
Shallow embedding of type theory is morally correct ∗

Ambrus Kaposi1, András Kovács1, and Nicolai Kraus2

1 Eötvös Loránd University, Budapest, Hungary
akaposi|kovacsandras@inf.elte.hu

2 University of Birmingham, United Kingdom
n.kraus@bham.ac.uk

Deep and shallow embeddings of monoids. In intensional type theory, when proving
theorems that hold for every monoid, the usual method is assuming that there exists a pointed
type with a binary operation and witnesses of some equalities (following Agda, we write ≡ for
the equality type and = for definitional equality). We call this deep embedding, following the
terminology for domain-specific languages [6].

M : Set ass : (a b c : M)→ (a⊗ b)⊗ c ≡ a⊗ (b⊗ c)
u : M idl : (a : M)→ u⊗ a ≡ a
– ⊗ – : M→ M→ M idr : (a : M)→ a⊗ u ≡ a

Combining the equalities idl, idr using congruence (ap) and transitivity, we prove the following
example theorem.

thm : (a : M)→ a⊗ (u⊗ u) ≡ a
thm := λa.trans (ap (a⊗ –) (idl u)) (idr a)

An alternative approach is shallow embedding of the monoid. Here we work with a concrete
monoid such as the following one.

M := Bool→ Bool ass a b c := reflλx.a (b (c x))

u := λx.x idl a := refla

a⊗ b := λx.a (b x) idr a := refla

The advantage of using this monoid compared to a deeply embedded one is that the laws hold
definitionally. For example, the proof of the above theorem now becomes trivial:

thm : (a : M)→ a⊗ (u⊗ u) ≡ a
thm := λa.refla

This monoid does not have more definitional equalities than a general monoid, e.g. we don’t
have the property that any two elements are equal (as would be the case if we used > → > as
carrier). However, it has the property that there is an element propositionally unequal to u,
e.g. (λa.true). Also, assuming function extensionality, we have a ⊗ a ⊗ a ≡ a propositionally.
These do not hold for every monoid, hence we can prove too many theorems.

∗The first author was supported by by the National Research, Development and Innovation Fund of Hun-
gary, financed under the Thematic Excellence Programme funding scheme, Project no. ED 18-1-2019-0030
(Application-specific highly reliable IT solutions), by the ÚNKP-19-4 New National Excellence Program of
the Ministry for Innovation and Technology and by the Bolyai Fellowship of the Hungarian Academy of Sci-
ences. The second author was supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002). The first and third authors were supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013 and EFOP-3.6.3-VEKOP-16-2017-00002).
Finally, the third author acknowledges support by The Royal Society (URF\R1\191055).



Shallow embedding of type theory is morally correct Kaposi, Kovács, Kraus

We disallow such illegal constructions with an implementation hiding trick, using the record
types of Agda with definitional η laws. The monoid is defined in the module Secret as a record
M wrapping the function type Bool → Bool with constructor mkM and destructor unM. We
only import Secret in the module Monoid and other modules are only allowed to import Monoid,
but not Secret.

module Secret where module Monoid where

record M := mkM {unM : Bool→ Bool} import Secret privately

u := mkM (λx.x) M := Secret.M

a⊗ b := mkM (λx.unM a (unM b x)) u := Secret.u

– ⊗ – := Secret.– ⊗ –

A module importing Monoid only has access to M, u and –⊗–, but not mkM and unM. However,
the definitional behaviour of the operations is exported, so proofs are still as easy as for the
naive shallow embedding.

In principle, we should be able to transfer any proof about the shallowly embedded monoid
to a deeply embedded one.

Deep and shallow embeddings of type theory. Type theory can also be seen as an
algebraic structure [5]. Compared to monoids, there are more sorts and many more operations
and equations. Metatheoretic proofs about type theory can be seen as constructions on models
of type theory. This is the case e.g. for normalisation [1], parametricity [2], or canonicity [4],
the latter two being special cases of gluing [7], a construction on a weak homomorphism of
models. When formalising such arguments for deeply embedded models, combining equalities
and transporting over them becomes a huge bureaucratic burden, sometimes called “transport
hell”. However, as in the case of monoids, we are able to reuse properties of our metatheory (e.g.
strict associativity of function composition) to define a shallow embedding of type theory, where
(most) equalities are definitional. The shallow embedding is a concrete model (the standard
model [2] – sometimes called set model or metacircular interpretation) in which all equations
hold definitionally, and as before, we only export the interface. In this model, contexts are
defined as Set, a type over Γ is a Γ → Set function, terms have dependent function type
(γ : Γ)→ Aγ.

Moral correctness. By proving all equations using refl, we can check that our shallow embed-
ding has enough equalities. The implementation hiding makes sure that we cannot construct too
many elements and proofs. However, we have to prove that we don’t have too many definitional
equalities. When showing this, we assume that Agda implements type theory correctly and we
look at the standard model from outside of Agda. Externally, contexts are given by Tm · U
(Agda-terms in the empty context of type U for the universe), types are in Tm · (El Γ ⇒ U),
terms are in Tm · (Π (El Γ) (El (A $ var 0))), and so on. We prove that for any two syntactic
terms, if their external standard interpretations are definitionally equal, then they are also def-
initionally equal. This shows that the standard model does not add more equalities than there
are in the syntax.

Applications. Using this form of shallow embedding, for a type theory with an infinite hi-
erarchy of universes, Π, Σ, Bool and Id types, we formalised [8] the syntactic logical predicate
interpretation of type theory [3], canonicity [4], and gluing [7]. The line count of the para-
metricity proof is roughly 20% of the same proof for the deeply embedded syntax [2]. More
details can be found in a paper presented at MPC 2019 [9].



Shallow embedding of type theory is morally correct Kaposi, Kovács, Kraus

References

[1] Thorsten Altenkirch and Ambrus Kaposi. Normalisation by evaluation for dependent types. In
Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 6:1–6:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[2] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive types.
In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 18–29. ACM, 2016.

[3] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free — parametricity for
dependent types. Journal of Functional Programming, 22(02):107–152, 2012.

[4] Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput. Sci.,
777:184–191, 2019.

[5] Peter Dybjer. Internal type theory. In Lecture Notes in Computer Science, pages 120–134. Springer,
1996.

[6] Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: Deep and shallow embeddings
(functional pearl). SIGPLAN Not., 49(9):339–347, August 2014.

[7] Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for type theory. In Herman Geuvers,
editor, Proceedings of the 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019), 2019.

[8] Ambrus Kaposi, András Kovács, and Nicolai Kraus. Formalisations in Agda using a morally correct
shallow embedding, May 2019.

[9] Ambrus Kaposi, András Kovács, and Nicolai Kraus. Shallow embedding of type theory is morally
correct. In Graham Hutton, editor, Mathematics of Program Construction, pages 329–365, Cham,
2019. Springer International Publishing.


