Artificial Intelligence Methods (G52AIM)

Dr Rong Qu

rxq@cs.nott.ac.uk

Module Introduction

Course Information

- G52AIM web pages
 - http://www.cs.nott.ac.uk/~rxq/g52aim.htm
 - http://www.cs.nott.ac.uk/~gxk/aim/2009/
 - All lecture slides and additional notes
 - Coursework (available soon)
 - Assessment
 - Textbooks
 - Course schedule
 - Other resources
 - Previous exam paper/example questions

Course Information

- Lectures
 - Handouts/notes
 - Willingness to answer questions, i.e. mailing list
 - More feedback on coursework
- Teaching method
 - Lectures: approx. 20 hours
 - Jointly taught with Professor Kendall
 - Private study: approx. 20 hours
 - Module mailing list: g52aim@cs.nott.ac.uk

Course Information

Lecture time - location

- Friday 3-5pm
- JC-BSSOUTH-A26+
- Lecture schedule might be slightly adjusted (enough notice will be given)

Assessment

- Coursework
 - Coursework I, 5%
 - 2/3 pages "report/essay" about basics of optimisation
 - Deadline: 23rd March 2010, 3pm
 - Coursework II, 20%
 - Implementation required
 - Some optimization algorithms on some domain
 - Prefer Java/C++/C#, but no GUI needed!
 - Deadline: 11th May 2010, 3pm

Assessment

- Exam
 - **75%**
 - Covering all materials in the lectures
 - 6 questions from which you can choose 4
 - Some past papers and suggested answers available at the module's web page

Schedule

- Lecture 1 : Introduction & Local search (today)
- Lecture 2 : Simulated annealing & Constructive heuristics
- Lecture 3 : Tabu search & Algorithm design
- Lecture 4 : Genetic programming (gxk)
- Lecture 5 : Variable neighborhood search & coursework

Schedule

- Lecture 6 : Genetic algorithms
- Lecture 7 : Case study (rxq)
- Coursework 1 due
- Lecture 8 : Ant algorithms
- Lecture 9 : Hyper-heuristics
- Easter holiday
- Lecture 10 : Case study
- Coursework 2 due

Course Context

- Related modules
 - G53KRR Knowledge representation and reasoning
 - G53DIA Designing Intelligent Agent
 - G53DSS Decision support methodologies
 - G51IRB Introduction to Robotics
 - G52ARB Advanced Robotics

Textbooks

 Search Methodologies – Introductory tutorials in optimization and decision support techniques*, Burke and Kendall 2005

Chap 1 : Introduction Chap 4 : Genetic Algorithms Chap 5 : Genetic Programming Chap 6 : Tabu Search Chap 7 : Simulated Annealing Chap 8 : Variable Neighborhood Search Chap 17 : Hyper-heuristics *available in the library SEARCH METHODOLOGIES

Introductory Tutorials in Optimization and Decision Support Techniques

Edited by Edmund K. Burke Graham Kendall

2 Springer