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ABSTRACT
Hyper-heuristics can be thought of as “heuristics to choose
heuristics”. They are concerned with adaptively finding so-
lution methods, rather than directly producing a solution
for the particular problem at hand. Hence, an important
feature of hyper-heuristics is that they operate on a search
space of heuristics rather than directly on a search space
of problem solutions. A motivating aim is to build systems
which are fundamentally more generic than is possible today.
Understanding the structure of these heuristic search spaces
is therefore, a research direction worth exploring. In this pa-
per, we use the notion of fitness landscapes in the context of
constructive hyper-heuristics. We conduct a landscape anal-
ysis on a heuristic search space conformed by sequences of
graph coloring heuristics for timetabling. Our study reveals
that these landscapes have a high level of neutrality and po-
sitional bias. Furthermore, although rugged, they have the
encouraging feature of a globally convex or big valley struc-
ture, which indicates that an optimal solution would not be
isolated but surrounded by many local minima. We sug-
gest that using search methodologies that explicitly exploit
these features may enhance the performance of constructive
hyper-heuristics.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Non-Numerical
Algorithms and Problems.

General Terms
Algorithms, Measurement, Performance.

Keywords
Hyper-heuristics, landscape analysis, graph coloring heuris-
tics, timetabling.
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1. INTRODUCTION
Metaheuristics have been widely and successfully applied

to a wide variety of computational search problems. How-
ever, significant development effort is often needed to pro-
duce fine tuned techniques for the particular problem (or
even instance) at hand. A more recent research trend in
search methodologies, particularly in timetabling and schedul-
ing, is the study of hyper-heuristics [2, 19]. Hyper-heuristics
aim at producing more general problem solving techniques,
which can potentially be applied to different problems (or
instances) with little development effort. An important fea-
ture of hyper-heuristics is that they operate on a search
space of heuristics rather than directly on a search space
of solutions. The problem of searching a good combination
of heuristics is itself a combinatorial optimization problem.
Understanding the structure of these heuristic search spaces,
is therefore, the goal of this paper. Specifically, we use the
notion of fitness landscapes for analyzing hyper-heuristics,
and conduct a landscape analysis of the heuristic search
space induced by the graph-based hyper-heuristic presented
in [4, 16] for the educational timetabling problem. This
approach operates upon a set of widely used constructive
heuristics (graph coloring heuristics) in timetabling. A can-
didate solution in the heuristic search space is given by a
sequence (list) of graph coloring heuristics. Each heuris-
tic in this list is successively used to (re)-order the events
(exams or courses in educational timetabling) and sched-
ule them accordingly. To the best of our knowledge, this is
the first time that the fitness landscape metaphor is used in
the context of hyper-heuristic research. However, previous
work has highlighted the existence of the two search spaces
in constructive hyper-heuristics. In [4], the relationship be-
tween the search space of heuristics and the solution space of
the problem is graphically illustrated. The authors observed
that a large number of heuristic sequences generate unfea-
sible solutions in the problem space. This work is extended
in [16] to construct a unified graph based hyper-heuristic
framework (GHH), where the neighborhood structures and
characteristics of the two search spaces are analyzed. More-
over, efficient hybridizations in GHH with local search oper-
ating on the solution space are investigated. Another related
study [24] in the context of production scheduling, presented
a formal definition of the heuristic search space and intro-
duced the notion of a decision block to refer to a set of de-
cisions that are treated as a single unit (i.e. processed by a
single heuristic).

The paper is organized as follows. Section 2 introduces
hyper-heuristics and describes in more details the hyper-



heuristic under study. Section 3 presents the notion of fitness
landscapes and describes how to conduct an autocorrelation
and a fitness distance correlation analysis. Thereafter, sec-
tion 4 describes the use of the notion of fitness landscapes for
studying constructive hyper-heuristics. Section 5 describes
in detail the methodology followed and reports the empirical
results obtained. Finally, Section 6 summarizes our findings
and suggests further work.

2. HYPER-HEURISTICS
Hyper-heuristics are heuristics that choose heuristics in

order to solve a given combinatorial optimization problem.
We study a hyper-heuristic framework where there is a high-
level heuristic and a set of low-level heuristics. Given a
problem instance, the high-level heuristic selects which low-
level heuristic should be applied at each decision point in the
problem solving process [2]. The motivation behind hyper-
heuristics is the observation that different heuristics have dif-
ferent strengths and weaknesses. Therefore, it may be fruit-
ful to combine them adaptively so that each makes up for
the weaknesses of another [19]. The key idea is to use mem-
bers of a set of known and reasonably understood heuristics
to either: (i) transform the state of a problem (in a con-
structive strategy), or (ii) perform an improvement step (in
a perturbative strategy). This last distinction leads us to a
classification of hyper-heuristic approaches into constructive
and perturbative. Constructive hyper-heuristics build a so-
lution incrementally. Starting with an empty solution, they
intelligently select and use constructive heuristics to gradu-
ally build a complete solution. They have been successfully
applied to several combinatorial optimization problems such
as: bin-packing [20], timetabling [5, 4, 16, 17, 23], produc-
tion scheduling [24], and cutting stock [22]. On the other
hand, improvement or perturbative search hyper-heuristics
find a reasonable initial solution, either randomly or using a
simple constructive heuristics, and then select heuristics to
shift and swap solution components, with the aim of finding
improved solutions. In other words, they start from a com-
plete solution and then search for heuristics which will select
among a set of neighborhoods, for better solutions. Pertur-
bative or improvement hyper-heuristics have been applied
to personnel scheduling [7, 3], timetabling [3], shelf space
allocation [1], packing [9]and vehicle routing problems [15].

Graph-based hyper-heuristics for timetabling problems. The
hyper-heuristic selected for our study is based on graph col-
oring constructive heuristics, and uses a Tabu search algo-
rithm as the high level search strategy. Timetabling prob-
lems can be modeled as graph coloring problems, where
nodes in the graph represent events, and edges represent
conflicts between events (e.g. exams). Graph heuristics
in timetabling use the information in the graph to order
the events by their difficulties (e.g. number of conflicts
with other events), and assign them one by one into the
time-slots. These degrees indicate how difficult the events
are to be assigned; therefore, the most difficult event will
be assigned first by the corresponding ordering strategy.
The GHH implemented the following 5 graph coloring-based
heuristics, plus a random ordering heuristic:

Largest Degree (LD): orders the events decreasingly by the
number of conflicts (events with common students involved)
the event has with the others.

Largest Weighted Degree (LWD): the same as LD but
weighting the events by the number of students involved.

Color Degree (CD): orders the events decreasingly in terms
of the number of conflicts that they have with those already
scheduled in the timetable.

Largest Enrolment (LE): order the events decreasingly by
the number of enrols the event has.

Saturation Degree (SD): order the events increasingly by
the number of time-slots available in the timetable for the
event at that time.

A candidate solution in the heuristic search space corre-
sponds to a sequence (list) of these heuristics. The solution
(in the problem space) construction is an iterative process
where, at the ith iteration, the ith graph-coloring heuristic in
the list is used to order the events not yet scheduled at that
step, and the 1st e events in the ordered list are assigned to
the first e least-cost timeslots in the timetable. Tabu Search
was employed as the high-level search strategy for produc-
ing good sequences of the low-level heuristics. Each heuristic
list produced by the Tabu Search algorithm is evaluated by
sequentially using the individual heuristics to order the un-
scheduled events, and thus construct a complete timetable.
As mentioned before, each heuristic in the list is used to
schedule a number e of events. Therefore, the length of the
heuristic list is n/e where n is the number of events to be
scheduled. Values in the range of e = 1, . . . , 5 were tested.
For the landscape analysis reported here, we set e = 1, that
is a single event is scheduled by each heuristic in the list.
Hence the number of events to be scheduled, n corresponds
to the length of the heuristic list. Furthermore, two low-level
graph coloring heuristics, namely, least Saturation Degree
first (SD) and Largest Weighted Degree first (LWD), were
considered because this combination was found the most
successful at solving the educational timetabling instances
explored in [4]

3. FITNESS LANDSCAPE ANALYSIS
The fitness landscape metaphor can be used for search in

general. Given a search problem, the set of possible solutions
can be coded using strings of fixed length from some finite
alphabet. This encoding generates a representation space,
which is a high dimensional space of all possible strings of
a given length. There is also a neighborhood relation that
defines which points in the representation space are con-
nected. This relation depends on the specific search oper-
ator or combination of operators, used to search the space.
Finally, there is a fitness function that assigns a fitness value
to each possible string or point in the space.

More formally [14], a fitness landscape (S, f, d) of a prob-
lem instance of a given combinatorial optimization problem
consists of a set of candidate solutions S, a fitness (or eval-
uation) function f : S 7→ R, which assigns a real-valued
fitness to each solution in S, and a distance metric d that
defines the spatial structure of the landscape. This distance
is related to the neighborhood relation described above. For
binary encoded problems of length n ( which is the case of
the heuristic search space studied here), the search space is
S = {0, 1}n. The distance measure is the Hamming dis-
tance between bit strings. The minimum distance between
two points in the search space is 1 (one bit with a differ-
ent value), and the maximum distance, also known as the
landscape diameter, is n.

In the context of meta-heuristics, it is important to iden-
tify the features of landscapes that would influence the effec-
tiveness of heuristic search. Such knowledge may be helpful



for both predicting the performance and improving the de-
sign of meta-heuristics. Statistical methods have been pro-
posed for measuring fitness landscape properties. Two of
the most commonly used landscape analysis techniques: fit-
ness distance correlation and auto-correlation analysis, are
described in detail below.

3.1 Fitness distance correlation analysis
The most commonly used measure to estimate the global

structure of fitness landscapes is the fitness distance correla-
tion (FDC) coefficient, proposed by Jones and Forrest [12].
It is used as a measure for problem difficulty in genetic algo-
rithms. Given a set of points x1, x2, . . . .xm and their fitness
values, the FDC coefficient % is defined as:

%(f, dopt) =
Cov(f, dopt)

σ(f)σ(dopt)
(1)

where Cov(., .) denotes the covariance of two random vari-
ables and σ(.) the standard deviation. The FDC determines
how closely related are the fitness of a set of points and their
distances to the nearest optimum in the search space (de-
noted by dopt). A value of % = −1.0 (% = 1.0) for max-
imisation (minimisation) problems indicates a perfect cor-
relation between fitness and distance to the optimum, and
thus predicts an easy search. On the other hand, a value of
% = 1.0 (% = −1.0), means that with increasing fitness the
distance to the optimum increases too, which indicates a de-
ceptive and difficult problem. As suggested in [12], a value
of fdc ≤ −0.5 (fdc ≥ 0.5) for maximisation (minimisation)
problems indicates an easy problem.

Often, a fitness distance plot is made to gain insight into
the structure of the landscape, in addition to (or instead of)
calculating the correlation coefficient [14]. This is done by
plotting the fitness of points in the search space against their
distance to an optimum or best-known solution. This type
of analysis can be used to investigate not only the correlation
between arbitrary points in the search space, but also the
distribution of local optima within the search space.

3.2 Autocorrelation analysis
An important characteristic of a landscape is its rugged-

ness, which is related to the difficulty of an optimization
problem for heuristic algorithms. Weinberger [25] intro-
duced a procedure to measure the correlation structure of a
fitness landscape based on the autocorrelation function [11].
The idea is to generate a random walk, of size T , on the
landscape via neighboring points. At each step, the fitness
of the solution encountered is recorded, and thus, a time
series of fitness values is generated. Thereafter, the auto-
correlation function of the time series, ρi is calculated. The
theoretical autocorrelation function, ρi, can be empirically
estimated by ri:

ri =

∑T−i
t=1 (ft − f)(ft+i − f)∑T

t=1(ft − f)2
, (2)

where f is the mean fitness of the T points visited, and i is
the time lag or distance between points in the walk. A re-
lated measure is the correlation length of a fitness landscape.
Several authors have proposed approaches to measure this
quantity [11, 13, 25]. Statistically [11], the correlation length
gives an indication of the largest “distance” (or time lag) be-
tween two points at which the value of one point can still

provide information about the expected value of the other
point. In other words, the correlation length is the largest
time lag i for which one can still expect some correlation
between two points i steps apart. We use here the correla-
tion length measure based on the estimated autocorrelation
function (Equation 2) [25]:

` =
−1

ln(|r1|) , (3)

for r1 6= 0 (where r1 is defined according to Eq. 2). The cor-
relation length reflects the ruggedness of a landscape. The
smaller the value for `, the more rugged the landscape. The
correlation length typically depends on the instance size [21];
therefore, it is often reported in relation to the landscape di-
ameter n.

4. HYPER-HEURISTIC LANDSCAPES
In hyper-heuristics we deal with two search spaces: (i) the

search spaces of heuristics, and (ii) the optimization problem
solution space. However, we have a single landscape, as the
objective function of a point in the heuristic search space,
can only be known after calculating the objective value of
the correspondent point in the problem solution space.

Figure 1: Constructive hyper-heuristic landscapes can

be viewed as compositions f(g(l)), where g : Heuristic

Space 7→ Problem Space represents the constructive pro-

cess, and f : Problem Space 7→ < encodes the evaluation

function of constructed solutions.

More formally, let m be the number of low-level heuris-
tics in a constructive hyper-heuristic approach, and let n
be the number of events to be scheduled in the underlying
(timetabling or scheduling) problem. The heuristic search
space, HS is, therefore, composed of strings of length n, in
the alphabet {h1, h2, . . . , hm} 1. The size of HS is mn, as
any of the m low-level heuristic can be selected for schedul-
ing each of the n events. Let PS be the problem space, and
f the evaluation function that maps a point in PS to a real
number, f : PS 7→ <. Let g be a function that maps a
sequence of heuristics s in HS to its corresponding solution
in PS. Figure 1 illustrates the two search spaces discussed
and the two mappings involved, namely, g from a heuristic
list to its corresponding problem solution, and f from the
solution to the objective value. Actually, g corresponds to a
constructive solution process that, starting from an empty
solution, successively applies the heuristic in the sequence
s (following its order) to construct a complete solution. In
consequence, the evaluation function of a heuristic sequence
s in HS is given by the composition of g and f , namely,

1We consider here that m = 2 and that each heuristic in
the heuristic list is used to schedule one event (e = 1). But
different values of these parameters may be considered, pro-
ducing different landscapes.



f(g(s)) : HS 7→ R. The landscape of a constructive hyper-
heuristic is, therefore, defined as the triplet (HS, f(g), d),
where d is the distance (in this case the Hamming distance),
HS the heuristic space, and f(g) the fitness function.

5. ANALYSIS OF THE GHH LANDSCAPE
We performed both a fitness distance correlation analy-

sis (on a set of empirically generated local optima) and an
autocorrelation analysis on random walks, for measuring re-
spectively, the global and local properties of the GHH land-
scape. We also suggest some visualizations of the obtained
local optima, that bring about an image of some features
of the heuristic landscape. As mentioned above (section 2),
two graph coloring heuristics, namely, least Saturation De-
gree first (SD) and Largest Weighted Degree first (LWD),
were considered for our analysis. Therefore, the heuristic
search space studied consists of n-dimensional 0-1 (binary)
vectors. Where n is the number of events to be scheduled
in the underlying timetabling instance (and thus also the
length of the heuristic list), and 0 and 1 encode the graph
heuristics SD and LWD, respectively. For measuring the
distance between solutions, we used the standard Hamming
distance, which counts the number of bits in which two so-
lutions differ.

The GHH was tested on the widely used set of bench-
mark instances, the Toronto set, originally presented in [6],
and further discussed in [18]. The size of these instances
ranges from 81 to 682 exams and from 611 to 18419 students.
The density of the conflict matrix, which gives the ratio of
the number of conflicting exams over the overall number of
exams, ranges from 0.06 to 0.42. For our hyper-heuristic
landscape analysis, we selected a subset of these instances
for illustrative purposes. We have conducted preliminary
experiments in the remaining instances that show similar
tendencies. The selected instances are described in Table 1.
A detailed discussion of the complete set of instances can be
found in [18].

Instance hec92 I sta83 I ute92 I ear83 I
Exams 81 139 184 190

Students 2823 611 2750 1125
Time-slots 18 13 10 24

Matrix density 0.42 0.14 0.08 0.27

Table 1: Characteristics of the benchmark exam

timetabling instances selected for the analysis.

In our formulation, the hard constraints are given by the
“conflicts” of scheduling two exams with common students
into the same time-slot. Whereas the soft constraint is
concerned with spreading out the students’ exams over the
timetable so that students will not have to sit exams that
are too close to each other. The objective is to schedule all
the exams into the time-slots, while minimizing the soft con-
straint violations per student. Thus, the objective function
C(t) calculating the cost of violations within a solution t is
as follows:

C(t) =

∑4
s=0 ws ×Ns

S
,

where, ws = 2s, s ∈ {0, 1, 2, 3, 4} represents the importance
of scheduling exams with common students either 4, 3, 2,

1, or 0 timeslots away in timetable t, Ns, s ∈ {0, 1, 2, 3, 4}
is the number of students involved in the violation of the
soft constraints. The lower the cost, C(t), the better the
timetable. Infeasible solutions (i.e. those with violations of
hard constraints) are discarded.

5.1 Fitness distance correlation analysis
FDC analysis requires knowledge of the optimal solution.

However, given that the optimal solution is not generally
known, many studies in the literature use the best-known
solution instead. For a given instance, let x∗ be the best-
known solution on the heuristic search space. In order to
have a wide distribution of distances to the optimum, a
fixed number of feasible solutions (10 in our experiments)
were randomly generated at each distance i (for i = 1, . . . , n)
away from x∗, where n is the length of the heuristic list. This
set of points were thereafter used as starting points for gen-
erating a set of local optima. Thus, the set of generated local
optima is of size 10×(n−1). The local optima were produced
by a non-deterministic next-descent local search using the 1-
move neighborhood (detailed in Figure 2). This procedure
accepts solutions of the same objective value. Therefore,
this method is similar to Davis’s [8]bit-climbing scheme, in
which the bits are mutated in a prefixed random order, and
the current-best is reset to any string having equal or better
cost value than the previous best evaluation.

Procedure Local-Search(s, n)
π ← permutation of n integers
repeat

s′ ← invert next bit in s (according to order π)
if C(s′) ≤ C(s) then

s ← s′

end if
until all bits in π tested, or n equal cost solutions
accepted

Figure 2: Pseudo-code for the algorithm producing the

local optima. s represents the current solution (initially

received as a parameter), and n the problem size.

5.2 Visualizing local optima
This section illustrates some global features of the GHH

landscape by visualizing the sets of local optima found on
two selected timetabling instances: hec92 I and sta83 I.
The remaining two instances show similar trends, and are
not shown due to space constraints. Figure 3 illustrates the
objective values (costs) of all the empirically found local op-
tima, ordered from the best found at the origin of each plot
(hec92 I (top) and sta83 I (bottom )). Whereas, Figure 4
illustrates the local optima themselves (the top 10 %), again
ordered according to their cost values from the best found at
the top of each plot (hec92 I (top) and sta83 I (bottom)).
Each horizontal line (pattern of white and black dots) in the
plots accounts for the binary string encoding a single local
optima. A white dot pictures a ‘1’ (LWD heuristic) and
a black dot a ‘0’ (SD heuristic). Figure 3 shows that there
are several local optima with the same cost value (plateaus).
This feature is most clearly seen on sta83 I, which shows
several plateaus at different cost levels.
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Figure 3: The complete set of empirically found local
optima for two selected instances: hec92 I (top) and
sta83 I (bottom), ordered from the for each instance,
in ascending order of their costs. The y-axis shows
the cost values, while the x-axis simply enumerates
the local optima.

Figure 4 illustrates that some positions in the heuristic
list are fixed for the top local optima. For example, the first
four positions of most top 10% local optima in hec92 I (top
plot) are white dots (i.e. LWD heuristics), whereas the first
two positions in sta83 I (bottom plot) are black dots (SDs).
Other patterns of fixed bits can be observed. Notice that a
more randomized pattern is found towards the right-most
positions. This is consistent with the intuition and previ-
ous observation that the choices of heuristics towards the
end of a constructive process have less impact on the overall
performance. A more randomized pattern can also be ob-
served towards the lower quality solutions (bottom parts of
each plot), suggesting that many different low quality local
optima can be found in the landscape. Another interesting
observation is that the balance between the proportion of
SD and LWD heuristics in the local optima is not the same
across all the instances. For example, there is a higher pro-
portion of SDs (black dots) in the local optima of sta83 I
(bottom plot, fig. 4), whereas a more balanced proportion of
SDs and LWDs is observed in hec92 I (upper plot, fig. 4).

5.3 Local optima measures and cost-distance
scatter plots

This section reports the empirical measurements taken
from the set of generated local optima in each instance. Ta-
ble 2 summarises, for each instance:

n: the landscape diameter, which corresponds to the heuris-
tic list length and the underlying problem size (number
of events to schedule).

Samples: the number of generated local optima, which is

hec92 I, Local optima (best 10%)

sta83 I, Local optima (best 10%)

Figure 4: Top 10 % local optima for two selected in-

stances: hec92 I (top) and sta83 I (bottom) ordered from

the best at the top to the worst. Each horizontal line

accounts for the binary string encoding a single local op-

tima. A white dot pictures a ‘1’ (LWD heuristic) and a

black dot a ‘0’ (SD heuristic).

10× (n− 1).

fdc: the fitness distance correlation coefficient.

Cost: the minimum, maximum, average, and standard de-
viation of cost values.

Hdopt the minimum, maximum, average, and standard de-
viation of the Hamming distances to the best-known
solution.

Stimpr: the minimum, maximum, average, and standard de-
viation of the number of improvement2 steps in the
local search process (from random initial solutions to
local optima).

For all studied instances, there is a moderate to high pos-
itive correlation between the cost of local optima and their
distances to the global optimum (in the range of 0.51 to
0.64). The presence of such a correlation implies that the
lower the cost the closer the local optima are to the global
optimum (or best-known solution). It also suggests a big
valley structure of the landscape, which means that on aver-
age, local optima are very much closer to the optimum than

2This measure sums the moves that improve the current
solution cost. Steps of equal costs are not counted.
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Figure 5: Cost-distance correlation analysis of local optima of the GHH landscape studied instances.

Instance hec92 I sta83 I ute92 I ear83 I
n 81 139 184 190

Samples 800 1380 1830 1890
fdc 0.64 0.51 0.51 0.63

minCost 11.69 158.42 28.02 35.16
maxCost 14.34 171.94 31.63 41.77
avgCost 12.79 163.56 29.31 38.60
stdCost 0.577 4.580 0.627 1.944

minHdopt 14 11 48 44
maxHdopt 61 95 131 126
avgHdopt 39.66 64.97 90.37 88.61
stdHdopt 8.884 15.577 14.823 13.840

minStimpr 0 0 0 0
maxStimpr 10 15 32 29
avgStimpr 2.45 4.07 11.81 8.29
stdStimpr 1.929 2.144 5.737 4.346

Table 2: GHH landscape local optima measurements on

the four studied instances.

are randomly chosen points. In addition to the fdc coeffi-
cients, cost distance scatter plots (Figure 5) provide useful
information about the landscape. Notice that the plots for
instances hec92 I and ute92 I have similar features: the
costs of local optima and distances to the optimum show
a clear positive correlation, and the best local optima are
concentrated on a bounded region of the search space. The
scatter plot for instance sta83 I shows a different overall
picture. A positive correlation between the cost of local op-
tima and their distances to the optimum still holds, and
the best local optima are close to the best-known solution.
However, the distribution of local optima is different show-

ing several wide plateaus, as many local optima having the
same cost can be visualised at different levels. Some values
in the range of local optima costs are not covered by any
point. The cost-distance plot for instance ear83 I shows
again a positive correlation, but only on the best local op-
tima; that is, those with a cost value below 38. There are,
in this case, a large number of low-quality local optima that
show no clear cost-distance correlation and are randomly lo-
cated in the search space (around n/2 bits away from the
global optimum). In all the instances, the scatter plots con-
firm that there are several (different) local optima having
the same cost as the best known solution, so there is a set
of optimal solutions (instead of a single optimum) located
in this plateau.

In terms of the number of downside (or improvement)
steps for reaching the local optima, Table 2 indicates that
this value is highly variable in all instances (has a high stan-
dard deviation with respect to its average). For all studied
instances, this value ranges from 0 (i.e the starting point is
already a local optima), up to about n/8. Moreover, its av-
erage value is rather low as compared to n, suggesting that
the landscapes have many shallow valleys. The number of
sidewards steps (moves with equal objective value) on the
search trajectories are not reported as they always reached
the maximum allowed (n), which suggests the presence of
neutrality on these landscapes.

5.4 Auto-correlation analysis
The local structure of the hyper-heuristic landscapes was

analyzed through the random walk correlation function (sec-
tion 3.2). A single random walk of size T = 1000 was con-
ducted on each instance, and equation 2 was used to calcu-
late ri, for i = 1, . . . , n. Table 3 reports both the correlation
length, `, calculated according to equation 3, and the corre-



0 10 20 30 40 50 60 70 80

11.6

11.8

12

12.2

12.4

12.6

hec92 I, 1−flip neighbours of best−known

Enumeration (1−flip)

C
os

t

0 20 40 60 80 100 120
158

159

160

161

162

163

164

165

166
sta83 I, 1−flip neighbours of best−known

Enumeration (1−flip)

C
os

t

0 20 40 60 80 100 120 140 160 180

28

28.2

28.4

28.6

28.8

29

29.2
ute92 I, 1−flip neighbours of best−known

Enumeration (1−flip)

C
os

t

0 20 40 60 80 100 120 140 160 180
35

35.5

36

36.5

37

37.5

38
ear83 I, 1−flip neighbours of best−known

Enumeration (1−flip)
C

os
t

Figure 6: Visualising the cost values of the 1-flip neighborhood of the best-known solution for each instance. The

neighbors that produce unfeasible solutions are not pictured.

lation length in relation to the diameter of the landscape n/`.
Two of the studied instances have a highly rugged landscape
as reflected by low correlation length (n/` of about 6 and 8,
see Table 3). Whereas the other two landscapes are found to
be smoother, with a higher relative correlation length as ex-
pressed by a lower n/` (close to 3). The smoothest landscape
corresponds to instance sta83 I with n/` = 2.79, which is
consistent with the large plateaus observed for this instance.

Instance hec92 I sta83 I ute92 I ear83 I
n 81 139 184 190
` 13.36 49.82 51.77 22.87

n/` 6.06 2.79 3.55 8.30
pbf 0.444 0.201 0.065 0.311
puf 0.469 0.007 0.217 0.168

Table 3: GHH landscape correlation length. And mea-

surements on the best-known solution plateau: plateau

branching factor, pbf and plateau unfeasible factor, puf .

We also calculated the plateau branching factor [10] (pbf
in Table 3), of the best-known solution in each landscape.
This measure is defined as the fraction of direct neighbors
of a solution l that are in the same plateau as l. Since the
underlying timetabling problems in our study contain un-
feasible solutions, we also calculated the plateau unfeasible
factor, which we define here as the fraction of direct neigh-
bors of a solution l that leads to unfeasible solutions (puf
in Table 3). As discussed in [10], the efficacy of exploration
and escape mechanisms can be affected by plateau branch-
ing. Our results show that the best-known solution in every
instance is located in a plateau with a branching factor that

is greater than 0. The specific pbf value is instance depen-
dant and can be as high as almost half the diameter of the
landscape. In order to study the order-dependence of the
neutral and unfeasible direct neighbors, Figure 6 illustrates,
for each instance, the cost values of all the 1-flip neighbours
of the best-known solution. The unfeasible neighbors are
not shown: i.e. an empty space appears in the correspond-
ing position. The plots in Figure 6, strikingly show two fea-
tures of these heuristics landscapes. First, the landscapes
are highly rugged, in that small differences in the heuris-
tic lists (1-flips) make a huge difference in the solution’s
cost, even shifting a best-known solution to an unfeasible
solution. Second, there is a strong positional bias on the
heuristic search spaces, where changes on the list’s left-most
positions have a much higher impact on the evaluation func-
tion as compared to the right-most positions. Indeed, the
very last positions are neutral in that they do not produce
changes in the cost value.

6. CONCLUSIONS
We have used the notion of fitness landscapes for studying

constructive hyper-heuristics, and conducted a landscape
analysis on the heuristic search space induced by the ap-
proach presented in [4, 16] for educational timetabling. This
hyper-heuristic operates upon a set of constructive heuris-
tics (graph coloring heuristics), widely used in modeling
timetabling problems. The prominent features of the stud-
ied landscapes can be summarized as follows:

Big valley structure: the cost of local optima and their dis-
tances to the global optimum (best-known solution) are cor-
related, which suggests that these landscapes have a globally
convex or big valley global structure. The best local optima



are located in a relatively small region of the search space.
There are, however, many low-quality local optima that are
distant from the best-known solution. Also, the size and
characteristics of the region of the search space that holds
the local optima, seems to be instance dependant.

Large number of local optima: the landscapes contain a
large number of distinct local optima, many of them of low
quality.

High ruggedness: the landscape relative correlation length
depends on the underlying instance. The correlation lengths
vary from moderate to high. However, a detailed study of
the plateaus containing the best-known solution, shows that
small changes in a good solution can produce much worse or
even unfeasible solutions.

Existence of wide plateaus (neutrality): many local optima
are located at the same level (height) in the search space,
that is, they have the same cost value.

Shallow valleys: the number of improvement steps from
random points towards local optima, are on average low
in comparison with the landscape diameter, which suggests
that the landscapes have many shallow valleys.

Positional bias: left-most positions in the heuristic list
have a much greater impact on the produced solution cost.

It should be noted that this study represents the first anal-
ysis of a heuristic search space composed of sequence of con-
structive heuristic. Work is in progress to analyze a related
landscape composed of sequences of dispatching rules for
production scheduling. We suggest that search algorithms
that explicitly exploit the features described above, will en-
hance the search on this type of heuristic search spaces.
These performance predictions should be tested in future
work. Moreover, similar and more advanced landscape anal-
ysis techniques should be conducted on both larger set of
instances and different application domains.
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