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Abstract

We show that neither the category of setoids nor the category of
small groupoids is locally cartesian closed.

1 Preliminaries

A category is called a groupoid if every morphism is an isomorphism. Fur-
ther, it is small if the class of all the morphisms (and hence also the class
ob objects) is a set. By Gpd, we denote the (large) category of small
groupoids. More precisely, the objects ob Gpd are the small groupoids and
the morphisms are the functors between them. Note that the equality on
the hom-sets is strict functor equality, while it would also be possible to
identify functors if they are naturally isomorphic (and, of course, the small
groupoids with functors and natural transformations can also be used to
define a 2-category). Gpd has a full subcategory that we call Std, the cat-
egory of setoids; a small groupoid is an object in this subcategory iff none
of its hom-sets contains more than one morphism.

Both Gpd and Std can be used to define a CwF, a category with families
[2] and therefore defines a model of intensional type theory. Concretely,
Std has been used by Altenkirch to define an extensional model of type
theory [1], while Gpd has served Hofmann & Streicher to show that the
principle uniqueness of identity proofs is not derivable from the equality
type eliminator J [3].

Recall that both Gpd and Std are cartesian closed and complete. In
these notes, we show that none of them is locally cartesian closed by giving
a simple counterexample of a morphism the corresponding pullback functor
of which does not have a right adjoint. This is well-known in the case of
Gpd and should also be well-known in the case of Std, however, in the
latter case, there seems to be some general confusion.



2 The Counterexample

Define I to be the “interval” setoid/groupoid, i.e. the groupoid with two
objects a, b and one non-identity isomorphism m : a — b (as well as its

inverse):
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We choose to keep the inverse and the identities implicitly to increase the
readability, so we just picture I as
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By 1 = {x}, we denote the trivial setoid/groupoid with exactly on object.
Define A : 1 — I to be the functor that maps the single object to a, as
pictured in:
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For simplicity, we will now work in Gpd, but it will always be clear that
the argumentation works for Std in exactly the same way.

3 Examining the Pullback Functor

A induces a functor ¥4 : Gpd — Gpd/I by post-composition, ¥4(F) =
AoF, where we use that the slice of Gpd over 1 is Gpd again. This functor
>4 does have a right adjoint, the pullback functor, denoted by A*. In fact,
Gpd and Std are complete. This is easy to see, but we do not need it and
we do not even need that A* exists, as we are already done if it does not.
But actually, it does exist and for any F' : Gpd and G : Gpd/I, we have
the hom-set isomorphism

Ya(F) =gpas G
F =gpa A*(G)

(1)

Clearly, [the domain of the functor]| ¥ 4(F) = Ao F is just F itself, and the
functor maps it completely on the “left part” of I, i.e. on a. So, any functor



h: ¥ A(F) =gpas1 G can just be described by explaining how it maps F' on
the part of GG that is in the fibre over a. But now, by the Yoneda lemma,
the fibre of G over a is isomorphic to A*(G).

4 The non-Existence of II4

To show that Gpd is not locally cartesian closed, we explain why there

cannot be a functor 114 : Gpd — Gpd/I that is right adjoint to A*. So,

assume that IT4 exists. Then, we have (for G as above and a fixed H : Gpd)
the hom-set isomorphism

A*(G) =gpa H

G =gpdy1 1a(H)

(2)

Consider the subcategory of all objects G : Gpd/I such that the fibre over
b is empty, i.e. “everything” is mapped to a. Clearly, this subcategory of
Gpd/I is just [isomorphic to] Gpd. In this sense, G is just the same as
A*(G), as we have seen in the previous section. We can compare the fibre
of IT4(H) over a and H as objects in Gpd. By the Yoneda lemma, they are
isomorphic.

Let us now analyse the fibre of I1 4 (H) over b. Consider those G : Gpd/I
that have nothing in the fibre over a. Then, A*(G) is the empty groupoid,
so there is exactly one morphism in the upper hom-set of the hom-set iso-
morphism and hence exactly one in the lower hom-set. This proves that
the fibre of II4(H) over b is just the terminal object 1.

So far, we know how the two fibres of I14(H) look like:
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What is still left to do is examining the “fibre” over the isomorphism m and
here, we get the required contradiction.

For H, choose the discrete groupoid 2 which has two objects and no
non-identity morphism. We call the two objects ¢t and f (as in true and
false, justified by 2 = Bool). For G, chose the identity functor Idy, which
clearly is an object in Gpd/I. To make it clear, we write Idf : I’ — I and
call the parts of I’ just o/, ¥ and m/.
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We have A*(Idy) =1 = {d'}, so the hom-set isomorphism ([2) becomes
1= 2
Gpd (3)
Idy = Gpay1 1a(2)

Clearly, there are exactly 2 morphisms in the upper hom-set of , which
shows that there have to be two morphisms in the lower hom-set. This
situation is pictured in the figure above. But then, as those two morphisms
are functors, the only possibility is one functor 7' with T'(a’) = ¢ and one
functor F' with F'(a’) = f. In both cases, b’ has to be mapped on the single
element in the fibre over b, so we have T'(b') = F('). But now, T shows that
there is some morphism between ¢ = T'(a’) and T'(V'), namely T'(m’), while
F shows that there is some morphism between f = F(a’) and F(V'), namely
T(m’). Composing these yields a morphism between ¢ and f, living in the
fibre over a, which is a contradiction since we know that the fibre over a is
the discrete groupoid 2 = {t, f}.
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