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Deep and shallow embeddings of monoids. In intensional type theory, when proving
theorems that hold for every monoid, the usual method is assuming that there exists a pointed
type with a binary operation and witnesses of some equalities (following Agda, we write ≡ for
the equality type and = for definitional equality). We call this deep embedding, following the
terminology for domain-specific languages [6].

M : Set ass : (a b c : M)→ (a⊗ b)⊗ c ≡ a⊗ (b⊗ c)
u : M idl : (a : M)→ u⊗ a ≡ a
– ⊗ – : M→ M→ M idr : (a : M)→ a⊗ u ≡ a

Combining the equalities idl, idr using congruence (ap) and transitivity, we prove the following
example theorem.

thm : (a : M)→ a⊗ (u⊗ u) ≡ a
thm := λa.trans (ap (a⊗ –) (idl u)) (idr a)

An alternative approach is shallow embedding of the monoid. Here we work with a concrete
monoid such as the following one.

M := Bool→ Bool ass a b c := reflλx.a (b (c x))

u := λx.x idl a := refla

a⊗ b := λx.a (b x) idr a := refla

The advantage of using this monoid compared to a deeply embedded one is that the laws hold
definitionally. For example, the proof of the above theorem now becomes trivial:

thm : (a : M)→ a⊗ (u⊗ u) ≡ a
thm := λa.refla

This monoid does not have more definitional equalities than a general monoid, e.g. we don’t
have the property that any two elements are equal (as would be the case if we used > → > as
carrier). However, it has the property that there is an element propositionally unequal to u,
e.g. (λa.true). Also, assuming function extensionality, we have a ⊗ a ⊗ a ≡ a propositionally.
These do not hold for every monoid, hence we can prove too many theorems.
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We disallow such illegal constructions with an implementation hiding trick, using the record
types of Agda with definitional η laws. The monoid is defined in the module Secret as a record
M wrapping the function type Bool → Bool with constructor mkM and destructor unM. We
only import Secret in the module Monoid and other modules are only allowed to import Monoid,
but not Secret.

module Secret where module Monoid where

record M := mkM {unM : Bool→ Bool} import Secret privately

u := mkM (λx.x) M := Secret.M

a⊗ b := mkM (λx.unM a (unM b x)) u := Secret.u

– ⊗ – := Secret.– ⊗ –

A module importing Monoid only has access to M, u and –⊗–, but not mkM and unM. However,
the definitional behaviour of the operations is exported, so proofs are still as easy as for the
naive shallow embedding.

In principle, we should be able to transfer any proof about the shallowly embedded monoid
to a deeply embedded one.

Deep and shallow embeddings of type theory. Type theory can also be seen as an
algebraic structure [5]. Compared to monoids, there are more sorts and many more operations
and equations. Metatheoretic proofs about type theory can be seen as constructions on models
of type theory. This is the case e.g. for normalisation [1], parametricity [2], or canonicity [4],
the latter two being special cases of gluing [7], a construction on a weak homomorphism of
models. When formalising such arguments for deeply embedded models, combining equalities
and transporting over them becomes a huge bureaucratic burden, sometimes called “transport
hell”. However, as in the case of monoids, we are able to reuse properties of our metatheory (e.g.
strict associativity of function composition) to define a shallow embedding of type theory, where
(most) equalities are definitional. The shallow embedding is a concrete model (the standard
model [2] – sometimes called set model or metacircular interpretation) in which all equations
hold definitionally, and as before, we only export the interface. In this model, contexts are
defined as Set, a type over Γ is a Γ → Set function, terms have dependent function type
(γ : Γ)→ Aγ.

Moral correctness. By proving all equations using refl, we can check that our shallow embed-
ding has enough equalities. The implementation hiding makes sure that we cannot construct too
many elements and proofs. However, we have to prove that we don’t have too many definitional
equalities. When showing this, we assume that Agda implements type theory correctly and we
look at the standard model from outside of Agda. Externally, contexts are given by Tm · U
(Agda-terms in the empty context of type U for the universe), types are in Tm · (El Γ ⇒ U),
terms are in Tm · (Π (El Γ) (El (A $ var 0))), and so on. We prove that for any two syntactic
terms, if their external standard interpretations are definitionally equal, then they are also def-
initionally equal. This shows that the standard model does not add more equalities than there
are in the syntax.

Applications. Using this form of shallow embedding, for a type theory with an infinite hi-
erarchy of universes, Π, Σ, Bool and Id types, we formalised [8] the syntactic logical predicate
interpretation of type theory [3], canonicity [4], and gluing [7]. The line count of the para-
metricity proof is roughly 20% of the same proof for the deeply embedded syntax [2]. More
details can be found in a paper presented at MPC 2019 [9].
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