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Abstract

These notes are an attempt to structure the author’s thoughts and
conjectures related to higher relations and their quotients.

We define the notion of a Yoneda Groupoid in HoTT, the name of
which is inspired by the relation to the Yoneda lemma, and show how a
weak w groupotd structure can be extracted.

1 Introduction to the General Problem

Many open problems of Homotopy Type Theory are related to the question
how an (infinite) tower of coherence conditions can be stated. Assume that
~: Ax A — U is any family of types, indexed twice over A, and to be read as a
binary relation. A priori, ~ needs not to have the properties of an equivalence
relation. We would like to state that it does satisfy the usual corresponding
properties. On the other hand, we explicitly do not want ~ to be a proposi-
tional relation. We explore a special case in which we get the requires structure
basically for free.

Let us start with the following question:

Question 1 (Altenkirch and possibly others). Given the terms

o refl™ : Va.a ~ a,
e sym™ :Vab.a~b— b~ a,

e trans™ :Vabc.a~b—b~c—a~c,

how can we formalise the statement that they give A the structure of a weak w
groupoid?

A straightforward idea of approaching this question is stating all the coher-
ence conditions. For example,

A Vp. (trans™ refl™p) = p
p: Vp.p = (trans™ refl™p)



(where we hide arguments that can be inferred for readability) are necessary
coherence conditions. But now, we get a new coherence condition,

Arefl™ = prefl™,

and in general, every new condition gives rise to even more new conditions.
Nevertheless, a similar approach was taken by Altenkirch & Rypacek [1].

2 Yoneda Groupoids

Definition 2 (Yoneda Groupoid). A relation ~ is a Yoneda Groupoid if there
is a function mapping every a : A to a pair (n, X), where n : N is the “label” and
X represents the structure of the corresponding equivalence class (we discuss
the latter point later in detail).

isYonedaGrp(~) := Xp.anxu V(ab: A). (a ~b) = (Fa= Fb).

U could be any available universe or type. However, if U is just some type
Q : U, then @ would already have to be a “supertype” of the required quotiend.
Therefore, we consider this case rather uninteresting. Our focus shall lie on the
possibility that U is a universe, as univalence provides then additional equality
proofs. For our discussion, we find it convenient to choose U := U, so let us
assume that we are using the smallest universe.

If the cardinality of N is not sufficient, any other proper set could serve for
the labelling. In fact, we could even make the indexing set part of the definition
in the form of

isYonedaGrp(~) := X1y issetr X F:a—1xuV(ab : A). (a ~ b) = (Fa= Fb).

This definition is inspired by two different formalisations of equivalence re-
lations in the proof-irrelevant case and can actually be understood as a combi-
nation of those. The first is, for equivalence relations ~: A — A — Prop, the
“Yoneda’-characterisation

Vab.a ~ b« llgpa~2x < b~u

Unfortunately, it is not possible to generalise this in the straightforward way to
higher relation as there is an unwanted “shift” of the level by 1 included. If we
try to use the type

Vab. (a ~b) =g a(a~z) = (b~ ),

we quickly realise that the right-hand side goes up “one equality level too much”.
For example, if we have a type with only one term a, and a ~ a = 5, then the
left-hand side is 5, while the right-hand side is 120 (there are 5! automorphisms
on the set 5). We could try to fix this by stating

Vab.a ~ b+ Il pa ~x=b~ x,

but clearly, logical equivalence is not enough for a valid characterisation.



The second source of inspiration has been the definition of an equivalence
class by Voevodsky. For P : A — Prop, we may define the statement that P is
an equivalence class by saying that it is non-empty and, for any two elements
of A,

isCI(P: A — Prop) := ||Zg.aPal|| xgaPa— Ipal|[Pb+ a~D

Here, it is already assumed that ~ is an equivalence relation and the idea is that
the quotient is just the collection of equivalence classes. Originally, our definition
used equivalence classes, making it very similar to the one of Voevodsky. After
realising that it is not necessary to have a whole type of equivalence classes
indexed over A (which works, but it involved), we were able to simplify it by
just using a single F' : A — U which also adds indexes from a proper set (such
as the natural numbers) to distinguish classes that are isomorphic, but distinct.

We want to sketch the fairly simple proof that a Yoneda Groupoid is indeed
a weak w groupoid.

Lemma 3. Given p : isYonedaGrp(~), the higher relation ~ carries the structure
of a weak w groupoid and this structure can be extracted purely syntactically from
the proof p.

Remark 4. Of course, the structure is not unique in general, as we have no way
to distinguish between terms of a ~ b (without looking at p). But, and this
is more important, even up to isomorphism, there are fundamentally different
structures. For example, for A := 1 and ~ := 6, ~ could be either the
equivalent of the group Z/(6) or the equivalent of the permutation group Ss. It
really is the proof of isYonedaGrp that makes the choice.

Proof. The main ingredient of our construction is the groupoid property of
equality itself. In particular, equality provides the usual terms refl : Va.a = a
and sym : Vab.a = b — b= a as well as trans : Vabc.b=c—a=b—a=c.

The proof p : isYonedaGrp(~) is necessarily a pair (F,4) with

F:A—-NxU
i:VY(ab: A).(a~b)=(Fa= Fb).

We define refl™, sym™ and trans™ in terms of p. For readability, we first omit
arguments in the definitions that can easily be inferred. We also implicitly use
the usual function that transforms an equality between types into a function
between types.

refl™ := sym i refl
sym™ s :=symi (sym (i s))
trans™ t s := sym (trans (i t) (i s))

The strategy is the same in each case: We use the isomorphism (or equality) ¢
to translate the problem to the case where ~ is replaced by =. Now, in the case
of equality, we know exactly how the required operation can be done, and we
can just transport the result back using the inverse of .



Every single coherence condition just holds because it holds for equality. For
example,

sym™ osym™(s) = symi (sym (i (symi (sym (i s))))

is propositionally equal to s. For a proof, we just need to use that ¢ o (symi)
is the identity, then the same for sym o sym, and finally, that (sym<) o4 is the
identity as well. It becomes even clearer if we write -~! for sym and f o g(a)
instead of f(g(a)):

sym™ osym™(s) = it ((io it (i 5)71)71

3 Quotienting by a Yoneda Groupoid

With the above developments and propositional truncation we can form a quo-
tient (in a reasonable way). However, the quotient that we define will not live
inside the same universe. Let ~ together with (F,%) : isYonedaGrp(~) be a
Yoneda Groupoid.

Define the “carrier” of the quotient
Q = Xonxul|ZaaF(a) =z _,
and the projection into the carrier to be
q: A—Q
q(a) :== (F(a),]a, refl]).
We then trivially have

Yab. (a ~ b) = (q(a) = q(b))

which corresponds to some form of soundness and exactness property.

4 Examples

Some examples, where we omit the natural number index of the equivalence
classes (thus, we only give F': A — U instead of F': A — N x U:

e A=1, ~ = 6isa Yoneda Groupoid, proved by (A — 3, someproof).
The quotient is the symmetric group on 3, which is not inside the uni-
verse U anymore. This is exactly how it should have been expected, as
it is consistent to assume that the equality of types in the lowest univa-
lent universe is propositional. One universe above U does not allow this
assumption anymore, and indeed, we have constructed the group Ss3 : U;.
(A, ~) has another possible quotient which is the group Z/(6), but unfor-
tunately, we cannot get it with our construction.



e A =1~ = S3 (where we already need ~ to be of the type
AxA — Uy) is a Yoneda Groupoid as (A — Ss, someotherproof) : isYonedaGrp(~)
(the symmetric group over Sz is S3 again). The quotient gives us a type
of truncation level 2, let us call it 1g, : Us. Obviously, we could carry on
this example to get types with higher and higher structure, making more

and more universes necessary.

e In the same way, we can construct the quotients for A=1, ~ =nl!for
any natural number n. It is always a Yoneda Groupoid by (A — n, yetanotherproof)
and the quotient will be the symmetric group S,,. However, our construc-
tion does not provide us with any other group structure on n!. If we carry
on as in the example before, the only thing we have to care about is that
the automorphism groups of Sy and Sg is not, as in every other case, Sy
and Sg again, thereby making these two cases special.

e We can now freely combine the groups on different levels constructed
above, for example, we get S3 x 1g, + S5 + 3 : Uz, which is a groupoid
with 5 distinguishable cells on level zero, 11 on level one, and 29 on level
two. There are also 29 n-cells for every n > 2.

5 The Root of Equality

Our definitions immediately give rise to the question: when does this function
F exist? Put differently: Given a type C, in which cases is X5 C = (B = B)
inhabited?

In the example C = 6, a solution exists, namely B = 3, leading to the
symmetric group S3 as discussed before. However, we cannot construct the
group Z/(6). In the case of C' =1, we get two solutions, namely Sp and S;.

Can we find an appropriate structure if C' is not a discrete set where the
number of terms equals a factorial? First, does this structure exist in the w
groupoid model (resp. the simplicial set model)? Such a group does exist
indeed for C' = 8 which can be generalised to other non-factorial sets (Christian
Sattler). We conjecture that for any n-groupoid there always is an n+1-groupoid
with the required property.

We do not know whether there are solutions or partial solutions to the cor-
responding problem of w-groupoids (or w-categories, (w, n)-categories, ... ).
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