallest universe.

If the cardinality of N is not sufficient, any other proper set could serve
for the labelling. In fact, we could even make the indexing set part of the
definition in the form of

isGrp(∼) = ΣI : Type, h-level2(I), F : A→ I×U .∀a , b : A . a ∼ b ≡ (F a ≡ F b).

Note that, for Yoneda Groupoids, we could make univalence unnecessary
by replacing equality by weak equivalence. For the quotients discussed later,
this will not be possible any more.

This definition is inspired by two different formalisations of equivalence
relations in the proof-irrelevant case and can actually be understood as a
combination of those. The first is, for equivalence relations ∼: A → A →
Prop, the “Yoneda”-characterisation

∀a, b . a ∼ b↔ ∀x . a ∼ x↔ b ∼ x
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We have not seen this concrete characterisation before, but we assume that
it is well-known as it looks completely natural. Unfortunately, it is not
possible to generalise it in the straightforward way to higher relation as
there is an unwanted “shift” of the level by 1 included. If we try to use the
type

∀a, b . a ∼ b ≡ ∀x . a ∼ x ≡ b ∼ x,

we quickly realise that the right-hand side goes up “one equality level too
much”. For example, if we have a type with only one term a, and a ∼ a ≡ 5,
then the left-hand side is 5, while the right-hand side is 120 (there are 5!
automorphisms on the set 5). We could try to fix this by stating

∀a, b . a ∼ b↔ ∀x . a ∼ x ≡ b ∼ x,

but clearly, logical equivalence is not enough for a valid characterisation.

The second source of inspiration has been the definition of an equivalence
class by Voevodsky:

isCl(P : A→ Prop) = [Σ(a : A).P a]× ...

Here, it is already assumed that ∼ is an equivalence relation and the idea is
that the quotient is just the collection of equivalence relations. Originally,
our definition used equivalence classes, making it very similar to the one of
Voevodsky. After realising that it is not necessary to have a whole type of
equivalence classes indexed over A (which works, but it involved), we were
able to simplify it by just using a single F : A → Type which also adds
indices from a proper set (such as the natural numbers) to distinguish classes
that are isomorphic, but distinct.

Notation. Whenever a term is quantified universally by ∀, we consider it
an implicit argument. This has no meaning for the theory but only for our
representation: If a term is applied on an implicit argument, we use indices
for better readability, i. e. if we have i : ∀a , b : A . a ∼ b ≡ (F a ≡ F b), we
write ia,b(s) instead of i a b s.

Our main result, which we prove step-by-step in the next sections, is the
following:

Theorem 2.4.3. Given a proof term of isGrp(∼), we can construct terms
refl∼, sym∼ and trans∼ that turn (A,∼) into a weak ω groupoid. In par-
ticular, all the coherence conditions (as mentioned, e. g., in [8]) hold, the
proof of which can also be constructed. Moreover, if bracket types [12] are
available in the theory, we can directly construct the quotient A/ ∼. If A
is a h-set in the sense of homotopy type theory and ∼ is an equivalence
relation, i. e. ∼: A → A → Prop, our quotient is just an exact quotient in
the sense of Altenkirch, Anberrée & Li [6], without the Meta-property that
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the β rule holds definitionally. Further, their definition of an exact quotient
can be generalised to arbitrary higher relations, and our quotients satisfy this
generalised definition.

However, the constructed quotient will not be in Type(= Type0) any-
more, but in the next universe Type1 instead. This is not at all surprising,
as univalence and uniqueness of identity proofs are not inconsistent as long
as only one universe is available. More general, in order to construct a type
which has provably not h-level (n+1), a universe Typen is required.

2.4.3 Groupoid Structure of a Yoneda Groupoid

We begin with the fairly simple proof that a Yoneda Groupoid is indeed a
weak ω groupoid.

Lemma 2.4.4. Given p : isGrp(∼), the higher relation ∼ carries the struc-
ture of a weak ω groupoid (in the sense of [8]??) and this structure can be
extracted purely syntactically from the proof p.

Remark 2.4.5. Of course, the structure is not unique in general, as we have
no way to distinguish between terms of a ∼ b (without looking at p). But,
and this is more important, even up to isomorphism, there are fundamentally
different structures. For example, for A = 1 and ∼ = 6, ∼ could be either
the equivalent of the group Z/(6) or the equivalent of the permutation group
S3. It really is the proof of isGrp that makes the choice.

Proof. The main ingredient of our construction is the groupoid property of
equality itself. In particular, equality provides the usual terms refl : ∀a.a ≡ a
and sym : ∀a , b . a ≡ b → b ≡ a as well as trans : ∀a, b, c.b ≡ c → a ≡ b →
a ≡ c.

The proof p : isGrp(∼) is necessarily a pair (F, i).

We define refl∼, sym∼ and trans∼ in terms of p. For readability, we first
omit all implicit arguments in the definitions (we give the precise definitions
below):

refl∼ = sym i refl

sym∼ s = sym i (sym (i s))

trans∼ t s = sym i (trans (i t) (i s))

The strategy is the same in each case: We use the isomorphism (or equality)
i to translate the problem to the case where ∼ is replaced by ≡. Now, in the
case of equality, we know exactly how the required operation can be done,
and we can just transport the result back using the inverse of i.
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With all implicit arguments, the definitions are:

refl∼a = syma∼a,F a≡F a ia,a (reflF a)

sym∼a,b (s : a ∼ b) = sym ib,a (symFa,Fb(ia,b s))

trans∼a,b,c (t : b ∼ c) (s : a ∼ b) = syma∼c,Fa≡Fc ia,c (transFa,Fb,Fc (ib,c t) (ia,b s))

Every single coherence condition just holds because it holds for equality.
For example,

sym∼ ◦ sym∼(s) = sym i (sym (i (sym i (sym (i s))))

is propositionally equal to s. For a proof, we just need to use that i◦ (sym i)
is the identity, then the same for sym◦sym, and finally, that (sym i)◦ i is the
identity as well. It becomes even clearer if we write ·−1 for sym and f ◦ g(a)
instead of f(g(a)):

sym∼ ◦ sym∼(s) = i−1 ((i ◦ i−1 (i s)−1)−1

2.4.4 Quotienting by a Yoneda Groupoid

Lemma 2.4.6. If the type theory has bracket types as introduced by Awodey
& Bauer [12], every Yoneda Groupoid gives rise to a higher quotient in the
sense of Altenkirch, Amberr‘ee & Li [6].

Proof. As before, the proof is some tuple (F, i). Define the “carrier” of the
quotient

Q = Σ[a : A];x : N×Type; [F (a) ≡ x]

and the projection into the carrier

q(a) = ([a], F (a), [reflF (a)]).

For soundness and exactness, we need to prove

∀a , b . a ∼ b ≡ (q(a) ≡ q(b))

which is obvious from i.

Concerning the eliminator, whenever B : Q→ Type and m : (a : A)→
B[a] are given (with coherences), we can a given ([a], x, [w]) just map to ma.
Here, we have to use the property that ma does not depend on the concrete
representant a. This property is one of the assumption of the eliminator.

Note that it is in general not possible to construct an embedding Q→ A
and the quotient is therefore, in the sense of [6], not definable.

58



2.4.5 Examples

Some examples:

• A = 1, ∼ = 6 is a Yoneda Groupoid, proved by (λ → 3, someproof).
The quotient is the symmetric group on 3, which is not inside the
universe Type anymore. This is exactly how it should have been ex-
pected, as a single universe with univalence is consistent with the as-
sumption that equality proofs are always unique. One universe above
Type does not allow this assumption anymore, and indeed, we have
constructed the group S3 : Type1. (A,∼) has another possible quo-
tient which is the group Z/(6), but unfortunately, we cannot get it
with our construction.

• A = 1, ∼ = S3 (where we already need ∼ to be of the type A →
A → Type1) is a Yoneda Groupoid as (λ → S3, someotherproof) :
isGrp(∼) (If I am not mistaken, but it should be true, the sym-
metric group over S3 is S3 again.) The quotient gives us (assuming
that enough universes are available) a type of h-level 4, let us call it
1S3 : Type2. Obviously, we could carry on this example to get types
with higher and higher structure, making more and more universes
necessary.

• In the same way, we can construct the quotients for A = 1, ∼ = n!
for any natural number n. It is always a Yoneda Groupoid by (λ →
n, yetanotherproof) and the quotient will be the symmetric group Sn.
However, our construction does not provide us with any other group
structure on n!. If we carry on as in the example before, the only thing
we have to care about is that the automorphism groups of S2 and S6

is not, as in every other case, S2 and S6 again, thereby making these
two cases special.

• We can now freely combine the groups on different levels constructed
above, for example, we get S3 × 1S7 + S5 + 3 : Type2, which is a
groupoid with 5 distinguishable cells on level zero, 11 on level one,
and 29 on level two. There are also 29 n-cells for every n > 2.

2.4.6 The Root of Equality

Our definitions immediately give rise to the question: When does this func-
tion F exist? Or, formulated more basically: Given a type C, in which cases
is Σ(B : Type), C ≡ (B ≡ B) inhabited?

In the example C = 6, a solution exists, namely B = 3, leading to the
symmetric group S3 as discussed before. However, we cannot construct the
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group Z/(6). In the case of C = 1, we get two solutions, namely S0 and S1.

The first question is: Can we find an appropriate structure if C is not a
discrete set where the number of terms equals a factorial? First, does this
structure exist in the ω groupoid model (resp. the simplicial set model)?
Such a group does exist indeed for C = 3 which can be generalised to
other non-factorial sets (Christian Sattler) and a conjecture is that, given
an n − groupoid, there always is an n + 1 − groupoid with the required
property (Christian Sattler).

There are several things left to do, see the section on the future work-
plan.
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Part 3

Future Work-plan

There are quite a couple of projects and subjects that I find interesting and
plan to work on. Here, I outline some of them:

3.1 The Root of Equality

Our Yoneda Groupoids give rise to the following question in infinity category
theory: Given an (ω, n)-category A (an interesting case being n = ∞), in
which cases is there an ω-category B such that the ω-category formed by the
automorphisms (we could also ask about endofunctors) on B is isomorphic
(or weakly equivalent) to A? This is an obvious generalisation of the question
which groups appear as automorphism groups. It seems to be fundamental
(even independently of type theory) and is, to the best of my knowledge,
an open problem and might not even have been considered yet; however, I
might be completely wrong here.

The future work for this project is therefore kind of obvious. Further,
if this root always exists, it would be interesting to check if it satisfies a
naturality condition such that the simplicial sets model is still a model of
the theory together with

postulate:(A : Typen)→ Σ(B : Type1+n), A ≡ (B ≡ B),

The reason why I assume that this question is not answered yet is that
infinity category theory is not very exhaustively explored so far.

3.2 Weak Canonicity

First, there is a question asked by Thorsten Altenkirch on what I call “weak
canonicity”. Canonicity is, together with strong normalization (decidability
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of typechecking) and subject reduction, a very feasible property that is usu-
ally given in intensional type theories. It states that every term of a (base)
type in the empty context reduces to a canonical one, i. e. one that makes
use of a constructor. For example, in “standard” intensional type theories,
a natural number in the empty context always reduces (β) to either zero or
the successor of some number.

Another feasible property is function extensionality, i. e. the property
that two functions are propositionally equal whenever they are pointwise
equal. Unlike canonicity, this is not necessarily the case in intensional theo-
ries. Of course, we could fix this by postulating the existence of a term ext,
but that would destroy canonicity (see, e. g., [5]). The same problem arises
for Voevodsky’s univalence axiom (see part 2 of this report).

However, there is still hope that a weaker form of canonicity could hold.
It could be the case that every term (of a base type) in the empty context is,
if not definitionally, then at least propositionally equal to a canonical one.
In fact, all the examples of irreducible natural number I have looked at so
far have been propositionally equal to a canonical number.

The (general) question to ask is therefore: Given a type theory that
satisfies (strong or weak) canonicity, which constants can be added without
loosing weak canonicity (how can those constants be characterized)? In
particular, is this true for the univalence axiom? If yes, can the existence of
the equality proof be given constructively (which seems very likely), so that
it is not only true that a term is equal to a canonical one, but this canonical
one can also be computed and (“automatically”) be proven equal?

This question seems to be quite relevant, not only from a theoretical
point of view. If every term is (constructively) equal to a canonical one, it is
natural to ask whether the system can be extended in a way that allows us to
exchange the two terms (treat them as definitionally equal). This might lead
to an alternative approach, or a supplement, of observational type theory
([4], [7]) and possibly computational rules for the univalence axiom.

So far, I have not made any mentionable progress on this question. A
possibly helpful strategy is described in [29].

3.3 Topos Theory

From various vague statements of mathematicians (mostly without type
theoretic background) at the Swansea mini-school 1, it became clear that

1Modern Perspectives in Homotopy Theory: Infinity Categories, Infinity Operads and
Homotopy Type Theory, http://maths.swan.ac.uk/staff/jhg/minischool2012/index.
html
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topos theory is somewhat connected to univalence. Indeed, the nlab [54]
states that, just as type theory formalizes the internal logic of type theory,
the internal logic of an (∞, 1)-topos is homotopy type theory. In particular,
univalence is (apparently) naturally present in such topoi. Although most
of this statements seems to be a reformulation of topics I have discussed in
part 1 of this report, it appears to be very advisable to study a basic amount
of topos theory.

3.4 Isomorphism of types

This project is completely Christian Sattler’s and, while the title might
sound rather uninteresting, his work constitutes a major result. His away
day talk can be found on his homepage [59]. Here, I give a reformulation of
his result and outline possible further work on the topic.

Consider the grammar for types that is given by type variables X,Y, . . .,
basic types 0, 1, products × and coproducts +, as well as the operation
µ, ν and exponentials → (which make it necessary to distinguish between
covariant and contravariant expressions).

Theorem 3.4.1 (Christian Sattler). It is decidable whether two finitary
inductive types (given by the above grammar without ν and →) are syntac-
tically isomorphic.

Proof sketch. Christian’s original formulation talks about a system Ai =
Fi( ~X,A1, A2, . . . , Am) of mutual inductive types instead, where all Fi are
just “polynomials”. His proof is based on the observation that, in such a
system, each Fi(. . .) can be divided in a “guarded” and and “unguarded”
part in a unique way, where “guarded” means that in the power series rep-
resentation each coefficient is a natural number. Now, given two types, it
is sufficient to compare their guarded and unguarded part separately. The
unguarded part is somewhat simpler, as multiciplicities do not play a role
any more. For the guarded parts, the key property is that we have the
cancellation properties

A+B ∼= A+ C implies B ∼= C

and

A× C +B ×D ∼= A×D +B × C implies A ∼= B or C ∼= D

These cancellation properties make sure that the canonical embeddings of
the guarded part of the type definitions Fi(. . .), first into the ring Z[ ~X,A1, . . . , Am],
and second, even in the quotient field are injective. Therefore, it is sufficient
to compare the images under these embeddings. But now, working with a
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proper field, we can just compare the minimal polynomials, the calculation
of which is painful, but not too difficult.

I believe that this research direction has some potential for further re-
sults. Obviously, as the question is solved for the fragment of the grammar
without ν and exponentials, we can ask what happens if we add ν instead
of µ; unfortunately, this case cannot be answered just by dualisation. But
then, what happens if we have both µ and ν, or maybe µ and→, or an even
more powerful grammar including “primitive” dependent constructions, and
so on? Of course, at some point, the question about isomorphism becomes
undecidable, but it seems to be totally unclear where this border is reached.

Another possible question we could ask is: In which cases is it decidable
whether there is a section (i. e. a weakened form of an isomorphism) from a
type A to a type B?

3.5 String Rewriting

Although our approach looks promising, we have not archived our goal of
answering question 95, or maybe even 21, of the RTA open problems list.
Unfortunately, I am lacking concrete ideas of how to proceed here, but I
trust that Christian can perfectly make up for that.

3.6 Searchability

As proven in section 2.3, the density of a subset of J2NKset is closely related to
its order. Here, we give an outline of how the order is related to searchability.

The intuition is: If we want to solve a problem for streams starting
with p (in section 2.3, we have called this set p), we need to solve it for p0
and p1. By definition, an ordering function f satisfies, for all finite binary
string p, that f(p) is greater than at least one of f(p0) and f(p1). Assume
f(p) = f(p0), but f(p) > f(p1). This means that solving the problem for p0
is still as hard as solving it for p, but for p1, it is indeed easier. Consequently,
the strategy should be: First solve the problem for p1, and if there is no
solution, we know at least that it is safe to “output” a 0, i. e. to assume
that the result is in p1.

Say we have a function d (direction function) of type 2∗ → 2, where, for
each p : J2∗Kset, it is true that pJdKset(p) is the “potentially difficult” case.
This means, if JdKset(p) = 0, then f(p1) < f(p), and vice versa. In fact, if f
is given as a term in system T , then this is enough to formulate the intuitive
strategy outlined above as a term in system T .
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As we cannot express an ordinal that is larger than ε0 in system T , die
order of a set cannot excess ε0 and still be searchable. On the other hand,
our conjecture is that, whenever there is a search function for a set, we
can extract the order function (and direction function) from it. Combined,
these observations would mean that we might be able to formulate a purely
topological criterion for a subset of the cantor space that is equivalent to
the existence of a search function.

3.7 Argumentation

Talking with Bas van Gijzel, I have recently noticed that the categorical
semantics of Argumentation Theory is strongly connected to the standard
categorical semantics of type theory. It would certainly be interesting to
explore their relation.
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