Homotopy Type Theory

Nicolai Kraus

Functional Programming Laboratory Away Day

8th July 2011

What is it all about?

A connection...

Type Theory) Topology

What is it all about?

A connection...

Type Theory) Topology

related to logic

What is it all about?

A connection...

Type Theory Topology
related to logic related to
o Algebra
@ Analysis
o Geometry

So, what is Topology actually?

So, what is Topology actually?

A major area of mathematics that examines continuity!

So, what is Topology actually?

A major area of mathematics that examines continuity!
Sets often have a natural notion of open subsets, e.g. in R:

(1,2) :={x | 1 <x <2} isopen, but [1,2] :={x | 1 <x <2} is
not.

So, what is Topology actually?
A major area of mathematics that examines continuity!
Sets often have a natural notion of open subsets, e.g. in R:

(1,2) :={x | 1 <x <2} isopen, but [1,2] :={x | 1 <x <2} is
not.

Definition (Continuity of f : X — Y):

f is continuous iff inverse images of open sets are open, i.e. if VC Y
is open, so is f (V).

Remark

The word " Continuity” is used a lot:

Remark

The word " Continuity” is used a lot:

@ functions R — R. " Definition":
Vx,e>0.30 > 0.]x — xo| < = |f(x) — f(x0)| <€

Remark

The word " Continuity” is used a lot:
e functions R — R. " Definition”:
Vx,e>0.30 > 0.]x — xo| < = |f(x) — f(x0)| <€
e complete partial orders: f(sup D) = sup f(D) for every directed
D

Remark

The word " Continuity” is used a lot:
e functions R — R. " Definition”:
Vx,e>0.30 > 0.]x — xo| < = |f(x) — f(x0)| <€
e complete partial orders: f(sup D) = sup f(D) for every directed
D
@ "Computable functions are continuous.”

Remark

The word " Continuity” is used a lot:
e functions R — R. " Definition”:
Vx,e>0.30 > 0.]x — xo| < = |f(x) — f(x0)| <€
e complete partial orders: f(sup D) = sup f(D) for every directed
D

@ "Computable functions are continuous.”
° ...

all notions can be broken down to:

Inverse images of open sets are open.

|dentity Types without UIP - a Reminder

a,b:A
a=b Type p a=b
pl:b=a
g :b=c
gop:a=c

refl,:a=a

|dentity Types without UIP - a Reminder

for example:
@ a=b:=x

P P e p:=p :=refl,

|dentity Types without UIP - a Reminder

a

for example:
m @ a=b:=x
P P e p:=p :=refl,

|dentity Types without UIP - a Reminder

a for example:
@ a:=b:=x

/ﬂ\
o p:=p = refl,
w o H:=H :=refl o

|dentity Types without UIP - a Reminder

for example:
a @ a=b:=x
e oy
m o p:=p =refl,
P m P’ o H=H = reflefl.

w o refl

b ° ...

reﬂreflx

Back to Topology

Structures:

Topological spaces

Back to Topology

Structures:
Topological spaces

— Special case: Hausdorff spaces (or T>)

Back to Topology

Structures:
Topological spaces
— Special case: Hausdorff spaces (or T>)

—— Special case of this special case: Metric spaces

Back to Topology

Structures:

Topological spaces

— Special case: Hausdorff spaces (or T>)

—— Special case of this special case: Metric spaces

——— Even much more special: Normed vector spaces

Back to Topology

Structures:

Topological spaces

— Special case: Hausdorff spaces (or T>)

—— Special case of this special case: Metric spaces
——— Even much more special: Normed vector spaces

———— ...and finally: R", or just subsets of it!

A disc

a topological space

a type - we call
yp - we call it X

it X

A disc

two terms two points

A disc

a path

A disc

a,be X
a,b: X p:[0,1] = X
p:a=b p(0) = a

p(1)=b

A disc

pt:[0,1] — X
pi(t) =p(l —t)

A disc

A disc

gop:a=c

gop:

0,1] — X

X =
p(2x),x < 0.5

q(2x — 1), else

Another set

. not path-connected

a = c not
inhabited

A disc

p,p :[0,1] = X

A disc

Oa'):P
1L)=p
t,0) =a
t,1)=0b

A disc

H: 0,1 — X
H(0,") =p
H(1,) =p
H(t,0) = a
H(t,1)=b
p: 0,1 = X

A ring

A disc

Oa'):P
1L)=p
t,0) =a
t,1)=0b

A disc

H :[0,1]* — X
H'(0,-)=p

H :p=p H(1,-)=p
H'(t,0) =a
H'(t,1)=b

A disc

K :[0,1] = X
K(O,--) = H

A disc

Oa'):P
1L)=p
t,0) =a
t,1)=0b

Putting it together

©
X

o <> [\
b\

So, which types can we get?

S

any CW complex?

Where is it going?

All has been done in abstract homotopy theory.

Where is it going?

All has been done in abstract homotopy theory.

What | (at the moment) hope:
@ Creating a simple model

@ that is complete

@ and easy to understand and to use

Where is it going?
e.g. for this problem (Thorsten):
@ subst-refl P (subst P (refl x) p)

and

@ cong (subst P (refl x)) (subst-refl P p)
both prove

@ subst P (refl x) (subst P (refl x) p) = subst P (refl x) p
But are they equal?

	Introduction
	Identity Types

