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Abstract This paper presents an iterative adaptive approach
which hybridises bin packing heuristics to assign exams
to time slots and rooms. The approach combines a graph-
colouring heuristic, to select an exam in every iteration, with
bin-packing heuristics to automate the process of time slot
and room allocation for exam timetabling problems. We start
by analysing the quality of the solutions obtained by using
one heuristic at a time. Depending on the individual perfor-
mance of each heuristic, a random iterative hyper-heuristic
is used to randomly hybridise the heuristics and produce a
collection of heuristic sequences to construct solutions with
different quality. Based on these sequences, we analyse the
way in which the bin packing heuristics are automatically
hybridised. It is observed that the performance of the heuris-
tics used varies depending on the problem. Based on these
observations, an iterative hybrid approach is developed to
adaptively choose and hybridise the heuristics during solu-
tion construction. The overall aim here is to automate the
heuristic design process, which draws upon an emerging re-
search theme which is concerned with developing methods
to design and adapt heuristics automatically. The approach
is tested on the exam timetabling track of the second Inter-
national Timetabling Competition, to evaluate its ability to
generalise on instances with different features. The hyper-
heuristic with low-level graph-colouring and bin-packing
heuristics approach was found to generalise well over all the
problem instances and performed comparably to the state of
the art approaches.
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1 Introduction

For more than 40 years exam timetabling has become one
of the most studied domains in the Al and OR communi-
ties. This is due to its importance in many academic insti-
tutions worldwide. The basic problem is to allocate a time
slot and a room for all the exams within a limited number
of permitted time slots and rooms in order to find a feasi-
ble timetable. This assignment process is subject to ‘hard’
constraints which must be satisfied in order to get a good
timetable. An example of such constraint is that no student is
required to attend two exams at the same time. On the other
hand, other constraints can be violated but must be satisfied
as much as possible to obtain a good timetable. These are
called ‘soft’ constraints.

As this task is time consuming and tedious to carry out
manually, much effort during the last few decades has been
directed to generate timetables automatically. With a large
number of events needing to be assigned to resources (time
slots and rooms) and a list of constraints (both hard and soft)
to be addressed, there are a large number of potential solu-
tions to this problem. Therefore, much of the research has
been aimed at developing methodologies that focus on pro-
ducing the best quality timetables for a specific problem or
even a specific problem instance. A more recent direction in
this field, namely, hyper-heuristics, aims to raise the level of
generality of search methodologies to create algorithms that
act well over a range of problems. A hyper-heuristic is seen
as a heuristic to choose heuristics. In this paper, we present
an adaptive approach which hybridises heuristics used in bin
packing to assign time slots and rooms to exams during the
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construction of a timetable. It is based upon the observa-
tions and statistical analysis over a large number of different
heuristic sequences obtained by a random iterative hyper-
heuristic generator. This approach was tested on the sec-
ond International Timetabling Competition (ITC2007) exam
timetabling instances. It was found to generalise well over
the instances of the data set. Furthermore, very competitive
results have been produced against other approaches in the
literature.

The following section presents a brief description of the
problem used in this investigation. Section 2.2 provides an
overview on some approaches from the literature applied to
the problem. Furthermore, Sect. 2.3 concentrates on hyper-
heuristic approaches. A random iterative hyper-heuristic to
hybridise bin packing heuristics is proposed in Sect. 4. An
adaptive methodology to select low-level heuristics and the
results obtained are presented in Sect. 5. Finally, the future
extensions of this work are summarised in Sect. 6.

2 Exam timetabling

Exam timetabling [7, 20] is the process of assigning a num-
ber of exams into a limited number of time slots while taking
into consideration a number of constraints that must be sat-
isfied. Many academic institutions face problems in schedul-
ing their exams every semester or term [2]. The greater the
number of constraints in the problem, the more difficult
the exam timetabling problem becomes. In addition, there
are a great number of different constraints that make exam
timetabling problems different from one institution to the
other. It is vital that some constraints are fully satisfied.
These are called hard constraints. For example, a student
cannot attend two exams at the same time. Therefore, any
two exams that are attended by the same student must not
be scheduled at the same time. A timetable that satisfies all
hard constraints is called a feasible timetable.

Other constraints may be violated but the higher the de-
gree of satisfying such constraints the better the solution.
These are called soft constraints. For example, providing
students with longer gaps between their exams is very de-
sirable. However, not providing the gaps will not affect
the exam being held and the timetable followed. Violations
of soft constraints are used to decide the quality of the
timetable created.

Every institution will have its own set of constraints ac-
cording to its preferences. An institution could decide that
each student should have only one exam per day, which is
therefore regarded as a hard constraint. Another institution
would accept that students can have more than one exam per
day. In this case, the constraint of having a single exam each
day is no longer a hard constraint.

In practice, the quality of a feasible timetable is evalu-
ated in a different way. In the majority of the cases, the mea-
sure of quality is calculated based upon a penalty function
which represents the degree to which the soft constraints are
violated. The following section provides a description for
the ITC2007 data set used in this investigation, followed by
the approaches obtaining the best results for the data set in
Sect. 2.2.

2.1 The International Timetabling Competition (ITC2007)
data set

The ITC2007 problem set has the following hard con-
straints:

No student attends more than one exam at the same time.

— The capacity for each individual room should not be ex-
ceeded at a given period.

— Period lengths should not be violated.

— All period related hard constraints need to be satisfied e.g.
Exam A after Exam B.

— All room related hard constraints need to be satisfied e.g.

Exam A must use Room X.

The soft constraints violations are summarised as fol-
lows:

— Two Exams in a Row The number of occurrences where a
student sits two exams in a row on the same day.

— Two Exams in a Day The number of occurrences where a
student sits two exams on the same day. If the exams are
back to back then this is considered as a Two Exams in a
Row violation to avoid duplication.

— Period Spread The exams have to be spread a certain
number of time slots apart.

— Mixed Durations The number of occurrences where ex-
ams of different durations are assigned to the same room.

— Larger Exams Constraint The number of occurrences
where the largest exams are scheduled near the end of
the examination session. The number of the largest ex-
ams and the distance from the end of the exam session are
specified in the problem description.

— Room Penalty The number of times where certain rooms,
which have an associated penalty, are used.

— Period Penalty The number of times where certain time
slots, which have an associated penalty, are used.

A complete description of the problem and the evaluation
function can be found in [10]. In addition, the characteristics
which define the instances are summarised in Table 1.

2.2 Exam timetabling approaches for the ITC2007 data set

A three phased approach was developed by Muller [12] to
solve the problems in the ITC2007 exam timetabling track.
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Table 1 Characteristics of the ITC2007 data set

Instance Conflict Exams Students Periods Rooms No. of hard

density constraints
Exam1 5.05 607 7891 54 7 12
Exam2 1.17 870 12743 40 49 14
Exam3 2.62 934 16439 36 48 185
Exam4 15.0 273 5045 21 1 40
Exam5 0.87 1018 9253 42 3 27
Exam6 6.16 242 7909 16 8 23
Exam7 193 1096 14676 80 15 28
Exam 8  4.55 598 7718 80 8 21

The first phase consists of an Iterative Forward Search al-
gorithm to find a feasible solution. Conflict based statistics
were used to avoid cycling. In the second phase, hill climb-
ing is used to further improve the solution. Finally, a Great
Deluge algorithm is applied to further explore the search
space and further improve the solution.

Gogos et al. [9] proposed a method which used a GRASP
(Greedy Randomised Adaptive Search Procedure) approach.
Solutions are constructed using five orderings of exams
based on various criteria. Tournament selection is used to
select exams until they are all scheduled. A backtracking
strategy using a tabu list is employed as required. In the im-
provement phase, Simulated Annealing is applied. Finally,
room allocations are arranged using integer programming in
the third phase.

Atsuta et al. [1] implemented a constraint satisfaction
problem solver incorporating tabu search and iterated local
search. The solver differentiates between the constraints and
their corresponding weights during computation to improve
performance. De Smet [8] also incorporated tabu search in
a solver called Drools, an Open-Source Business Rule Man-
agement System (http://www.jboss.org/drools/).

Pillay [14] introduced a developmental approach (DA)
which mimics the processes of cell behaviour. The satura-
tion degree heuristic is used to order the exams and sched-
ule them sequentially in the available “cells” i.e. time slots.
The slot which causes the least overall constraint violation
is chosen when more than one time slot is available. The
best fit heuristic is used for room allocation. If a conflict
occurs before all the exams are scheduled, the timetable is
rearranged to reduce the soft constraint violation. This is de-
scribed as cell division. If the overall soft constraint viola-
tion is not improved without breaking the hard constraints,
cell interaction occurs. The time slots are swapped in this
process to remove hard constraint violations. The process
continues until a feasible solution is achieved. Finally, the
contents of cells having equal durations are swapped to im-
prove the solution. This is called cell migration.
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McCollum et al. [11] proposed a two phased approach.
The first phase is a construction phase which uses an adap-
tive ordering heuristic to create a feasible solution. The sec-
ond phase improves the solution using an extension of the
Great Deluge Algorithm.

Finally, Pillay [14] presented an evolutionary algorithm
based hyper-heuristic using three different chromosome rep-
resentations. An initial population is created and iteratively
improved by applying the processes of evaluation, selection
and recreation.

The results obtained by these methods are presented in
Sect. 5.1.

2.3 Hyper-heuristics in exam timetabling

There are two classes of hyper-heuristics. One class aims
to generate heuristics from a set of components while the
second class aims to intelligently choose heuristics from a
set of predefined heuristics which have been previously de-
veloped. This can be seen as a framework to automate the
process of predefined heuristic choice and hybridisation. It
is this second class that is the focus of the work presented in
this paper.

A hyper-heuristic can be seen as a method to choose low-
level heuristics depending on the problems in hand. Further-
more, it could be used to adapt or tune heuristics and meta-
heuristics. Hyper-heuristics in exam timetabling can be cat-
egorised, according to the low-level heuristics they use, into
two types as follows:

1. Hyper-heuristics with constructive low-level heuristics.
2. Hyper-heuristics with improvement low-level heuristics.

Ozcan et al. [13] state that one of the hyper-heuristic
frameworks is based on a single point search in which
heuristic selection and move acceptance are performed.
They also highlight that most of the existing move accep-
tance methods compare a new solution to the current one
to decide whether to accept it or not. They use a late ac-
ceptance strategy which compares between the new candi-
date solution and a previous solution, which is generated a
number of steps earlier. A set of hyper-heuristics utilising
different heuristic selection methods combined with the late
acceptance strategy were investigated on exam timetabling
problems.

Another approach was developed in [5] where a Case-
Based Reasoning system was implemented. The system is
used as a heuristic selector for solving exam timetabling
problems. The different problem states and their correspond-
ing constructive heuristics are stored in the system. The sys-
tem then compares the problem to be solved with the cases
that are already stored. The solutions are then constructed
by repeatedly using the constructive heuristics suggested by
the system.

Pillay and Banzhaf [17] present a genetic programming
(GP) hyper-heuristic approach which acts over a search


http://www.jboss.org/drools/

Adaptive selection of heuristics for assigning time slots and rooms in exam timetables 441

Table 2 Graph colouring

heuristics used in previous Graph heuristics

Ordering strategies that order the events in the problem

research [19]
Largest Degree (LD)

Largest Weighted Degree (LWD)

Largest Enrolment (LE)
Saturation Degree (SD)

Colour Degree (CD)

Decreasingly by the number of conflicts the event has with the others
(i.e. two events have common students thus are conflicted)

The same as Largest Degree but weighted by the number of students
involved in the conflicted events

Decreasingly by the number of enrollments in the event

Increasingly by the number of valid time slots left for the event in the
partial timetable

Decreasingly by the number of conflicts the event has with those
already scheduled

Table 3 Neighbourhood

operators used in previous Neighbourhood operators

Move strategies that change the position of events in the problem

research [6]
Move Exam (ME)

Swap Exam (SE)

Kempe Chain Move (KCM)

Swap time slot (ST)

Reassigns an exam to the time slot causing the least penalty

Tries swapping an exam with another exam leading to the least penalty
timetable

Similar to the SE heuristic but is more complex as it involves
swapping a subset of conflicting exams in two distinct time slots

Swaps all the exams in a time slot with another set of exams in a
different time slot

space of functions to assess the difficulty of allocating an
exam during the timetable construction process. Each func-
tion is a heuristic combination of low-level construction
heuristics combined by logical operators. The approach was
applied to the Toronto benchmark on five instances of vary-
ing difficulty. The GP hyper-heuristic approach was found to
generalise well over the five problems and performed com-
parably to other hyper-heuristic approaches, combining low-
level construction heuristics. In addition, a study to inves-
tigate the use of genetic algorithms (GAs) as a means of
inducing solutions was conducted in [18]. They used a two-
phased approach to the problem which focuses on construct-
ing timetables during the first phase, while improvements
are made to these timetables in the second phase to reduce
the soft constraint violations. Domain specific knowledge in
the form of heuristics was used to guide the evolutionary
process.

Finally, Sabar et al. [21] implemented a graph colour-
ing constructive hyper-heuristic utilising the hierarchical hy-
bridisations of the largest degree, saturation degree, largest
coloured degree and largest enrollment graph colouring
heuristics. The heuristics are hybridised to produce four or-
dered lists. A difficulty index of the first exam in each list
is calculated by considering its order in all lists to obtain
a combined evaluation of its difficulty. The most difficult
exam to be scheduled is scheduled first. A roulette wheel
selection mechanism is included in the algorithm to prob-

abilistically select an appropriate timeslot for the chosen
exam.

3 The random iterative hyper-heuristic

In previous work on hyper-heuristics [3, 19], heuristic se-
quences consisting of graph heuristics presented in Table 2
were used to construct solutions for exam timetabling prob-
lems. In [6], neighbourhood operators presented in Table 3
were investigated to improve exam timetables. The Kempe-
chain (KCM) and swap time slot (ST) moves were addressed
by an adaptive approach and were used to reschedule exams
causing soft constraint violations to improve exam timeta-
bles.

In the first stage of the approach, heuristic sequences
are generated using a random iterative improvement hyper-
heuristic generator and applied to the sequence of exams
causing violations ordered by Saturation Degree (SD). Algo-
rithm 1 presents the pseudo-code of this initialisation stage
of the hyper-heuristic.

The first stage of improvement, using a heuristic se-
quence (of length e, which is the number of exams causing
violations), is an iterative process where, at the ith iteration,
the ith heuristic in the sequence is used to reschedule the ith
exam. The exam is assigned to the time slot and room lead-
ing to the least cost in the timetable and ties are broken by
randomly choosing a time slot and room.
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Algorithm 1 The pseudocode of the initialisation stage of the adaptive hyper-heuristic with low-level improvement heuristics

create an ordered list of the exams which cause a penalty using SD

create a heuristic sequence i, = {KCM, KCM, KCM, ...,
for i =0 — e x 10, do //e: number of exams causing penalty
forn=1— edo
h = randomly change n heuristics in s to ST
construct a solution ¢ using h
end for
end for
if solution c is feasible then
save & and the penalty of its corresponding solution ¢
end if

KCM} //hg has the same size has the list of exams

Fig. 1 An illustrative example
of solution improvement using a

sequence of neighbourhood
operators

slot 1 slot 2 slot 3

el e2 e3
>
e4 e5 e6
’ KCM I ST I KCM I KCM I KCM

slot 1 slot 2 slot 3
e2 el e3
e5 e4 e6

slot 1 slot 2 slot 3

Figure 1 presents an illustrative example of the improve-
ment process for a simple problem with six events (el—e6)
causing violations and ordered using SD. Assume that the
sequence of six moves generated is “KCM ST KCM KCM
KCM ST”. An initial solution has been improved iteratively
by using the first two heuristics in the sequence. A swap time
slot move is applied to exam el to swap all the exams in
slot 1 with the exams in slot 2. In the next iteration, assum-
ing that exam 5 is in conflict with exam 6, a Kempe chain
move is applied to exam 5 where it is moved from slot 1
to slot 3 and exam 6 is moved to slot 1. The rest of moves
are applied to the corresponding exams in the sequence. In
the case where an improvement is not achieved, the exam is
kept in its current position. The sequences obtaining the best
improvements are stored for the second stage where an adap-
tive approach is applied to generate more sequences which
further improves the solution.

In the approach described, a set of heuristics (rather
than solutions themselves) are considered for building so-

@ Springer

e2 el
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lutions. This can be seen as a mechanism which adaptively
calls the appropriate heuristics during the solution improve-
ment process. Therefore, the hyper-heuristic can be seen as
being able to, at a higher level, adaptively hybridise dif-
ferent heuristics. However, this hybridisation is considered
to be more random as the search is only guided by the
quality of the final solutions produced without focusing on
the domain knowledge present within the problem being
solved [19].

Bin packing heuristics on their own are simple techniques
where items in the problem are packed using a specific strat-
egy to construct solutions. For example, by using Best Fit
(see Table 4), an item in a bin packing problem is placed
into the bin which has the least space remaining. In exam
timetabling problems, the exam is placed in a time slot and
a room which has the least remaining capacity. The overall
strategy is to make use of the same heuristics used in bin
packing to assign resources in other problems such as exam
timetabling.



Adaptive selection of heuristics for assigning time slots and rooms in exam timetables 443

Table 4 Packing strategies used to assign a time slot and room in timetabling

Packing heuristics

Packing strategies that allocate a time slot and room in the problem

Best Fit (BF)

Almost Best Fit (ABF)
Worst Fit (WF)

Almost Worst Fit (AWF)
First Fit (FF)

Last Fit (LF)

Puts the exam in the feasible time slot and room which has the least remaining capacity

Puts the exam in the feasible time slot and room which has the second least remaining capacity
Puts the exam in the feasible time slot and room which has the largest remaining capacity

Puts the exam in the feasible time slot and room which has the second largest remaining capacity
Puts the exam in the lowest indexed feasible time slot and room

Puts the exam in the highest indexed feasible time slot and room

Algorithm 2 The pseudo-code of the random iterative bin packing based hyper-heuristic

Create an ordered list O of all the exams using LWD
for i =0 — e x 50, do //e: the number of exams
forn=1—edo
initialise heuristic sequence | = {BF BF ... BF BF}

initialise heuristic sequence 4> = {ABF ABF... ABF ABF}
initialise heuristic sequence i3 = {WF WF... WF WF}
initialise heuristic sequence 74 = {AWF AWF... AWF AWF}

initialise heuristic sequence h5 = {FF FF...FF FF}
initialise heuristic sequence h¢ = {LF LF...LF LF}
fors=1— 6do

hg =randomly change n heuristics in 4 to BF, ABF, WF, AWE, FF or LF
construct a solution ¢ by applying the heuristic sequence %, to the exams in list O (see Fig. 1)

if solution c is feasible then

save hg and the penalty of its corresponding solution ¢

end if
end for
end for
end for

In this paper, we present an adaptive approach which hy-
bridises heuristics used in bin packing to assign time slots
and rooms to exams during the construction of a timetable.
It is based upon the observations and statistical analysis over
a large number of different heuristic sequences obtained by
a random iterative hyper-heuristic generator. A similar pro-
cess to the one described above will be used in the approach
developed in this paper. However, more than two heuristics
are used in the hybridisation and a different method to adapt
the heuristic sequences is presented.

4 Hybridisations of bin packing heuristics within a
hyper-heuristic

4.1 A random iterative time slot and room assignment
hyper-heuristic

The approach presented in this paper focuses on the assign-
ment of exams to time slots and rooms. It takes a similar

approach to the one presented in [6] and [19] where a ran-
dom iterative hyper-heuristic generates heuristic sequences
for the benchmark problem mentioned in Sect. 2.1. Instead
of using the heuristic sequences to order the exams to con-
struct solutions or to improve constructed solutions, they are
used here to assign exams to time slots and rooms.

Algorithm 2 presents the pseudo-code of this random it-
erative hyper-heuristic. The process starts by ordering ex-
ams using the LWD heuristic which orders the exams in a
descending order according to the number of conflicts each
exam has with others. The exams are weighted according to
the number of students involved in the conflict (see Table 2).
Although it was proven in previous research [4, 7] that us-
ing SD performs the best in most cases due to its ability to
dynamically order the events according to the number of re-
maining valid time slots, we have chosen to fix the order of
the exams by using a static ordering heuristic to be able to
focus on the effect of the heuristics assigning time slots and
rooms.

@ Springer



444

A. Soghier, R. Qu

Table S Best and average results obtained by using a single heuristic. A (—) indicates that a feasible solution could not be obtained

Instances BF BF ABF ABF WF WF AWF AWF FF LF
best average best average best average best average best best

Exam 1 12938 13690 13139 13712 — - - - — 12577
Exam 2 3598 4636 4403 5278 4043 5194 - - 4158 3709
Exam 3 17586 19690 20143 21558 20261 21040 - - 20083 20308
Exam 4 25165 28776 44358 44358 — - - - — -
Exam 5 4909 5829 4826 5726 5553 5673 - - 4778 4844
Exam 6 32175 32175 32575 32575 — - - - 31480 38740
Exam 7 22388 23483 25446 26982 24203 24874 - - 21314 23331
Exam 8 15972 16231 16046 16338 17766 17766 - - 15740 18141

At every iteration, the exam at the top of the list is cho-
sen and the corresponding heuristic from the generated se-
quence is used to assign a time slot and room to the exam.
The heuristics used for the assignment are those used in the
one dimensional bin packing domain as described in Table 4.
In cases where ties appear when using BF, ABF, WF or ABF,
the time slot and room leading to the least penalty is chosen.
If more than one time slot and room combination lead to the
least penalty, one of these time slot and room combinations
are randomly chosen. However, this does not apply when us-
ing FF or LF since these heuristics aim to assign exams in
the first or last feasible time slot and room found. The pro-
cess stops and the sequence is discarded if a feasible solution
could not be generated. After a certain number of steps, a set
of heuristics is collected for further analysis on the charac-
teristics of good hybridisations of packing heuristics.

In this work, to investigate the effect of hybridising differ-
ent heuristics to allocate time slots and rooms to exams, we
generate a large number of heuristic sequences which con-
sist of the six bin packing heuristics described in Table 4.
Since the allocation of exams depends on the hard and soft
constraints of the time slots and rooms in the problem, it is
essential that we examine a number of different strategies in
assigning the exams. Since one of the objectives of hyper-
heuristics is to avoid using any domain specific knowledge,
we are only interested in the quality of the solutions obtained
from the different allocation strategies to guide our search.

We start by applying the six initial heuristic sequences to
the problem and analyse the effect of these sequences with-
out performing a hybridisation in Sect. 4.2. In Sect. 4.3, we
use the random iterative hyper-heuristic described above to
generate a large number of hybridised heuristic sequences
and analyse the results after applying the sequences to the
problem instances. Finally, we develop an adaptive approach
based on our observations and analysis in Sect. 5.

4.2 Analysis of the initial heuristic sequences

We start by applying the initial heuristic sequences, which
contain only a single heuristic, to eight instances of the In-
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ternational Timetabling Competition (ITC2007) exam time-
tabling data set presented in Sect. 2.1. The aim is to be able
to compare the results before and after hybridising heuris-
tics in the sequence. Since the timetable is empty, many ties
appear at the beginning of the process. A random choice is
made from the set of feasible time slots and rooms avail-
able. Therefore, the initial sequences were run for 10 dis-
tinct seeds for each instance and the average and best results
were collected. Table 5 presents the results obtained by run-
ning the six heuristic sequences which consist of a single
heuristic.

It is clear, from Table 5, that none of the heuristics used
performed the best for all the exam timetabling instances.
However, varying solution quality was obtained when apply-
ing the heuristics to the instances. This is due to the fact that
the instances have different structures and constraints. This
indicates that different allocation strategies better suited the
different instances. In addition, the results show that a fea-
sible solution could not be obtained for any of the instances
when using AWF.

Table 6 presents the capacities of the rooms in each in-
stance ordered in the way they appear in the problem. For
the first instance, feasible solutions were generated using
BF, ABF and LF only. One possible reason may be that the
first room in each time slot is the largest and using FF, WF
or AWF would start by filling this room. This leaves exams
with a large enrollment difficult to schedule later on in the
process. The best solution was obtained using LF.

It can be seen that BF performed the best for the second
and third instances. The second best solution was achieved
using LF and FF for the second and third instances respec-
tively. This may be due to the fact that the performance of
the heuristics vary depending on the position of the room
with the largest capacity in each instance. In addition, delay-
ing the use of the largest room leads to better solutions. For
example, in the second instance, the first room in each time
slot has the largest capacity. Therefore, LF performed bet-
ter than FF for this instance. On the contrary, FF performed
better than LF on the third instance since the rooms with the
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Table 6 Room capacity

Room capacity ordered as they appear in the problem

424, 219, 120, 100, 40, 60, 60, 40, 36, 30, 30, 25, 72, 40, 35, 40, 38, 30, 60, 30, 85, 110,

100, 80, 70, 80, 40, 50, 92, 58, 195, 400, 90, 110, 264, 50, 19, 27, 60, 40, 51, 30, 39, 50, 50,

127,77, 41, 101, 93, 93, 76, 30, 70, 545, 275, 24, 171, 44, 70, 78, 59, 49, 27, 20, 39, 182,

32, 65, 58, 56, 61, 28, 26, 44, 78, 120, 500, 18, 30, 100, 11, 800, 16, 40, 16, 14, 116, 42, 51,

240, 90, 210, 210, 110, 110, 80, 1000
240, 90, 210, 210, 110, 110, 70, 75, 70, 110, 110, 35, 45, 45, 1000
260, 100, 129, 60, 77, 65, 111, 120

FF LF LF

after re-ordering before re-ordering after re-ordering

ordered as they appear in each Instance
instance
Exam 1 260, 100, 129, 60, 77, 65, 111
Exam 2
14,127, 143,23
Exam 3
39, 500, 60
Exam 4 1200
Exam 5 896, 500, 999
Exam 6
Exam 7
Exam 8
Table 7 Best and average
results obtained by using FF and Instances FF )
LF after reordering the room before re-ordering
capacities in ascending order.
A (-) indicates that a feasible Exam 1 -
solution could not be obtained Exam 2 4158
Exam 3 20083
Exam 4 —
Exam 5 4778
Exam 6 31480
Exam 7 21314
Exam 8 15740

12694 12577 —
3923 3709 —
20944 20308 —
4965 4544 5281
30679 38740 -
18571 23331 24186
15938 18141

largest capacity are at the end of each time slot. The same
observation also applies to the performance of FF and LF in
the rest of the instances where a feasible solution was ob-
tained using the two heuristics. Furthermore, since the dis-
tribution of room capacity is uniform in each time slot in
the third instance, a small difference can be seen in the re-
sults obtained using FF and LF. To verify this observation,
the sequences were applied to the instances after reorder-
ing the capacities of the rooms in ascending order. Table 7
presents the results of LF and FF before and after reordering
the capacities of the rooms. Since the fourth instance con-
tains only a single room in each time slot, only BF and ABF
could find a feasible solution to this instance. Note that al-
though the LWD heuristic is used to order the exams, this
does not mean that the exams with the largest number of
students which require large rooms are scheduled first since
the degree of conflicts with other exams is also considered.

4.3 Analysis of the hybrid heuristic sequences

The random iterative time slot and room assignment hyper-
heuristic generates a collection of heuristic sequences by hy-
bridising different rates of BF, ABF, WF, AWEF, FF or LF as
described in Algorithm 2. The idea is to generate a variety
of sequences which contain heuristics in different positions

to use different strategies to schedule exams. Since the order
of exams does not change during the solution construction,
the effect of the heuristic used to schedule each exam can be
clearly observed.

Due to the amount of heuristic sequences that could be
generated from using a large number of different heuristics,
5 heuristic sequences are initialised each using BF, ABF,
WF, FF and LF. AWF was discarded from the hybridisa-
tion since it could not obtain any feasible result in Table 5.
The random iterative hyper-heuristic then systematically hy-
bridises n BF, ABF, WE,FFor LF,n =[1, ..., ¢], in each se-
quence. For each unit of hybridisation for each sequence, 50
samples are obtained. Although it is very difficult to cover
the whole range of heuristic sequences, our focus is to ex-
plore the different areas of the search space by generating
sequences which contain different hybridisations. Table 8
presents the best and worst solutions obtained when apply-
ing the sequences to the problem instances. To analyse the
performance of each heuristic in the sequences leading to the
best and worst solutions for each instance, the correspond-
ing amounts of BF, ABF, WF, FF and LF in the sequences
are also presented.

It can be seen, from Table 8, that the hybridisations lead-
ing to the best solutions consists mainly of the heuristic
which produced the best solution using the initial sequences
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Table 8 Penalties of the best

and worst solutions from the Instances Best % of hybridisation Worst % of hybridisation
heuristic sequences and the BFE ABF WF FF LF BFE ABF WF FF LF
amount of hybridisation of BF,
ABF, WE, FF and LF
Exam 1 7821 26 17 0 0 57 14358 19 38 31 9 3
Exam 2 4295 34 6 18 16 26 6827 8 43 29 18 2

Exam 3 15386 32 19
Exam 4 23713 63 30

Exam 5 4288 14 20
Exam 6 29349 28 17
Exam 7 9752 25 8

Exam 8 15675 27 21

9 28 12 22149 6 28 11 7 48
0 0 0 50288 12 63 18 3 4
6 34 26 6239 39 8 43 4 6
0 42 13 40340 5 19 37 13 26
13 35 19 27417 13 31 24 14 18
11 39 2 18599 3 18 22 5 52

as presented in Table 5. Furthermore, the overall hybridisa-
tion of each heuristic in the best heuristic sequences for dif-
ferent instances depends on the performance of the heuris-
tics before the hybridisation. For example for the first in-
stance, from Table 5, LF performed the best followed by BF
then ABF. Therefore, the best heuristic sequence for the first
instance employs more LF followed by BF then ABF.

Another observation from Tables 5 and 8 is that the worst
solutions were obtained when hybridising heuristics which
performed poorly when used on their own.

The initial heuristics help the hyper-heuristic to gather
knowledge about the nature of the problem. Using this in-
formation, the search can be guided and the hybridisation
process can be adapted and automated to improve the qual-
ity of the solutions.

5 Adaptive hybridisation of bin packing heuristics

The above observations indicate that although the heuristics
to be hybridised can be identified from running the initial
sequences, the level of hybridisation of each heuristic and
their appropriate ranges vary a lot for different instances. In
addition, running the initial sequences gives an indication of
the nature of the problem from the quality of the solution
produced. Therefore, an intelligent approach needs to be de-
veloped to adaptively choose the heuristics to be used and
the amount of each heuristic in the sequence. The adaptive
approach is applied to all the instances and shown to be ef-
fective in comparison to the best approaches in the literature.

The adaptive approach is a three staged approach which
identifies the heuristics to use in the hybridisation. A se-
quence is then initialised with a certain amount of each
heuristic. Finally, an iterative adjustment is made to the
amount of each heuristic in the sequence. The process is pre-
sented as follows:

1. In the first stage, the five initial heuristics containing only
BF, ABF, WF, FF or LF are applied to the problem and
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the results are collected. The heuristics are ranked in a
descending order according to the quality of the solutions
produced. Heuristics which cannot produce a solution are
discarded. A sequence is initialised using the heuristic
producing the best result in this stage.

. Based on the results obtained from the first stage, an ad-

justment is made to hybridise the initial sequence with
the rest of the heuristics. The level of hybridisation of
each heuristic is based on the number of heuristics, pro-
ducing a feasible solution and the ranking of heuristics
from stage 1. According to the ranking of heuristics, the
level of hybridisation of each heuristic is defined. The
level of hybridisation is proportional to the ranking. For
example, if two heuristics obtain a feasible solution for
a problem which contains 100 exams, 67 of the exams
will use the 1st heuristic in the ranking while 33 will use
the 2nd. The following equation is used to determine the
level of hybridisation of each heuristic:

é X r 1)

2

e: the number of exams in the problem; f: the number of
heuristics obtaining a feasible solution.

The ranking r is calculated using the following equa-
tion:

r=f—i+1 2)

i: the ranking of the heuristic according to the quality of
the solution produced. The heuristic producing the best
solution has the highest ranking.

The ranking evaluates the quality of a heuristic on a
scale from 1 — f. For example if four heuristics obtain
feasible solutions then the top heuristic will have r = 1
and the worst will have r = 4. The equation calculates
the amount of occurrence of each heuristic in a sequence.
Therefore, for a problem which contains fourty exams
and four heuristics the amount of each heuristic will be
calculated as follows r1 =3,r, =6, r3 =9 and rqy = 12.
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Algorithm 3 The pseudo-code of the initialisation stages of the adaptive bin packing based hyper-heuristic
create an ordered list O of all the exams using LWD
initialise heuristic sequence s; = {BF BF...BF BF}
initialise heuristic sequence s, = {ABF ABF... ABF ABF}
initialise heuristic sequence s3 = {WF WF... WF WF}
initialise heuristic sequence s4 = {FF FF...FF FF}
initialise heuristic sequence ss = {LF LF...LF LF}
x =1id of the heuristic sequence obtaining the best solution
f = number of sequences from s; to s5 producing a feasible solution
Sp = Sx
fori=1— fdo
n=(e/((f*+ f)/2)) % (f — i +1) //Equation (1)
sp = randomly change n heuristics in sy, to the heuristic used in sequence s;
end for
construct a solution ¢ by applying the heuristic sequence s;, to the exams in list O (see Fig. 1)
if solution c is feasible then
save s, and the penalty of its corresponding solution ¢
end if

Algorithm 4 The pseudo-code of the adaptive tuning of the levels of hybridisations in a heuristic sequence
create an ordered list O of all the exams using LWD
/ = number of sequences producing a feasible solution
fori=1— fdo
h; = the heuristic with rank i
while an improvement is achieved do
sp =randomly change 1 % of the heuristics in the sequence to heuristic A;
construct a solution ¢ by applying the heuristic sequence s, to the exams in list O (see Fig. 1)
if solution c is better than the previous solution then
save s and the penalty of its corresponding solution ¢

end if
end while
end for

Algorithm 3 presents the pseudo-code of the first two
stages of the approach. In the first stage, the exams are
ordered using LWD and a single heuristic is used to as-
sign all the exams to rooms and time slots. The five
heuristics are applied, one heuristic at a time, to see
whether a feasible solution could be obtained. The num-
ber of heuristics obtaining a feasible solution is used
to calculate the amount of hybridisation required in a
sequence, using each heuristic. Random sequences are
then generated using the calculated amount of hybridis-
ations to allow different heuristics to be applied to dif-
ferent exams. The hybridised sequences obtaining fea-
sible solutions are saved for the next stage of the ap-
proach.

. Based on the heuristic sequence obtained from the sec-
ond stage, an iterative adjustment is made to tune the
levels of hybridisations of each heuristic over the whole
heuristic sequence. The aim in this stage is to increase

the levels of hybridisation of the best performing heuris-
tics.

Algorithm 4 presents the pseudo-code of the approach
used to tune the levels of hybridisation in the sequence
obtained from stage 2. The heuristics in the sequence are
tuned starting with the best heuristic in the ranking. The
level of hybridisation in the sequence is increased by 1 %
by randomly changing other heuristics. Note that if the
same heuristic is used in a randomly chosen position,
another position is chosen to guarantee that the level of
hybridisation is increased. Depending on the size of the
problem, a number of sequences are generated and ap-
plied to the problem. The level of hybridisation is only
increased if a better solution is obtained. When an im-
provement is not obtained, the level of hybridisation of
the next heuristic in the ranking is increased. The pro-
cess stops when all the heuristics used in the sequence
are increased and an improvement is not achieved.
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Table 9 Best results obtained by the Room and Time slot Assignment Hyper-heuristic (RTAH) compared to the best approaches in the literature
on the ITC2007 data set. The ranking of the approaches is presented between brackets

Instances Exam 1 Exam2  Exam3 Exam 4 Exam 5 Exam 6 Exam 7 Exam 8 Average result
RTAH best 5752 (3) 1693 (7) 14586 (6) 21491 (5) 3844 (3) 28480(7) 5182(3) 13711 (6) 11842.38(5)
McCollum (2009) [11] 4633 (2) 405 (3) 9064 (1) 15663 (1) 3042 (2) 25880 (1) 4037 (1) 7461 (1) 8773.13 (1)
Muller (2008) [12] 4370 (1) 400 (2) 10049 (2) 18141 (3) 2988 (1) 26950 (2) 4213 (2) 7861 (2) 9371.50 (2)
Gogos (2008) [9] 5905 (4) 1008 (6) 13862 (5) 18674 (4) 4139(7) 27640 (4) 6683 (6) 10521 (4) 11054 (4)
Atsuta (2008) [9] 8006 (7) 3470 (9) 18622 (8) 22559(7) 4714(8) 29155(8) 10473 (8) 14317 (7) 13914.5(7)
De Smet (2008) [8] 6670 (6) 623 (4) -9 -9 3847 (4) 27815(5) 5420 (4) -9 -9

Pillay (2008) [14] 12035(9) 3074 (8) 15917 (7) 23852(8) 6860 (9) 32250(9) 17666 (9) 16184 (8) 15946 (8)
Pillay (2010) [16] 8559 (8) 830 (5) 11576 (3) 21901 (6) 3969 (6) 28340 (6) 8167 (7) 12658 (5) 12000 (6)
Sabar (2012) [21] 6234 (5) 395 (1) 13002 (4) 17940 (2) 3900 (5) 27000 (3) 6214 (5) 8552 (3) 10404.63 (3)
Fig. 2 Ranking of approaches 10

for each data set

5.1 The International Timetabling Competition (ITC2007)
results

We evaluate our adaptive approach by applying it to the
ITC2007 instances described in Table 1. The approach is
run for the same amount of time specified in the timetabling
competition, on a Pentium IV machine with a 1 GB mem-
ory, to allow a fair comparison with the reported results. The
results are presented in Table 9.

Table 9 shows that the results produced by the adaptive
approach are better than the random approach presented in
Table 8. In addition, Table 9 presents the results we obtained
in comparison with the best in the literature. The descrip-
tion of the approaches used for comparison is presented in
Sect. 2.2. Furthermore, the ranking of each approach and
the average results are presented. The rankings are also il-
lustrated in Fig. 2. We do emphasise that the objective here
is not to beat the best reported results but to demonstrate the
generality of our approach to the different problem instances
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and the ability of a hyper-heuristic to adaptively hybridise
heuristics used in bin-packing to assign events (exams in our
case) to time slots and rooms.

The Extended Great Deluge in [11] obtained the best re-
sults for five out of the eight instances. However, the ap-
proach was run for a longer time as it was developed after
the competition. In the competition, the best results for all
the eight instances were reported in [12] using a three phased
approach. The GRASP used in [9] produced the second best
results.

In comparison to the evolutionary algorithm based hyper-
heuristic presented in [15], our approach was able to produce
better results in only one instance. However, it was stated
that they did not adhere to the time limitation imposed by
the competition.

In comparison to the Constraint Based Solver devel-
oped in [1], our approach performed better in all eight in-
stances. The approach using the Drools solver in [8] ob-
tained feasibility for only five instances. Our approach out-
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performed it, gaining feasibility for all eight instances. This
demonstrates the generality of our approach to solving exam
timetabling problems. Furthermore, our approach performed
better on all instances in comparison with the biologically
inspired approach proposed in [14]. Finally, our approach
performed better on three instances in comparison with the
graph colouring hyper-heuristic recently presented in [21].

6 Conclusions

The study presented in this paper implements a hyper-
heuristic approach which adaptively hybridises bin pack-
ing heuristics to assign exams to time slots and rooms. An
investigation is made on the low-level heuristics used and
their performance on different problem instances. A ran-
dom iterative hyper-heuristic is developed to hybridise the
heuristics and generate a large number of sequences of dif-
fering quality. It is shown that the hybridisations leading to
the best solutions consist mainly of the heuristic which pro-
duced the best solution when used on its own. Furthermore,
the overall hybridisation of each heuristic in the best heuris-
tic sequences for different instances depends on the perfor-
mance of the heuristics before the hybridisation. Based on
these observations, an adaptive approach which chooses the
heuristics to use and tunes the level of hybridisation of each
heuristic is implemented. Furthermore, the hyper-heuristic
approach is applied to the International Timetabling Compe-
tition (ITC2007) data set and showed to produce very com-
petitive results compared to other approaches in the litera-
ture.

Future research directions include performing improve-
ments during the timetable construction stage. This would
allow changing the time slot or room assignment of a sched-
uled exam to make room for another exam. In addition, a
dynamic heuristic can be used such as SD instead of LWD
to order the exams. The objective is to combine heuristics
used to order exams with heuristics used to assign time slots
and rooms. Finally, the approach investigated in this paper
can be applied to course timetabling or any other resource
allocation problem.
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