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So, what is Topology actually?
A major area of mathematics that examines continuity!
Sets often have a natural notion of open subsets, e.g. in R:

(1,2) :={x | 1 <x <2} isopen, but [1,2] :={x | 1 <x <2} is
not.

Definition (Continuity of f : X — Y):

f is continuous iff inverse images of open sets are open, i.e. if VC Y
is open, so is f (V).
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Remark

The word " Continuity” is used a lot:
e functions R — R. " Definition”:
Vx,e>0.30 > 0.]x — xo| < = |f(x) — f(x0)| <€
e complete partial orders: f(sup D) = sup f(D) for every directed
D

@ "Computable functions are continuous.”
° ...

all notions can be broken down to:

Inverse images of open sets are open.




|dentity Types without UIP - a Reminder

a,b:A
a=b Type p a=b
pl:b=a
g :b=c
gop:a=c

refl,:a=a
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|dentity Types without UIP - a Reminder

for example:
a @ a=b:=x
e oy
m o p:=p =refl,
P m P’ o H=H = reflefl.

w o refl

b ° ...

reﬂreflx
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Back to Topology

Structures:

Topological spaces

— Special case: Hausdorff spaces (or T>)

—— Special case of this special case: Metric spaces
——— Even much more special: Normed vector spaces

———— ...and finally: R", or just subsets of it!



A disc

a topological space

a type - we call
yp - we call it X

it X




A disc

two terms two points
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a path




A disc

a,be X
a,b: X p:[0,1] = X
p:a=b p(0) = a

p(1)=b




A disc

pt:[0,1] — X
pi(t) =p(l —t)




A disc




A disc

gop:a=c

gop:

0,1] — X

X =
p(2x),x < 0.5

q(2x — 1), else



Another set

. not path-connected

a = c not
inhabited




A disc

p,p :[0,1] = X




A disc

Oa'):P
1L)=p
t,0) =a
t,1)=0b



A disc

H: 0,1 — X
H(0,") =p
H(1, ) =p
H(t,0) = a
H(t,1)=b
p: 0,1 = X



A ring




A disc

Oa'):P
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A disc

H :[0,1]* — X
H'(0,-)=p

H :p=p H(1,-)=p
H'(t,0) =a
H'(t,1)=b




A disc

K :[0,1] = X
K(O,--) = H




A disc

Oa'):P
1L)=p
t,0) =a
t,1)=0b



Putting it together

©
X

o <> [\
b\




So, which types can we get?

S

any CW complex?
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What | (at the moment) hope:
@ Creating a simple model

@ that is complete

@ and easy to understand and to use



Where is it going?
e.g. for this problem (Thorsten):
@ subst-refl P (subst P (refl x) p)

and

@ cong (subst P (refl x)) (subst-refl P p)
both prove

@ subst P (refl x) (subst P (refl x) p) = subst P (refl x) p
But are they equal?
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