
Homotopy Type Theory

Nicolai Kraus

Functional Programming Laboratory Away Day

8th July 2011

What is it all about?

A connection...

Type Theory Topology

What is it all about?

A connection...

Type Theory

related to logic

Topology

What is it all about?

A connection...

Type Theory

related to logic

Topology

related to

Algebra

Analysis

Geometry

. . .

So, what is Topology actually?

So, what is Topology actually?

A major area of mathematics that examines continuity!

So, what is Topology actually?

A major area of mathematics that examines continuity!

Sets often have a natural notion of open subsets, e.g. in R:

(1, 2) := {x | 1 < x < 2} is open, but [1, 2] := {x | 1 ≤ x ≤ 2} is
not.

So, what is Topology actually?

A major area of mathematics that examines continuity!

Sets often have a natural notion of open subsets, e.g. in R:

(1, 2) := {x | 1 < x < 2} is open, but [1, 2] := {x | 1 ≤ x ≤ 2} is
not.

Definition (Continuity of f : X → Y):

f is continuous iff inverse images of open sets are open, i.e. if V ⊂ Y
is open, so is f −1(V).

Remark

The word ”Continuity” is used a lot:

Remark

The word ”Continuity” is used a lot:

functions R→ R. ”Definition”:
∀x , ε > 0.∃δ > 0.|x − x0| < δ ⇒ |f (x)− f (x0)| < ε

Remark

The word ”Continuity” is used a lot:

functions R→ R. ”Definition”:
∀x , ε > 0.∃δ > 0.|x − x0| < δ ⇒ |f (x)− f (x0)| < ε

complete partial orders: f (sup D) = sup f (D) for every directed
D

Remark

The word ”Continuity” is used a lot:

functions R→ R. ”Definition”:
∀x , ε > 0.∃δ > 0.|x − x0| < δ ⇒ |f (x)− f (x0)| < ε

complete partial orders: f (sup D) = sup f (D) for every directed
D

”Computable functions are continuous.”

. . .

Remark

The word ”Continuity” is used a lot:

functions R→ R. ”Definition”:
∀x , ε > 0.∃δ > 0.|x − x0| < δ ⇒ |f (x)− f (x0)| < ε

complete partial orders: f (sup D) = sup f (D) for every directed
D

”Computable functions are continuous.”

. . .

all notions can be broken down to:

Inverse images of open sets are open.

Identity Types without UIP - a Reminder

a, b : A
a ≡ b Type

refla : a ≡ a

p : a ≡ b

p−1 : b ≡ a

q : b ≡ c

q ◦ p : a ≡ c

Identity Types without UIP - a Reminder

a

p

&&

p′

xx
b

for example:
a := b := x

p := p′ := reflx

Identity Types without UIP - a Reminder

a

p

&&

p′

xx
b

H
�$

for example:
a := b := x

p := p′ := reflx

Identity Types without UIP - a Reminder

a

p

&&

p′

xx
b

H
�$

H′

:B

for example:
a := b := x

p := p′ := reflx

H := H ′ := reflreflx

Identity Types without UIP - a Reminder

a

p

&&

p′

xx
b

H
�$

H′

:B

JT

for example:
a := b := x

p := p′ := reflx

H := H ′ := reflreflx

reflreflreflx

. . .

Back to Topology

Structures:

Topological spaces

Back to Topology

Structures:

Topological spaces

→ Special case: Hausdorff spaces (or T2)

Back to Topology

Structures:

Topological spaces

→ Special case: Hausdorff spaces (or T2)

→→ Special case of this special case: Metric spaces

Back to Topology

Structures:

Topological spaces

→ Special case: Hausdorff spaces (or T2)

→→ Special case of this special case: Metric spaces

→→→ Even much more special: Normed vector spaces

Back to Topology

Structures:

Topological spaces

→ Special case: Hausdorff spaces (or T2)

→→ Special case of this special case: Metric spaces

→→→ Even much more special: Normed vector spaces

→→→→ ...and finally: Rn, or just subsets of it!

A disc

a type - we call
it X

a topological space
- we call it X

A disc

two terms two points

A disc

? a path

A disc

a, b : X

p : a ≡ b

a, b ∈ X

p : [0, 1]→ X

p(0) = a

p(1) = b

A disc

p−1 : b ≡ a p−1 : [0, 1]→ X

p−1(t) = p(1− t)

A disc

p : a ≡ b

q : b ≡ c

a, b ∈ X

p : [0, 1]→ X

p(0) = a

p(1) = b

q : [0, 1]→ X

q(0) = b

q(1) = c

A disc

q ◦ p : a ≡ c

q ◦ p :

[0, 1]→ X

x 7→{
p(2x), x < 0.5

q(2x − 1), else

Another set

a ≡ c not
inhabited

not path-connected

A disc

p, p′ : a ≡ b p, p′ : [0, 1]→ X

A disc

H : p ≡ p′

H : [0, 1]2 → X

H(0, ·) = p

H(1, ·) = p′

H(t, 0) = a

H(t, 1) = b

A disc

H : p ≡ p′

H : [0, 1]2 → X

H(0, ·) = p

H(1, ·) = p′

H(t, 0) = a

H(t, 1) = b

p : [0, 1]1 → X

a : [0, 1]0 → X

A ring

A disc

H : p ≡ p′

H : [0, 1]2 → X

H(0, ·) = p

H(1, ·) = p′

H(t, 0) = a

H(t, 1) = b

A disc

H ′ : p ≡ p′

H ′ : [0, 1]2 → X

H ′(0, ·) = p

H ′(1, ·) = p′

H ′(t, 0) = a

H ′(t, 1) = b

A disc

K : H ′ ≡ H

K : [0, 1]3 → X

K (0, ·, ·) = H ′

. . .

A disc

H : p ≡ p′

H : [0, 1]2 → X

H(0, ·) = p

H(1, ·) = p′

H(t, 0) = a

H(t, 1) = b

Putting it together

a

p

&&

p′

xx
b

H
�$

H′

:B

JT

K

So, which types can we get?

any CW complex?

Where is it going?

All has been done in abstract homotopy theory.

Where is it going?

All has been done in abstract homotopy theory.

What I (at the moment) hope:

Creating a simple model

that is complete

and easy to understand and to use

Where is it going?

e.g. for this problem (Thorsten):

subst-refl P (subst P (refl x) p)

and

cong (subst P (refl x)) (subst-refl P p)

both prove

subst P (refl x) (subst P (refl x) p) ≡ subst P (refl x) p

But are they equal?

	Introduction
	Identity Types

