
On String Rewriting Systems

— DRAFT —

Nicolai Kraus and Christian Sattler

January 13, 2012

Abstract

String rewriting systems, also known as semi-Thue systems, consist

of a set of rules l → r, specifying valid replacements of substrings of

strings over a given alphabet. In the case of one single rule, it is an open

problem whether there is a system that is neither terminating nor looping.

Another open question is the decidability of termination. Difficulties arise

especially for non-confluent systems.

In this article, we develop strategies for approaching non-confluent

string rewriting in general, not necessarily requiring only one rule. For a

given system, we define an equivalent system with confluence-like proper-

ties, enabling us to develop some normal form theorems.

Subsequently, we apply our methods to present a partial solution to

the first of the mentioned problems, going one step further than Geser’s

previous result by only requiring that there is a unique overlap in one

order, but not making any restrictions for the other order. However, one

case, where the right side is mainly periodic with a very special period,

remains open. We further discuss implications for the latter question.

We believe that our approach can be used to attack other questions in

the subject of string rewriting.

1 Introduction and Related Work

General stuff: finite is enough; 01 is enough; number or ratio of 0,1 occurrences
is difficult to use.

Approaches (for the single rule case) so far: Geser, Kurth, Zantema, Kobayashi
et al, McNaughton, ...

Also mention Open. Closed. Open. and the RTA information. Links: De-
cidability of Termination, Termination and Looping problem.

Cite the following: [1], [2], [3], [4], [5], [6], [7], to be extended.

2 Preliminaries

In our notations, we follow [2] and others. As usual, an alphabet Σ is a set (we
do not make restrictions on the size) the elements of which we call letters. We
also have Σ∗, the set of words or strings over Σ. In this paper, we prefer the
latter term. For strings s, t we write st for the obvious composition and |s| resp.
|t| for the length. A string s is called a prefix of t if there exists some u with
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t = su, or, analogously, a suffix if t = us. We want to explicitly exclude the
possibility that u is the empty word �. Furthermore, s is a factor ot t if there
are nonempty words u, v with the property t = usv. Note that s can be a prefix,
suffix and factor at the same time. We define the set of overlaps of a string u
with a string v by

OVL(u, v) := {w ∈ Σ+|u = u�w, v = wv�,where u�, v� ∈ Σ∗, u�v� �= �}.

A subset of Σ∗ × Σ∗ is (together with Σ) called a string rewriting system,
a single element a string rewriting rule. Such a system R induces a relation
→R⊆ Σ∗ × Σ∗, where u →R v if and only if there is a rule (l, r) ∈ R and
p, q ∈ Σ∗ satisfying u = plq and v = prq.

The System (Σ,R) terminates if there is no infinite sequence s1 →R s2 →R . . ..
Further, it is said to loop if there are strings s, u, v ∈ Σ∗ satisfying s →+

R usv.
We denote the set of all possible sequences by SeqR. The set of all sequences,
together with precise information which rule has been used at which position
for every step, is called SeqR0 . There is an obvious surjection SeqR0 � SeqR.
Further, we can view SeqR and SeqR0 as categories, where objects are strings

over Σ and a morphism w
f−→ w� is a finite sequence starting with w and ending

in w�, which, in the case of SeqR0 , carries information on the steps and applied
rules. The mentioned surjection becomes a surjective functor.

A sequence has the rightmost rewriting property if, at each step, the right-
most substring (the substring defined by positions i < j with the least possible
i) that matches a left side of a rule is rewritten.

For sets, we always use capital identifiers, while words are denoted using
lowercase. For a word w, the notation w∗ and w+ are used in the obvious sense,
namely {w}∗ and {w}+. Note that, consequently, they are sets, not single
words; on the other hand, for a natural number k, wk is a single word, namely
the word ww . . . w.

As a letter is just an element of an alphabet, we speak of symbols whenever
me mean a very concrete letter at a concrete position in a string.

As usual, we use π1 : A×B× . . . → A, π2, π3 and so on for the first, second
and third projection.

Assume A is a set and ⊥ is a distinguished character TODO, not contained
in A. By A⊥, we simply denote the set A ∪ {⊥}. Further, if B is also a set,

given a function f : A → B, we write
⊥
f : A⊥ → B g for the function that is

defined by simple extending the domain of f by setting
⊥
f (⊥) = ⊥.

We use the function map : (A → B) → A∗ → B∗ in the obvious meaning,
map f(a1a2 . . . ak) = f(a1)f(a2) . . . f(ak). In the same way, we define the func-
tion maps : (A → B∗) → A∗ → B∗, composing strings instead of single letters
on the right hand side of the definition.

For the next sections, we assume that Σ is an alphabet and R a string rewrit-
ing system overΣ. We only consider finite set of rules, so we setR = {(li, ri)|1 ≤ i ≤ n}
for some n > 0.

3 The Oracle Translation

In this section, we describe a transformation, yielding a new rewriting system
over another alphabet which is (in a very strong sense) equivalent toR. A similar
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approach was done in [6]. However, their idea crucially depends on the confluence
of the original one-rule rewriting system, while our algorithm transforms any
string rewriting system into one without any non-complete overlapping of left
sides. We want to admit, though, that our approach is straightforward and we
would not be surprised if it had already been used before, but we are not aware
of anyone who has done it.

We first give the definition and try to provide an intuitive explanation af-
terwards.

Definition 1 (cool sounding name translation, e.g. Oracle Translation, or
just canonical translation / annotation). Given a finite alphabet Σ and a finite
number of rules R = {(l1, r1), . . . , (ln, rn)}, we define a new (finite) alphabet Σ�
by

Σ� := (Σ × {s,m, e} × {1, 2, . . . , n})⊥
together with a new finite set of rules

R� := {(l, r) ∈ Σ� ×Σ�

such that there is a k ∈ {1, 2, . . . , n} where:

• map
⊥
π1 (l) = lk

• map
⊥
π2 (l) = smm . . .m� �� �

|lk|−2

e

• map
⊥
π3 (l) = kk . . . k� �� �

|lk|

• regarding map
⊥
π1 r, if we replace the first occurrence of ⊥ by z1, the

second by z2 and so on, all zi �∈ Σ, we get a word w ∈ (Σ ∪{z1, . . . , zm})∗
which satisfies ∃z1, . . . , zm ∈ Σ.w = rk}

While this definition might be irritating at first sight, all we do is adding
some additional information to the symbols, restricting the way in which they
can be used later. s,m, e stand for start, mid, end. We think of an element of
Σ × {s,m, e} × {1, 2, . . . , n} as a letter from the original alphabet, annotated
with k if this symbol will be used using the kth rewriting rule, and, moreover, s,
e or m, meaning that the symbol will be the first resp. the last resp. one of the
symbols in the middle of lk. Finally, ⊥ is garbage in the sense that this symbol
can never be used again. Note that the definition makes it impossible for ⊥ do
occur on the left side of a rule.

We define a sequence over (Σ�, R� to be valid if everything that is not used
is declared as garbage:

Definition 2 (Validity of sequences). A sequence s0 →R� s1 →R� . . . ∈ SeqR
�

0 ,
finite or not, is called valid if, for every p and every symbol α of sp which is not
equal to ⊥, there is a step p� such that α does not appear in the string sp� (note
that another symbol, equal to α, may very well appear). More precisely, only
symbols that equal ⊥ do exist infinitely long, and, if the sequence is finite, it ends
with ⊥⊥ . . .⊥. We use the notation ValSeqR0 for the set of all valid sequences.
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Remark 3. While this definition makes sense insofar as that it provides canoni-
cal forms for sequences. However, at the same time, it makes the categorical view
difficult as composition of sequences will not be possible in the way it should...
the author is therefore not sure about these issues.

There is a simple, however crucial, fact to mention about this:

Theorem 4. There is a bijection φ : SeqR0 → ValSeqR0 which is natural in the
sense that, if s = s0 → s1 → . . . and φ(s) = s�0 → s�1 → . . ., then map π1(s�i)
has, on every position, either ⊥ or the same letter as si.

Proof. This is obvious from the definition.

Remark 5. Our translation � can be seen as the cool sounding name of level
1, as we include, for every symbol, information on how it will be used in its
next step. However, we could also include information on what happens to the
word it is rewritten to in that step. As this word consists of (usually) multiple
symbols, we would have to state the future for each of these symbols. In general,
in the translation of level k, each symbol would be annotated with a tree of height
k, where the root (which, in our understanding, has height 1) determines the
way that the symbol is rewritten, the children of the root determine the way that
the children of the symbol are rewritten, and so on. While this construction has
lots of nice and interesting properties, we do not see how it could be used, so we
restrict ourselves to level 1. It is worth mentioning that, at level ∞, everything
is predetermined and all questions regarding looping, termination and so on have
equivalent formulations talking about trees.

Our freshly constructed rewriting system has the following property:

Proposition 6. If (l1, r1) and (l2, r2) are two (not necessarily different) rules in
R�, l1 and l2 are completely overlapping free, i.e. OVL(l1, l2) = OVL(l2, l1) = ∅.
Moreover, none is a factor of the other.

Proof. This is an immediate consequence of the fact that the second projection
of every left side is smm . . .me.

TODO define ancestor, child...
Unfortunately, the above property does not imply confluence. This would

only be the case if not two left sides were equal, but in all interesting cases, they
are not. However, a weak from of confluence or reordering [TODO figure out
how this is called!] holds:

Proposition 7. Given two sequences s0 → s1 → s2 → . . . and s0 → s�1 →
s�2 → . . ., both in ValSeqR0 , finite or not, with the same starting string. Let k, k�

be two natural numbers, not larger then the length of the first resp. the second
sequence. For every symbol x of s0, let Fx resp. F �

x be the future of x until step
k resp. k�. If, for all symbols x, it is the case that Fx is a of F �

x or F �
x is a

prefix of Fx or they are equal, then it is possible to find a t such that sk →∗ t
and s�k →∗ t.

Proof. Clear.
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4 Normal Forms

At this point, we want to push the level of abstraction one level higher. While
ValSeqR0 has very nice properties, our translation can still be improved. As
a motivation for our next step, assume t is a string occurring in a valid se-

quence. Then, map
⊥
π2 (si) is any string over {s,m, e,⊥}m, for example,

⊥⊥⊥smmmsse⊥⊥smmese⊥⊥⊥. We know that the sequence is valid, so every
symbol except ⊥ will, at some point, be rewritten. At the same time, we know
that only sm . . .me can be rewritten. This has some immediate consequences,
for example, there can never be an e after a ⊥ as there will be no way to insert
the necessary s between them. But, more important at the moment, we note
that some symbols will, not matter what we do, be rewritten together. If we
have two symbols mm, we know that those will be rewritten together, as there
is no rule allowing us to insert an s in between. This observation allows us to
group symbols and build blocks.

Definition 8. Let Σ,R be a string rewriting system with n rules as above. We
define a new alphabet Σ� by

Σ� := {(w, f, k) where f ∈ {S,M,E}, 1 ≤ k ≤ n,w ∈ Σ∗ such that,

if f = S, then w is a prefix, if f = E, a suffix, and if f = M , a factor of lk}⊥
with corresponding rules

R� := {(l, r)} ⊆ Σ�∗ ×Σ�∗

such that there is a k ∈ {1, 2, . . . , n} where:

• maps
⊥
π1 (l) = lk

• maps
⊥
π2 (l) = SMM . . .ME

• maps
⊥
π3 (l) = kk . . . k

• regarding maps
⊥
π1 r, if we replace the first occurrence of ⊥ by z1, the

second by z2 and so on, all zi �∈ Σ, we get a word w ∈ (Σ ∪{z1, . . . , zm})∗
which satisfies ∃z1, . . . , zm ∈ Σ∗.w = rk}

Remark 9. Of course, there is an obvious inclusion R� �→ R� and a surjection
R� � R�, the first being a section of the latter. Note that there is also another
canonical map φ : R� → R�, the ”greedy” one, which always tries to build blocks
as large as possible. This is the function we are actually interested in:

Definition 10 (”Greedy block building function”, find better name). φ : Σ�∗ →
Σ�∗ is the function defined by:

φ(w, f, k) = (w, f, k)

φ((w, s, k1)(v,m, k1)a3 . . . ax) = φ((wv, s, k1)a3 . . . ax)

φ((w,m, k1)(v,m, k1)a3 . . . ax) = φ((wv,m, k1)a3 . . . ax)

φ((w,m, k1)(v, e, k1)a3 . . . ax) = φ((wv, e, k1)a3 . . . ax)

φ(a0a1 . . . ax) = a0φ(a1 . . . ax)
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Further, define a minimal set of rules (which make still every sequence possible
that is possible with R�) by R�

min. We further require that φ is, on all right
sides of R�

min, the identity. Note that this is possible. Also note that such only
the rules that ”make sense” in the sense of ”producing valid sequences”. TODO

A key key property is the following:

Theorem 11. If r is a right side of a rule in R�
min, then we have

map
⊥
π2 (r) ∈ e∗m?s∗.

Proof. Straightforward.

We define the set S(R) to be the set of valid infinite rightmost sequences
were every (produced) non-⊥ symbol has an infinite trace. It is easy to show
that there is only one ”block” of non-⊥-symbols.

Lemma 12. If R allows the existence of infinite sequences, then S(R) is
nonempty.

Proof. Needs lemma: finite and infinte trees do not interact. Clear.

Remark 13. Our original proofs included switching between left- and rightmost
rewriting regularly, forcing symbols to become ⊥ at every switch if they would
be delayed infinitely long. This approach should be examined further.

Lemma 14. For every string occurring in a sequence in S(R), there is only
one ”connected” block of non-⊥ symbols.

Proof. Guaranteed by the rightmost rewriting property.

Definition 15. Take S(R), apply φ, for every sequence, on every word. The
result is the set I(R) of ”everywhere maximal blocked, rightmost, valid, infinite”
sequences. These are not ”real” sequences though. TODO!

Corollary 16. If R does not terminate, this set is nonempty.

Theorem 17. In every sequence of this set, there are , for some k, infinitely
many occurrences which are also in ⊥?lke∗⊥?.

This is our left normal form. The right normal form is the corresponding
”dual”.

Proof. For every si, there is a rightmost symbol that is not ⊥. Because of our
definitions, this symbol will be rewritten at some point. Precisely before this
point, we obviously have the required form

Remark 18. Because of compactness, we may assume that a subsequence of
these normal forms converges (with respect to the canonical metric), the limit
being something in ⊥?lke∞. We are not sure whether this is of any use.

Remark 19. Applying the argument that we can, after reaching a normal form,
change from rightmost to leftmost rewriting, it is easy to see that we can get a
subsequent where every odd entry is a left normal form, every even is a right
one.
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5 One-Rule System with only one overlap

In this section, we want to have a closer look at string rewriting systems with
only one rule. This case is particularly interesting as it is a long standing open
problem whether, given a single rule, uniform termination is decidable. ET
CETERA. For more background, see our references. ET CETERA.

Question 20 (Decidability of termination). Given a single rule (l, r), is it
decidable whether there is an infinite sequence s0 → s1 → . . .?

Let us have a look on what can happen. For example, given the rule
(ab, bbb), we have the sequence abbaba → bbbbaba → bbbbbbbba, which obvi-
ously cannot be continued. It is easy to see that an infinite sequence cannot
exist, as in every step, we reduce the number of a’s by one. For a different
example, look at the rule (aab, bbaaaa), which enables us to build the sequence
aabb → bbaaaab → bbaabbaaaa. Noting that the last word contains the start-
ing string of the sequence, it is clear that we can use this loop to construct an
infinite sequence. It is, however, not clear whether there is a third possibility.

Question 21. Is every single rule string rewriting system either terminating or
looping?

Both of these questions are open and have attracted quite a bit of interest.
The first was originally formulated in 1991? by Max Dauchet?, and, 2? years
later, added to the open problems list of Rewriting Techniques and Applications
(RTA). The second, posed by Hans Zantema? in 1999?, is also contained in the
RTA list.

Many attempts have been made and a lot of partial solutions have been pub-
lished. Notable is, for example, the result that both questions can be answered
positively if the left side of the rule is of the form l = apbq, though this case has
the advantage of inducing a confluent system as OVL(l, l) = ∅. Other people
(TODO add names and precise results) have looked at the sets OVL(l, r) and
OVL(r, l) instead. It is quite easy to see that the system will always terminate,
provided that one of those is empty. Alfons Geser has solved the case that both
sets have exactly one inhabitant completely, also answering both questions pos-
itively. In this section, we want to go one step further, only assuming that one
of the two sets is a singleton, but not making any restrictions for the other.

Theorem 22. Given a rule (l, r), suppose we have OVL(r, l) = {u}. By v,
denote the word that satisfies r = uv. Then, if r is not of the form xvky, where
k is any natural number (possibly 0), x is a suffix of r, and y is a prefix of v,
the system is either termination or looping.

Remark 23. The conditions seem to be quite weird, but we basically just as-
sume that the right hand side is not mainly periodic with the period being the
complement of the single overlapping. We hope that we can weaken these as-
sumption.

Proof. By ψ : Σ�∗ → N, denote the number of end-blocks that are not equal to
v (not counting those occurring in redexes). Whenever we have a left normal
form, we apply leftmost rewriting until we reach a right normal form, where we
switch back to rightmost rewriting again. Obviously, ψ is 0 for right normal
forms. Note that, provided that r is not of the special form stated in the
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theorem, there is no step that reduces ψ, thereby forcing ψ to be zero for every
left normal form, which leads to an obvious loop (or termination, if only finitely
many times a normal form is reached).

Remark 24. Of course, we should also discuss decidability of termination (we
can get a result that is even weaker than the above easily). It should be possible
to get Geser’s [2] result using this strategy (but the author is not sure).

6 Conclusions and Future Work

More ideas:
christian’s strategy: use new redices and build a system without special

pairs. higher order redices.
there is also the special-pair-criterion. no special pair: trivial, ie BmB never

has an A: trivial.
higher order redex: AmAmAmAmA
only finitely many of these redexes: solvable! (I think)
etc.
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