
Journal of Operations Research Society, 57(2): 148-162, 2006.

 1

Multiple-Retrieval Case-Based Reasoning for Course Timetabling

Problems

Edmund K. Burke1, Bart L. MacCarthy2, Sanja Petrovic1, Rong Qu1

1Automated Scheduling Optimisation and Planning Research Group

School of Computer Science and Information Technology, The University of Nottingham

Nottingham, NG8 1BB, U.K

2 Business School, The University of Nottingham, Nottingham, NG8 1BB, U.K

Abstract. The structured representation of cases by attribute graphs in a Case-Based Reasoning

(CBR) system for course timetabling has been the subject of previous research by the authors. In

that system, the case base is organised as a decision tree and the retrieval process chooses those

cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is

that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach

that partitions a large problem into small solvable sub-problems by recursively inputting the

unsolved part of the graph into the decision tree for retrieval. The adaptation combines the

retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic

method to construct the whole solution for the new case. We present a methodology which is not

dependant upon problem specific information and which, as such, represents an approach which

underpins the goal of building more general timetabling systems. We also explore the question of

whether this multiple-retrieval CBR could be an effective initialisation method for local search

methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are

obtained from a wide range of experiments. An evaluation of the CBR system is presented and the

impact of the approach on timetabling research is discussed. We see that the approach does indeed

represent an effective initialisation method for these approaches.

Keywords: Timetabling problems, Case-Based Reasoning, Attribute graph, Scheduling problems, Hill climbing,

Tabu search, Simulate annealing, Graph heuristic method

Journal of Operations Research Society, 57(2): 148-162, 2006.

 2

Introduction

Timetabling Problems

Timetabling problems arise in many contexts including transportation1, sports events2, employee

rostering3, 4, and educational timetabling5, 6, 7. They have been the subject of active recent research8,9, 10,

11, 12. This important research field continues to attract the attention of the scientific community as

problems become more complex and as new breakthroughs provide better ways of solving them (for

example see13, 14, 15, 16). Economic efficiency, costs and resource utilisation are also important drivers for

improved timetable generation.

A general timetabling problem consists of assigning a number of events (exams, courses, meetings, etc)

into a limited number of timeslots (periods of time) and venues, whilst minimising the violations of a

given set of constraints. Associated constraints are usually classified into two types: hard constraints

and soft constraints. Hard constraints should under no circumstances be violated (e.g. no person is

assigned to two or more events simultaneously). Soft constraints are desirable but not essential to satisfy

(e.g. two events should/should not be consecutive, one event should occur before another, etc).

Course timetabling is a multi-dimensional assignment problem where courses are assigned to classrooms

and timeslots7. Early approaches to timetabling have included integer linear programming17 and graph

colouring techniques18, 19. More recently, various meta-heuristic techniques have been very successful in

a wide range of timetabling problems. In course timetabling, Tabu Search was investigated20 and

employed in solving real-world problems21 and the results were encouraging. Simulated Annealing has

also been investigated for course timetabling problems22, 23. The Great Deluge algorithm was employed

with some success24. Genetic Algorithms and Evolutionary Algorithms have been studied widely by

researchers25, 26, 27 in course/school timetabling and approaches that involve hybridising GAs with local

search techniques, sometimes called Memetic Algorithms28, 29 have shown promising results in general

university timetabling. Constraint-based techniques have also been employed widely in timetabling30, 31,

32. Complexity issues in course timetabling have also been studied in some depth33, 34. A wide variety of

research papers on different types of timetabling are also available8, 9, 10, 11, 12. In this paper we

investigate CBR for course timetabling. In particular we present new retrieval and adaptation

mechanisms and test their effectiveness in computational experiments based on our previous work35, 36.

The research presented in this paper is partly motivated by the goal of developing timetabling

Journal of Operations Research Society, 57(2): 148-162, 2006.

 3

approaches that are less dependent on problem specific information than the current state of art and that

could, therefore, operate on a wide range of problems. Another motivation is the goal of developing

effective initialisation methods for the more widely studied local search approaches.

Case-Based Reasoning

Case-based reasoning (CBR)37, 38 is a knowledge-based paradigm where new problems are solved by

using previous experience or knowledge. Previously solved problems and their good solutions are

stored as source cases in a case base. New problems are solved by searching for the most similar source

cases and reusing/adapting their solutions or problem solving strategies.

Aamodt and Plaza39 presented a CBR framework where 4 “REs” describe the problem solving process

that is represented by CBR. They are RETRIEVAL, REVISON, REUSE and RETAIN. We illustrate

the CBR system scheme in Figure 1. The new problem to solve is input into the CBR system and

compared with the source cases by using a particular similarity measure. The solutions of the most

similar source case are retrieved and will usually be revised by employing rules or heuristics. The

adapted solution is then reused for the problem in hand. More retrieval may need to be carried out if the

adapted solution is unsuitable (for whatever reason). Some CBR systems retain the newly solved

problems as new source cases thus the CBR system has the ability to learn new knowledge throughout

its lifecycle. For a more detailed treatment of CBR see Leake (1996)38.

FIGURE 1 ABOUT HERE.

In CBR, a similarity measure is used to assess the similarity between the problem in hand and the

source cases. In most CBR systems, cases are usually represented by a list of feature-value pairs which

represents the values of different features of the problem. The similarity measure can be defined as a

nearest neighbourhood approach which sums the differences of values of the features38. It is noted that

in complex problem domains, the issue of case representation is particularly important40 and usually it

leads to more complex similarity measures. The cases need to be described in such a way that the

comparisons between them lead to retrieved source cases which are applicable for the new problems.

The intuitive motivation for exploring CBR for timetabling come about by observing that in the real

world, newly generated timetables are often based on previous similar timetables. Indeed, altering “last

year’s timetable” is an approach favoured by many timetabling officers in schools and universities

across the world. A paper which analyses the results of a questionnaire which was completed by

Journal of Operations Research Society, 57(2): 148-162, 2006.

 4

administrators in 56 British universities clearly demonstrates that (at least in terms of timetabling) the

practice of “re-using part of last year’s timetable” is employed by a significant number of the

universities that responded41. Of course, there is no guarantee that last year’s timetable represents a high

quality solution. Indeed, in many cases it will not. However, it is often the case that a significant amount

of effort is expended in universities to produce a “good” timetable (where “good” is defined by the

user’s view of what they require). In subsequent years they often “tweak” this “good” timetable because

they know (or at least believe) that it is good and want to minimise effort. This work is motivated by

situations where institutions have generated a high quality solution and re-use a similar solution each

year.

In this particular paper, we work with specially constructed timetabling problems. We are moving

towards real world problems. However, because of the nature of case based reasoning, we first need to

work with data whose structure we understand (unlike the situation with real world problems) and this is

what we are undertaking in this paper. Our goal is to understand how case based reasoning might work

on large problems whose structure we understand. The idea is that by doing this, we are better placed to

develop a system that can work well when we later apply it to real world data.

We believe that CBR is a valuable technique for timetabling problems that usually have complex

constraint features as it indirectly puts emphasis on constraint-directed search (in that it is guided by

solutions to “similar problems”). Current state of the art scheduling methodology tends to incorporate

very specific information into the general meta-heuristic methods42, 43, 44, 45. The standard formulations

of the basic meta-heuristic approaches are, of course, quite general in that they can be (and have been)

applied to a wide range of problems. However, in order to be implemented on those problems, a

considerable amount of research expertise and programming effort had to be employed. There is often a

significant amount of problem specific information hard coded into the methods. Once these approaches

are developed they cannot usually be applied to other problems without significant redesign. Indeed, in

the case of examination timetabling, Carter and Laporte point out that many exam timetabling systems

have been developed for different instances of the same problem i.e. they are specifically developed for

the institution in which they were built7.

The main point is that while the meta-heuristic methodologies are in themselves general, they require

significant “tailoring” by experts to enable them to be applied to real problems. Once tailored, these

approaches are often far too problem specific to be transferred to other problems. So if the constraints

Journal of Operations Research Society, 57(2): 148-162, 2006.

 5

are altered then usually the method needs to be altered and this is often a very challenging and

demanding task. However, case based reasoning approaches do not have such “specific” information

hard coded into them. So a timetabling methodology which draws upon case based reasoning holds

promise for being more generally applicable (without further re-design and programming effort) and

this was another motivation for studying this approach. There are many real world cases where one

institution’s “good” constraint is another institution’s “bad” constraint. Different institutions have very

different ideas about what constitutes a good timetable. This point is clearly concluded (in the case of

examination timetabling)41. It is possible to handle different constraints in meta-heuristic methods but

by doing so we make the method more and more specific to those constraints. The more we do it, the

less likely the method can be re-used in another situation. The point with CBR is that it is not reliant

upon constraint specific information in the same way and so there is potential for a greater level of

generality. A large amount of work on CBR has been conducted in a wide range of problem domains

which are usually ill-structured including planning, design, advisory services, diagnosis and health46.

There is a growing body of literature on methods that attempt to raise the level of generality of

optimisation/search systems47.

Another major motivation for our approach is to investigate whether or not CBR offers promise as an

initialization method for local search approaches which have been widely applied in course timetabling

(and indeed in a range of other scheduling problems). The overall question we are seeking to answer

here is whether it is worthwhile to build a CBR system to provide us with a “good” solution which can

be “fine tuned” by a local search approach to generate a “very good” solution.

As mentioned above, timetabling problems are, of course, a type of scheduling problem. Over the last

decade or so there have been a few publications that specifically investigate CBR for some scheduling

problems. The CBR scheduling systems that have been described in the literature include the

SMARTplan system48 that models the abstraction of problems of airlift management; the Clavier

system49 for a real-world autoclave management and loading problem; the CBR-1 system50 where a case

base was organised as a semantic net for dynamic job shop scheduling; and the CABINS system51 that

models the heuristic repair actions as cases to interactively repair schedules in job shop scheduling.

Studies of some other approaches have also been carried out for steel production52, traditional travelling

salesman problems53, single machine scheduling problems53, nurse rostering54, 55, dynamic shop floor

problems56 and production control problems57. Some work also addresses research issues in the

Journal of Operations Research Society, 57(2): 148-162, 2006.

 6

applications of CBR systems to a wide range of scheduling environments and has presented general

frameworks58, 59. To our knowledge, no other research has been reported that has investigated CBR

specifically for educational timetabling problems except our own work35, 36.

Problem Decomposition in Timetabling and CBR

Decomposition and partition techniques have been studied with some success in timetabling problems,

which are usually very large and complex. The basic idea is to decompose the problem into a set of sub-

problems that are small enough to be easily solved by using simple approaches. Then these (hopefully

high quality) sub-solutions will be combined to provide a solution for the original problem. The

difficulty, of course, is in “re-constructing” the sub-solutions to generate a “final” solution to the whole

problem. The method has to avoid making assignments in “earlier” sub-problems which lead to

situations where events in later sub-problems cannot be assigned to any timeslot without breaking hard

constraints. Carter60 presented an algorithm in course timetabling that decomposed the courses into

relatively independent clusters, which can be solved more easily using reasonably simple approaches.

Robert and Hertz61 decomposed course timetabling problems into a series of easier assignment type

sub-problems. Weare62 also studied decomposing the timetabling data to produce shorter flexible length

timetables. Burke and Newall63 presented a multi-stage algorithm in an evolutionary approach that

decomposed examination timetabling problems by using graph colouring heuristics, and the sub-

problems were solved by using a memetic approach28.

In CBR, decomposition techniques have been mostly employed successfully in design and planning

domains where the cases were decomposed by sub-goals or abstraction and the case base was usually

organised hierarchically64, 65.

A Previously Presented Structured CBR Approach

In previous work the authors have shown that a structured CBR approach35, 36 worked well in solving

course timetabling problems but was incapable of providing good solutions for large problems. This is

mainly because the case base storing the cases represented as attribute graphs grows significantly when

the size of the cases increases. In this paper, we present an approach that partitions large timetabling

problems into smaller solvable sub-problems whose solutions can be obtained by retrieving multiple

cases from the case base. It draws upon the structured CBR approach35, 36.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 7

The next section presents a brief introduction to the structured CBR system. The new partitioning and

adaptation approaches within this structured CBR system are then described. Computational

experiments on the new approaches are reported and analysed. This is followed by concluding

comments and directions for future work.

The Structured CBR Approach

Structured Cases in CBR

In many traditional CBR papers, a feature list is employed to represent cases38. The similarity between

cases is obtained by the nearest-neighbour approach that calculates a weighted sum of the similarities

between each pair of features in each case. However, Mantaras and Plaza40 pointed out that the feature

list representation is the most severe limitation of existing CBR systems for knowledge-rich

applications with higher-order relations between features. Timetabling problems are constraint

satisfaction problems that typically have a wide range of related constraints. Therefore the traditional

case representation cannot capture all of the complex constraints which often significantly determine the

solutions. Timetabling problems require much more complex case representations.

Structured representation has been successfully employed in CBR in some complex application areas.

Borner et al. employed a structural similarity measure to assess the maximal common sub-graphs

between cases66 in a design task. In the literature, different approaches have been used to determine the

required structure for complex cases. In particular, researchers have utilised semantic nets67, graphs68, 69

and trees70. The FABEL project71 provided more information on structured CBR. Gebhardt72

categorised the existing CBR systems employing structured cases into five groups: restricted geometric

relationships, graphs, semantic nets, model-based similarities and hierarchically structured similarities.

In our approach, attribute graphs are employed to handle the level of knowledge required to tackle

course timetabling problems35, 36. The constraints are represented by edges between each pair of

courses, which are represented by vertices. The retrieval process described in this paper is based on the

information about the constraints and attempts to find structurally similar cases for reuse. The over-

riding motivation is that previous timetables with similar constraints will provide a sensible starting

point for solving a new timetabling problem.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 8

Attribute Graph Representation and Retrieval Process

Attribute graphs have been used by the authors to structurally represent the requirements in course

timetabling problems35. Attributes associated with vertices and edges are shown in Table 1 and Table 2

respectively.

TABLE 1 AND TABLE 2 ABOUT HERE.

As an illustrative example, Figure 2 presents part of an attribute graph representing a course timetabling

problem. The notation x:y denotes the label x of an attribute and its value y. MathB is labelled 0

meaning that it should be held just once a week. LabA and MathA (labelled 1 with values 2 and 3) will

be held 2 and 3 times per week, respectively. LabB and Physics are labelled 2 and 3 respectively with

values 2, which means that they should/should not be assigned into timeslot 2, respectively. The edge

labelled 4 denotes that LabA should be held before LabB if possible. MathB and Physics should be held

consecutively while LabB and MathA should not. Courses adjacent to edges labelled 7 should not be

held simultaneously. In our approach, room constraints in course timetabling are considered separately

in the adaptation phase after a set of potential candidate solutions are obtained from the CBR

methodology.

FIGURE 2 ABOUT HERE.

The case base is built as a decision tree, storing cases represented by attribute graphs36. All the possible

(partial) permutations of the courses in the cases are stored hierarchically by clustering the ones

representing the similar (sub) attribute graphs under the same node in the tree. The goal of the retrieval

process is to find cases that are structurally similar (have similar constraints) to the new case. In the

retrieval, branch and bound is used to reduce the size of the search tree by cutting the branches storing

graphs or sub-graphs that are not similar to those of the new case. The new case is classified in the

decision tree to a set of nodes with similar graphs or sub-graphs, which are then reused in attempting to

solve the new case. The similarity measure takes into account the cost of the adaptation of the retrieved

case to meet the requirements of the new problem. Different levels of values of the costs are assigned

empirically to the substitutions, deletions and insertions of vertices or edges in the new cases to make

them the same as the retrieved cases. They are assigned to approximate the cost for the differences

between sub-graphs and tested upon the difference they make for retrieving reusable and applicable

sub-graphs. More details about the decision tree algorithm and the retrieval process are presented in our

previous work36.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 9

Partitioning Large Timetabling Problems by Multiple-Retrieval

Multiple-Retrieval Approach

The previous retrieval process36 retrieves those cases from the case base that are graph or sub-graph

isomorphic, or that have similar graphs or sub-graphs with the new case. Good results on a large

number of experiments provided clear evidence to indicate that this approach takes less effort to get

high quality solutions based on the retrieved structurally similar cases. It worked well in solving

problems that are smaller or almost the same size as the cases in the case base. However, in solving

problems that are much larger, the small cases retrieved by employing this approach are incapable of

providing much help in finding a good solution. The case base only stores relatively small cases, as the

size of the decision tree that stores all the possible permutations of the attribute graphs increases

significantly when the number or the size of the cases increases. With only limited help from a single

retrieved case with a small matched part, the system may not be able to find good solutions for large

timetabling problems.

These observations provide the motivation for developing the new multiple-retrieval approach

presented in this paper. In the new approach, in each retrieval, cases that are similar to part of the un-

matched new case are retrieved and the matched part of the new case is partitioned from it as a sub-

problem. The partition is made by performing the retrieval process recursively. The recursive retrievals

partition the problem into smaller solvable sub-problems based on the retrieval process employed in the

previous CBR system36. A schematic diagram illustrating the process is presented in Figure 3.

FIGURE 3 ABOUT HERE.

A new graph is produced to represent the remaining part of the new case in each retrieval based on that

of the last retrieval cycle. In each iteration, the following steps are performed on the attribute graph of

the new problem:

(1) The matched part of the attribute graph of the new case in the last cycle is replaced by a super

vertex. The attribute of the vertex is set as 0 (ordinary course).

(2) The super vertex in the new attribute graph keeps the edges that are originally adjacent to the

matched vertices. When there is more than one edge between a vertex in an un-matched sub-

graph and the matched vertices, then the attributes of the newly combined edges are decided

by the following predefined priorities:

Journal of Operations Research Society, 57(2): 148-162, 2006.

 10

• In order to preserve the feasibility of the final solution, the label 7 that denotes conflict

has the highest priority and overwrites the other label.

• In other cases, the new attribute of the new edge will be set as one of the original ones.

By setting conflict as the highest priority, we can guarantee that the combined final solutions (the

combining process is shown in the next section) will always be feasible (i.e. satisfy the hard

constraints). The newly generated attribute graphs structurally represent the relationships between the

matched and un-matched part of the original graph. The attributes of the combined edges approximate

(but do not exactly represent) the previous attributes. The possible violations of soft constraints will be

fixed in the adaptation phase. Figure 4 illustrates how the new attribute graphs are generated. The

vertices 1, 2 and 5 that match a case in the i-1th retrieval are combined into a super vertex Si for the ith

retrieval. All the edges adjacent to these matched vertices are now adjacent to Si. In each retrieval, the

matched part of the problem is partitioned as a sub-problem that may be solved by adapting the

retrieved cases for it. The same process is carried out for the i+1th retrieval. This process stops when

no more matched cases can be retrieved for a newly produced graph.

FIGURE 4 ABOUT HERE.

This multiple-retrieval approach is carried out on the same decision tree and partitions the problem by

utilizing the case base rather than by employing fixed rules. It generates sub-problems automatically

depending upon the cases in the case base. Usually more than one possible match can be found for each

sub-problem that is partitioned. The most similar cases are used to generate a number of candidate

timetables. The one with the lowest penalty (calculated by formula (2) below) is selected as the best

solution for the new timetabling problem.

The similarity measure in the new multiple-retrieval approach is shown in formula (1). The individual

similarity between each sub-problem and the retrieved cases for it is calculated in the same way as when

using single retrieval36, considering the costs of the substitutions, deletions and insertions of the vertices

and edges. In our approach we assign costs by their effect on adaptation: substitution costs are lower

than deletion and insertion costs; deletion costs are lower than insertion costs. The costs are set based

upon experience. The sum of all the individual similarities is divided by the sum of the overall costs in

all retrievals (P + A + D) and subtracted from 1, as shown below:

(1)

)(

)(
1),(1 0 0 0

21 DAPr

dap

ttS

r n

b

m

i

k

j
jib

++

∑ ∑ ∑ ∑++
−= = = =

Journal of Operations Research Society, 57(2): 148-162, 2006.

 11

The notation used in formula (1) is described as follows:

r is the number of retrievals that need to be carried out on the new case until no more sub-problems

can be partitioned from it;

pb is the cost of substituting a vertex or edge of the new case t1 with the corresponding vertex or

edge in the retrieved case t2 in every retrieval;

dj and ai are the costs of deleting and inserting a vertex or edge into or from the new case t1;

n is the number of the matched vertices and edges in every retrieval;

m and k are the numbers of vertices and edges needed to be inserted into or deleted from the new

case t1, respectively;

P is the sum of the substitution cost of every possible pair of vertices or edges between new case t1

and retrieved case t2;

D and A are the sums of costs of inserting and deleting all of the vertices or edges into or from the

new case, respectively.

Adaptation on Multiple Retrieved Cases

Generating sub-solutions. Before generating the whole solution we need to identify the sub-solutions

based on each retrieved case. The sub-solution for each sub-problem is firstly obtained by substituting

every matched course in the retrieved solution and deleting all the courses that are not matched. Then

we will have a set of sub-solutions for all the sub-problems. After this we will have a set of partial sub-

solutions for all the sub-problems. We can expect that the super vertices are either in the solutions of

the sub-problems, or in the list of un-matched vertices.

Combining sub-solutions. Starting from the sub-solution of the last sub-problem, we substitute the

super vertices in all of the sub-problems with their corresponding sub-solutions. This process is

repeated until all of the sub-solutions are combined into a final solution (without any super vertices left)

for the original new case. The combined solution is guaranteed to be feasible as we never release the

constraints and all the sub-problems are feasible.

Figure 5 illustrates the combining process. Suppose we have obtained the ith and jth sub-solutions

based upon the retrieved cases for the ith and jth sub-problems partitioned in Figure 3. We present the

sub-solutions as lists of courses in timeslots, represented as boxes in Figure 4. These sub-solutions are

Journal of Operations Research Society, 57(2): 148-162, 2006.

 12

combined by substituting the corresponding super vertex Sj by the jth sub-solution 3 6 7 Si 4. Then we

substitute Si by the ith sub-solution 2 5 1. After substituting all the super vertices, a partial solution

combining all the sub-solutions is generated for the original new case.

FIGURE 5 ABOUT HERE.

The combined partial solution is adapted to generate the final solution. The adaptation process uses the

following basic timetabling method to allocate rooms and improve the CBR generated solution, taking

into consideration the soft constraints presented in Table 1 and Table 2.

1. All the courses in the combined solution are assigned to the smallest feasible rooms available;

2. All the courses that cannot be assigned to rooms or violate the soft constraints are unscheduled

and inserted into an unscheduled list. The courses that are not yet scheduled are also collected;

3. The courses in the unscheduled list are then rescheduled by a graph heuristic method with

tournament selection considering the room constraints, which we will explain below.

Graph heuristic with tournament selection. The graph heuristic with tournament selection (GHT)73 is

used to schedule the courses in the unscheduled list one by one to the first timeslot and room with no

violations of any constraints (penalty-free). Tournament selection is used to select the first course every

time from a randomly chosen subset of courses of the unscheduled list sorted decreasingly by their

importance (number of constraints with the other courses). Those courses that cannot be assigned to a

penalty-free timeslot will be scheduled to the timeslots that lead to the lowest penalty after all the others

have been scheduled. When a tie is met, the course is randomly assigned to an available timeslot. A

course will be left as unscheduled if it cannot be scheduled without violating a hard constraint or no

room is available.

The GHT approach forms the basis of the Optime examination timetabling system which has been

commercially implemented in institutions in Australia, France, New Zealand, UK and the USA. Optime

is being marketed by eventMap Ltd (a company which is a spin out of the Automated Scheduling,

Optimisation and Planning Group at University of Nottingham). It quickly produces solutions that the

users consider to be of high quality. Future work will enrich the case base with other “good” solutions

but we must keep in mind that one institution’s good solution is another institution’s bad solution.

Penalty function. The penalty function given in formula (2) is used to evaluate every timetable

generated in the experiments carried out in the next section.

Penalty(t) = 100 U(t) + 5 S(t) (2)

Journal of Operations Research Society, 57(2): 148-162, 2006.

 13

U(t) is the number of courses not scheduled. They are assigned a high cost of 100. Violations of soft

constraints, indicated by S(t), are assigned a relatively low cost of 5.

Experiments and Results

We have carried out an extensive series of experiments on specially constructed data sets. At this stage,

we need to analyse the behaviour of the multiple-retrieval approach on data that has been constructed in

a systematic way. We are specifically not working with real data at this stage because we do not

understand the structure of arbitrary large real world data sets. In order to understand how the CBR

approach is working we need to specifically construct the data so that we understand the structure. By

experimenting with data whose structure we understand we are better placed to develop a system that

can work well when we later apply it to real world data. We have no say over the structure of the real

world data but if data is causing a CBR system to act in a certain way, we need to be aware of the

structure of that data in order to understand why. The point is that if we construct the data, we know

what we have and have a better chance of understanding what features are playing a role. If we just take

arbitrary real world data sets we have no idea about the specific structure of these problems and it will

be so much more difficult to understand how they are affecting the system during the development

stage.

A large number of experiments have been carried out to solve timetabling problems of different size on

case bases with different types and sizes of cases. We define two types of cases in the case bases:

simple and complex (of small or large size). In complex cases, every course has at most 4 (and at least

1) constraints. Courses in simple cases have at most 3 (and at least 1) constraints. Small cases have 6 to

10 courses and larger cases have 10 to 15 courses. Attributes of the courses are randomly generated.

The solutions of these cases in the case bases are obtained by using Graph Heuristic with Tournament

Selection (GHT)73. Recall that this method is currently implemented in a commercial system.

Nine sets of new cases are considered each with 20 different new cases of the same size. The first of

these sets has 10 courses; the second has 15 courses and so on up to 50 courses. The GHT is used to

solve these cases from scratch. These solutions are then compared with those from the multiple-retrieval

CBR approach on different case bases.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 14

The second major aspect of our experiments explores the employment of the multiple-retrieval CBR as

the initialisation approach for Hill Climbing, Simulated Annealing and Tabu Search in order to

determine whether CBR might provide solutions which are a good starting point for meta-heuristic

methods.

Case Bases with Simple Cases

The first group of experiments is carried out on a set of case bases containing 5, 10 or 15 simple cases

of small or large size (3 X 2 = 6 case bases in all). All the new cases are then input to these 6 case bases

to be solved by using the multiple-retrieval approach with adaptation employing the GHT. These

solutions are compared with those generated from scratch by the same GHT. Figure 6 presents two

charts and a table displaying the average penalties of the timetables of 20 different new cases in each of

the nine sets on the 6 case bases, and those generated by GHT alone. The curves in the chart are

logarithmic trendlines that are drawn based on the results that are plotted in the chart. Rather than

showing precise curves of the result points, they present the trends of the penalties of the timetables for

cases over a range of sizes. The best average result for each new case type is highlighted in the table.

FIGURE 6 ABOUT HERE.

We can see that the multiple-retrieval CBR approach with GHT as the adaptation method produces

lower penalty timetables than those obtained by using the GHT alone to generate the timetables from

scratch. It is observed from the trendlines of the results from the charts that the penalties of the

timetables obtained by using the CBR approach with different case bases are close to each other but, in

general (7 out of 9), case bases with larger cases provide timetables with slightly higher penalties on

average over the 20 different new cases.

Case bases with Complex Cases

Another set of experiments has been undertaken on the nine sets of new cases to investigate the use of

case bases with complex cases. Figure 7 shows the average penalties of the timetables obtained from

case bases with 5, 10 or 15 large and small complex cases. Again, in general, case bases with small

cases provide better results than those with large cases (7 out of 9). In all of these cases, GHT on its

own obtained solutions with a higher penalty value than the CBR approach that uses GHT as the

adaptation method.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 15

FIGURE 7 ABOUT HERE.

Comparison and Evaluation on Case Bases with Small Cases

From all the experiments carried out on different case bases, we can observe that case bases with both

large and small cases provide better results than those obtained by the GHT without employing the

CBR approach. CBR with case bases of smaller cases has better performance in terms of lower penalty

timetables for the new cases of different size than CBR with large cases. Smaller sub-graphs in the

retrieved multiple sub-solutions seem to provide a better basis for the adaptation to produce timetables

of higher quality. Timetables combined from larger sub-solutions also have lower penalties than those

obtained by the GHT method alone. However, the sub-solutions provided by retrieving larger cases are

much more likely to be destroyed in the adaptation to fulfil the new constraints of the new cases and

thus reusing smaller sub-solutions yields better results than when reusing larger sub-solutions upon

solving the same problems.

The results of our experiments on case bases of small simple and complex cases are illustrated in Figure

8. We can see that CBR with case bases of complex cases provides better results than those produced

by case bases of simple cases. Also, our previous tests36 showed that complex cases in the case base

provide more scheduling structures and lead to a higher proportion of successful retrievals than those

from simple cases. So by building a case base of small complex cases, the multiple-retrieval CBR

approach will perform the best in reusing previous small scheduling structures to provide a good basis

for generating high quality timetables.

FIGURE 8 ABOUT HERE.

Comparison of Retrieval Time on Different Case Bases

The retrieval time of the multiple-retrieval CBR approach varies on different case bases for different

new cases. We do not present the solution times of adaptation as they are just a few seconds in the worst

case. The experiments are run on a Pentium III 800 Hz PC with 128MB memory. The overall retrieval

times for new problems on the case bases with simple and complex cases are presented in Figure 9,

showing that retrieval in case bases with small cases takes longer than with large cases. Retrieval in the

case base with 5 small cases requires the longest time because the case base will provide small sub-

Journal of Operations Research Society, 57(2): 148-162, 2006.

 16

solutions in every retrieval. Thus more retrievals on the case base are needed for the new case. Also the

decision tree built from complex cases is much larger than that built from simple cases because a larger

number of sub-graph structures is stored in the decision tree. Thus retrieval on the decision tree built

from small complex cases takes much more time. With the limited number of scheduling structures that

5 simple cases can provide, more time is needed to find a match from the case base. Large cases

provide larger sub-solutions for the new cases and thus less retrievals are needed so retrievals in case

bases of large simple course cases need less time.

FIGURE 9 ABOUT HERE.

The retrieval time for case bases of complex cases shows a similar pattern to that of simple cases. The

longest retrieval time is needed for the case base with 5 small complex cases. The case bases storing

complex cases are much larger than those of simple cases, so the retrieval time is longer than that for

the simple cases addressing the same new case.

Multiple-Retrieval CBR as the Initialisation Method for Local Search (Meta-)Heuristics

The results of our experiments led to a natural question: would the suggested CBR approach provide a

good starting point for local search (meta-)heuristics such as Hill Climbing, Tabu Search and Simulated

Annealing. The motivation here is that the CBR approach might be able to generate good solutions

which local search could then “fine tune”. With this question in mind, we carried out another set of

experiments to investigate the possibility of employing the multiple-retrieval CBR with small complex

cases as an initialisation method for local search methods. We compare the results from this method

with results that employ initialisation by GHT alone. The table in Figure 10 presents the penalties of

timetables generated by local search methods with the multiple-retrieval CBR and with GHT as the

initialisation methods. The figures presented in parentheses give the number of new cases that cannot

obtain feasible solutions by the specific methods. The best average results over all of the problems with

all of the methods are presented in bold in the table. Due to the fact that not all of the new cases can

obtain feasible solutions by Hill Climbing, we present only the results from Simulated Annealing and

Tabu Search in the chart in Figure 10. We can observe that all the local search methods with multiple-

retrieval CBR as the initialisation method significantly outperform local search methods with GHT as

initialisation. Recall that GHT is a highly effective method which is commercially implemented in

institutions around the world. The multiple-retrieval CBR does indeed provide a good starting point for

Journal of Operations Research Society, 57(2): 148-162, 2006.

 17

the local search methods for these problems. It is particularly interesting that multiple-retrieval CBR

with small complex cases as an initialisation method for Simulated Annealing provides the best results

over all the other methods investigated in this paper.

FIGURE 10 ABOUT HERE.

Conclusions

This work demonstrates the value of investigating CBR for solving course timetabling problems. The

knowledge implicitly embedded in previous high quality timetables is modelled and stored in a case

base to help provide good quality timetables quickly and to avoid a large amount of computation and

searching time. The multiple-retrieval CBR can be employed on timetabling problems of different sizes.

Large timetabling problems are tackled by a partitioning process that is carried out recursively to

automatically decompose the problems into smaller solvable sub-problems. The solutions of the

partitioned sub-problem can be obtained by adapting high quality timetables from the retrieved

problems that have similar constraints. High quality scheduling structures in the sub-solutions found by

multiple retrievals are retained after the combination in the adaptation phase. These structures provide

good scheduling blocks for the final solution of the new problem. By employing this approach, cases in

the case base that are much smaller than the new problem to be solved can be reused repeatedly for

solving parts of the new problem and thus the case base does not have to contain a large amount of

large cases. This avoids the memory problem that plagues many structured CBR systems.

For every sub-problem that has been partitioned, there are always some retrieved cases (though with

different similarities) for reuse. The differences between the retrieved cases and parts of the new

problem are recorded and provide the adaptation information, leading to an efficient adaptation-guided

retrieval. Thus the retrieved cases are guaranteed to be adaptable. A similarity measure takes into

consideration how difficult it is to adapt these blocks in the retrieved cases according to the differences

recorded to fulfil the constraints of the original problem.

One of the main motivations for the research described in this paper is the goal of developing a

timetabling system that can operate at a higher level of generality than current technology can support.

Such systems would, of course, be much less resource intensive to implement and would be applicable

to a wider range of problems. The aim here is not (necessarily) to beat the well-studied meta-heuristic

Journal of Operations Research Society, 57(2): 148-162, 2006.

 18

approaches that tend to be very problem specific. Rather, the aim is to develop systems that can deal

with a wider range of problems and yet can still produce solutions that are comparable with the problem

specific meta-heuristics. Meta-heuristic approaches to solve timetabling problems can be sensitive to

initial parameter settings. The CBR approach, of course, has no such drawbacks, and as such, it may

offer significant opportunities in the development of fundamentally more general

timetabling/scheduling systems.

On the other hand, research into meta-heuristic methods has provided significant advances in

timetabling technology. In addition, Burke, Newall and Weare29 and Corne and Ross74 have shown that

appropriate initialisation strategies can improve the overall performance of timetabling meta-heuristics.

Another potential impact that CBR could have on timetabling research is in its employment as an

initialisation method for meta-heuristic methods. We have demonstrated in this paper that the multiple-

retrieval CBR approach obtains good sub-solutions for the new problem and provides a good

initialisation strategy for local search (meta-)heuristics such as Hill Climbing, Tabu Search and

Simulated Annealing. Indeed, the CBR approach is able to employ past experience about solving

“similar” problems to provide a high quality solution to the problem in hand. The local search (meta-

)heuristics are then able to take such solutions and “fine-tune” them to provide further improvement.

Some Future Research Directions

A large number of experiments have been carried out in this paper. Future work will include testing our

multiple-retrieval CBR system on sets of real-world benchmark course timetabling data. A range of

benchmark course timetabling problems have been made available at

http://www.idsia.ch/Files/ttcomp2002/ and http://iridia.ulb.ac.be/~msampels/ttmn.data/. These problems

have been recently addressed in75, 76, 77 and 24, 78. We are currently putting together some more

benchmark course timetabling problems. They are available at http://www.asap.cs.nott.ac.uk/themes/tt

and the authors welcome further contributions from other timetabling researchers. Current research in

course timetabling is trying to provide a CBR mechanism that can be easily adapted to solve a range of

course timetabling problems. We also believe that, because of the general modelling method used, the

basic mechanism of our structured multiple-retrieval CBR approach will be applicable in a range of

problems (where the problems can be modelled as attribute graphs) like educational exam timetabling,

and other types of constraint satisfaction problems.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 19

Of course, a major research question for future work is how to employ CBR for large real-world

problems because the decision tree can grow exponentially. However, there is some promising recent

research work which can help to deal with this problem. Some meta-heuristic methods including

Memetic Algorithms79, 80 that have been studied recently for graph matching may be potentially

beneficial for the sub-graph matching in our CBR approach, but this hypothesis has to be tested as the

subject of future work.

Acknowledgements

We would like to thank Dr. Jim Newall for his comments on this work. We would also like to

acknowledge the invaluable comments from the anonymous referees. One referee, in particular, was

extremely helpful in substantially improving this paper.

References

1. Wren A and Rousseau J-M (1995). Bus driver scheduling - an overview. In: Daduna JR, Branco I and Paix'ao

JMP (eds.). Computer-Aided Transit Scheduling. Springer-Verlag, 173-187.

2. Easton K, Nemhauser G and Trick M (2004). Sports Scheduling. In: Leung J (ed.) Handbook of Scheduling:

Algorithms, Models, and Performance Analysis, Chapter 52. Published by CRC Press, USA.

3. Cheang B, Li H, Lim A and Rodrigues B (2003). Nurse rostering problems – a bibliographic survey. European

Journal of Operational Research. 151: 447-460.

4. Burke E, De Causmaecker P, Vanden Berghe G and Van Landeghem H. (2004). The state of the art of nurse

rostering. Journal of Scheduling, 7(6): 441-499.

5. Carter M and Laporte G (1995). Recent developments in practical examination timetabling. In: Burke E and

Ross P (eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 1st International

Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 3-21.

6. Bardadym V (1995). Computer-aided school and university timetabling: the new wave. In: Burke E and Ross

P (eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 1st International

Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 22-45.

7. Carter M and Laporte G (1997). Recent developments in practical course timetabling. In: Burke E and Carter

M (eds.): The Practice and Theory of Automated Timetabling: Selected papers from the 2nd International

Conference. Lecture Notes in Computer Science 1408, Springer-Verlag: Berlin, pp 3-19.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 20

8. Burke E and Ross P (1995). The Practice and Theory of Automated Timetabling: Selected Papers from the 1st

International Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin.

9. Burke E and Carter MW (1997). The Practice and Theory of Automated Timetabling: Selected Papers from

the 2nd International Conference. Lecture Notes in Computer Science 1408, Springer-Verlag: Berlin.

10. Burke E and Erben W (eds.) (2000). The Practice and Theory of Automated Timetabling: Selected Papers

from the 3rd International Conference. Lecture Notes in Computer Science 2079. Springer-Verlag: Berlin.

11. Burke E and de Causmaecker P (2002). The Practice and Theory of Automated Timetabling: Selected Papers

from the 4th International Conference. Lecture Notes in Computer Science 2740, Springer-Verlag: Berlin.

12. Burke E and Trick M (2004). The Proceedings of the 5th International Conference on the Practice and Theory

of Automated Timetabling. Pittsburgh, USA.

13. Wren A (1995). Scheduling, timetabling and rostering - a special relationship? In: Burke E and Ross P (eds.)

The Practice and Theory of Automated Timetabling: Selected papers from the 1st International Conference.

Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 46-75.

14. Burke E, Petrovic S (2002). Recent research directions in automated timetabling. EJOR, 140(2): 266-280.

15. Petrovic S and Burke E (2004). University timetabling. Leung J (ed.) Handbook of Scheduling: Algorithms,

Models, and Performance Analysis. Chapter 45. Published by CRC Press.

16. Schaerf A (1999). A survey of automated timetabling. Artificial Intelligence Review 13: 87-127.

17. Carter M (1986). A lagrangian relaxation approach to the classroom assignment problem. IFOR 27(2): 230-

246.

18. de Werra D. (1985). Graphs, hypergraphs and timetabling. Methods of Operations Research (Germany F.R.).

49: 201-213.

19. Burke E, Kingston J and de Werra D (2004). Applications to timetabling, In: Gross J and Yellen J (eds.),

Handbook of Graph Theory, Chapman Hall/CRC Press. pp 445-474.

20. Schaerf A (1996). Tabu search techniques for large high-school timetabling problems. Proceedings of the

Thirteenth National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA. pp 363-368.

21. Costa D (1994). A tabu search for computing an operational timetable. EJOR, 76: 98-110.

22. Abramson D (1991). Constructing school timetables using simulated annealing: sequential and parallel

algorithms. Man. Sc. 37: 98-113.

23. Elmohamed MAS, Coddington P and Fox G (1997). A comparison of annealing techniques for academic

course scheduling. In: Burke E, Carter M (eds.) The Practice and Theory of Automated Timetabling: Selected

Papers from the 2nd International Conference. Lecture Notes in Computer Science 1408, Springer-Verlag:

Berlin, pp 92-112.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 21

24. Burke E, Bykov Y, Newall J and Petrovic S. (2003). A time-predefined approach to course timetabling.

Yugoslav Journal of Operations Research, 13(2): 139-151.

25. Erben W and Keppler J (1995). A genetic algorithm solving a weekly course-timetabling problem. In: Burke E,

Ross P (eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 1st International

Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 198-211.

26. Paechter B, Cumming A and Luchian H (1995). The use of local search suggestions lists for improving the

solutions of timetable problems with evolutionary algorithms. In: Fogarty T (ed.) AISB Workshop on

Evolutionary Computing. Lecture Notes in Computer Science 993, Springer-Verlag, pp 86-93.

27. Carrasco M and Pato M(2000). A multiobjective genetic algorithm for the class/teacher timetabling problem.

In: Burke E, Erben W (eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 3rd

International Conference. Lecture Notes in Computer Science 2079, Springer-Verlag: Berlin, pp 3-17.

28. Burke E, Newall J and Weare R (1996). A memetic algorithm for university timetabling. In: Burke E, Ross P

(eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 1st International

Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 241-250.

29. Burke E, Newall J and Weare R (1998). Initialisation strategies and diversity in evolutionary timetabling.

Evolutionary Computation Journal (special issue on scheduling) 6(1): 81-103.

30. Lajos G (1996). Complete university modular timetabling using constraint logic programming. In: Burke E,

Ross P (eds.) The Practice and Theory of Automated Timetabling: Selected Papers from the 1st International

Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 146-161.

31. Deris SB, Omatu S, Ohta H and Samat PABD (1997). University timetabling by constraint-based reasoning: A

case study. JORS, 48(12): 1178-1190.

32. Nonobe K and Ibaraki T (1998). A tabu search approach to the constraint satisfaction problem as a general

problem solver. EJOR, 106: 599-623.

33. ten Eikelder HMM and Willemen RJ (2000). Some complexity aspects of secondary school timetabling

problems. In: Burke E, Erben W (eds.) The Practice and Theory of Automated Timetabling: Selected papers

from the 3rd International Conference. Lecture Notes in Computer Science 2079, Springer-Verlag: Berlin, pp

18-27.

34. de Werra D. (2002). Complexity of some special types of timetabling problems. Journal of Scheduling. 5(2):

171-184.

35. Burke E, MacCarthy B, Petrovic S and Qu R (2000). Structured cases in CBR – re-using and adapting cases

for timetabling problems. Knowledge-based System. 13(2-3): 159-165.

36. Burke E, MacCarthy B, Petrovic S and Qu R (2001). Case-based reasoning in course timetabling: an attribute

graph approach. In: Aha DW, Watson I (eds.) Case-Based Reasoning Research and Development. Proceedings

Journal of Operations Research Society, 57(2): 148-162, 2006.

 22

of 4th International Conference on Case-Based Reasoning (ICCBR-2001). Lecture Notes in Artificial

Intelligence 2080, Springer-Verlag: Berlin, pp 90-104.

37. Kolodner J (1993). Case Based Reasoning. Morgan Kaufmann.

38. Leake D (ed.) (1996). Case-Based Reasoning: Experiences, Lessons, & Future Directions. The AAAI Press.

39. Aamodt A and Plaza E (1994). Case-based reasoning: foundational issues, methodological variations and

system approaches. AI Communications, 7(1): 39-59.

40. Mantaras RL and Plaza E (1997). Case-based reasoning: an overview. AI Communications 10: 21-29.

41. Burke E, Elliman D, Ford P and Weare R (1996). Examination timetabling in British universities - a survey.

In: Burke E, Ross P (eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 1st

International Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 76-92.

42. Burke E, De Causmaecker P, Vanden Berghe G. (1998). A hybrid tabu search algorithm for the nurse rostering

problem. In: McKay B, Yao X, Newton CS, Kim JH & Furuhashi T (eds.) Proceedings of the Second Asia-

Pacific Conference on Simulated Evolution and Learning, Canberra, Australia. 187-194.

43. Watson JP, Rana S, Whitely LD and Howe AE (1999). The impact of approximate evaluation on the

performance of search algorithms for warehouse scheduling. Journal of Scheduling, 2(2): 79-98.

44. Aickelin U and Dowsland K (2000). Exploiting problem structure in a genetic algorithm approach to a nurse

rostering problem. Journal of Scheduling, John Wiley & Sons: Chichester, West Sussex UK. 3(3):139-154.

45. Di Gaspero and Schaerf A (2000). Tabu Search Techniques for Examination Timetabling. In: Burke E, Erben

W (eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 3rd International

Conference. Lecture Notes in Computer Science 2079, Springer-Verlag: Berlin, pp 104-117.

46. Marir F and Watson I (1994). Case-based reasoning: a categorised bibliography. The Knowledge Engineering

Review 9: 355-381.

47. Burke E, Hart E, Kendall G, Newall J, Ross P and Schulenburg S (2003). Hyper-heuristics: an emerging

direction in modern search technology, In: Glover F and Kochenberger G (eds.) Handbook of Meta-Heuristics,

Kluwer, Boston. pp 457-474.

48. Koton P (1989). SMARTplan: a case-based resource allocation and scheduling system. In: Hammond K (ed.)

Proceedings of the Workshop on Case-based Reasoning (DARPA), San Francisco, California. Morgan

Kaufmann. pp 285-289.

49. Hennessy D and Hinkle D (1992). Applying case-based reasoning to autoclave loading. IEEE Expert 7: 21-26.

50. Bezirgan A (1993). A case-based approach to scheduling constraints. In: Dorn J, Froeschl KA (eds.):

Scheduling of Production Processes. Ellis Horwood Limited: Chichester, UK, pp 48-60.

51. Miyashita K and Sycara K (1995). CABINS: a framework of knowledge acquisition and iterative revision for

schedule improvement and reactive repair. Artificial Intelligence, 76: 377-426.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 23

52. Dorn J (1995). Case-based reactive scheduling. In: R Kerr, E Szelke (eds.). Artificial Intelligence in Reactive

Scheduling, London: Chapman & Hall, pp 32-50.

53. Cunningham P and Smyth B (1997). Case-based reasoning in scheduling: reusing solution components. The

International Journal of Production Research 35: 2947-2961.

54. Beddoe G and Petrovic S (2003). A novel approach to finding feasible solutions to personnel rostering

problems. In Proceedings of the 14th Annual Conference of the Production and Operations Management

Society (POM), Savannah, Georgia, United States.

55. Scott S, Simpson R and Ward R (1997). Combining case-based reasoning and constraint logic programming

techniques for packaged nurse rostering systems. Proceedings of the Third UK Case-Based Reasoning

Workshop, University of Manchester, U.K.

56. Szelke E and Markus G (1997). A learning reactive scheduler using CBR/L. Computer Industry 33: 31-46.

57. Schmidt G (1998). Case-based reasoning for production scheduling. International Journal of Production

Economics. 56-57: 537-546.

58. MacCarthy B and Jou P (1995). A case-based expert system for scheduling problems with sequence dependent

set up times. In: Adey RA, Rzevski G (eds.): Applications of Artificial Intelligence. Engineering X.

Computational Machines Publications: Southampton, pp 89-96.

59. MacCarthy B and Jou P (1996). Case-based reasoning in scheduling. In: Khan MK, Wright CS (eds.):

Proceedings of the Symposium on Advanced Manufacturing Processes, Systems and Techniques (AMPST96).

MEP Publications Ltd: Bradford, UK, pp 211-218.

60. Carter M (1983). A decomposition algorithm for practical timetabling problems. Working paper 83-06,

Industrial Engineering, University of Toronto.

61. Robert V and Hertz A (1995). How to decompose constrained course scheduling problems into easier

assignment type subproblems. In: Burke E, Ross P (eds.) The Practice and Theory of Automated Timetabling:

Selected papers from the 1st International Conference, Lecture Notes in Computer Science 1153, Springer-

Verlag: Berlin, pp 364-373.

62. Weare RF (1995). Automated examination timetabling. PhD dissertation, University of Nottingham,

Department of Computer Science.

63. Burke E and Newall J (1999). A multi-stage evolutionary algorithm for the timetabling problem. The IEEE

Transactions on Evolutionary Computation 3(1): 63-74.

64. Marir F and Watson I (1995). Representation and indexing building refurbishment cases for multiple retrieval

of adaptable pieces of cases. In: Veloso M, Aamodt A (eds.): Case-Based Reasoning Research &

Development: Proceedings of the 1st International Conference on Case-Based Reasoning (ICCBR-95),

Springer-Verlag: Heidelberg, pp 55-66.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 24

65. Smyth B, Cunningham P and Keane M (2001). Hierarchical case-based reasoning. IEEE Transactions on

Knowledge & Data Engineering, 13: 793-812.

66. Börner K, Coulon CH, Pippig E and Tammer EC (1996). Structural similarity and adaptation. In: Smith I,

Faltings B (eds.): Advances in Case-based Reasoning: Proceedings of the 4th European Workshop

(EWCBR’98), Springer-Verlag, Heidelberg, pp 58-75.

67. Andersen WA, Evett MP, Kettler B and Hendler J (1994). Massively parallel support for case-based planning.

IEEE Expert 7: 8-14.

68. Macedo L and Cardoso A (1998). Nested graph-structured representations for cases. In: Smyth B and

Cunningham P (eds.) Advances in Case-Based Reasoning: Proceedings of the 4th European Workshop on

Case-Based Reasoning, Lecture Notes on Artificial Intelligence 1488, Springer-Verlag: Heidelberg, pp 1-11.

69. Sanders KE, Kettler BP and Hendler JA (1997). The case for graph-structured representations. In: Leake D,

Plaza E (eds.) Case-Based Reasoning Research and Development: Proceedings of the 2nd International

Conference on Case-Based Reasoning (ICCBR-97), Springer-Verlag, Berlin, pp 245-254.

70. Ricci F and Senter L (1998). Structured cases, trees and efficient retrieval. Advances in Case-Based

Reasoning: In: Smyth B, Cunningham P (eds.) Proceedings of the 4th European Workshop on Case-Based

Reasoning. Lecture Notes on Artificial Intelligence 1488, Springer-Verlag: Heidelberg, pp 88-99.

71. Gebhardt F (1995). Methods and systems for case retrieval exploiting the case structure. FABEL-Report 39,

GMD, Sankt Augustin.

72. Gebhardt F (1997). Survey on structure-based case retrieval. The Knowledge Engineering Review 12:41-58.

73. Burke E, Newall J and Weare R (1998). A simple heuristically guided search for the timetable problem. In:

Alpaydin E. (ed.), Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems,

Tenerife, Spain, pp 574-579.

74. Corne DW and Ross PM (1996) Peckish initialisation strategies for evolutionary timetabling. In: Burke E,

Ross P (eds.) The Practice and Theory of Automated Timetabling: Selected papers from the 1st International

Conference. Lecture Notes in Computer Science 1153, Springer-Verlag: Berlin, pp 227-240.

75. Rossi-Doria O, Blum C, Knowles J, Sampels M, Socha K and Paechter B (2002). A local search for the

timetabling problem. In Proceedings of the 4th International Conference on the Practice And Theory of

Automated Timetabling, PATAT 2002, pp. 124-127.

76. Socha K, Knowles J and Sampels M (2002). A max-min ant system for the university course timetabling

problem. In Proceedings of the 3rd International Workshop on Ant Algorithms, ANTS 2002, Lecture Notes in

Computer Science, Vol. 2463, Springer, pp. 1-13.

77. Burke E, Kendall G and Soubeiga E (2003). A tabu search hyperheuristic for timetabling and rostering.

Journal of Heuristics. 9(6): 451-470.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 25

78. Kostuch P (2004). The university course timetabling problem with a 3-phase approach. In The Proceedings of

the 5th International Conference on the Practice and Theory of Automated Timetabling. Pittsburgh, USA.

79. Williams ML, Wilson RC and Hancock ER (1999) Deterministic search for relational graph matching. Pattern

Recognition 32(7): 1255-1271.

80. Cross ADJ, Myers R and Hancock ER (2000) Convergence of a hill-climbing genetic algorithm for graph

matching. Pattern Recognition 33: 1863-1880.

Journal of Operations Research Society, 57(2): 148-162, 2006.

 26

Figure 1 A Case-Based Reasoning Framework

success

Retrieval

Revision

Reuse

Retain

Similarity Measure

Revision Rules or
Heuristics

retrieved case

failure

Case Base

New Problem

Solution

Journal of Operations Research Society, 57(2): 148-162, 2006.

 27

Figure 2 A Course Timetabling Problem Represented by the Attribute Graph

6

7

5

7 7

6

7

Physics
3:2

MathA
1:3

MathB
0

LabA
1:2

4:1

7

LabB
2:2

Journal of Operations Research Society, 57(2): 148-162, 2006.

 28

Figure 3 Schematic Diagram of the Multiple-Retrieval CBR System

Program flow

Data flow
Retrieval

Case
Base

yes no

Adaptation

retrieved cases
for sub-problem0

retrieved cases

for sub-problemn

new graph
produced?

new
problem

solution

Journal of Operations Research Society, 57(2): 148-162, 2006.

 29

Figure 4 New Attribute Graph Generated after Each Retrieval

Sj

n 8

New attribute graph j

5

6

7 1 2 3 4

5 6 7

n 8

Attribute graph i-1

6

7
6

7

7
Si

3 4

6 7

n 8

Attribute graph i

5

Journal of Operations Research Society, 57(2): 148-162, 2006.

 30

timeslot j

… 9 11 Sj 8 10 …

timeslot j j+1

… 9 11 3 6 7 Si 4 8 10 …

timeslot j j+1 j+2

… 9 11 3 6 7 2 5 1 4 8 10 …

Figure 5 Combining the Solutions of the Sub-problems

ith sub-solution

 2 5 1

jth sub-solution
 3 6 7 Si 4

Journal of Operations Research Society, 57(2): 148-162, 2006.

 31

0

20

40

60

80

100

120

140

160

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
 o

f
ti

m
et

ab
le

s
GHT

5 small

10 small

15 small

0

20

40

60

80

100

120

140

160

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
 o

f
ti

m
et

ab
le

s

GHT

5 large

10 large

15 large

 GHT 5 small 10 small 15 small 5 large 10 large 15 large

10-course new case 28.5 19 20 21.5 22 21 20.5

15-course new case 61.4 37 46.5 50.5 48.5 54.5 56.5

20-course new case 80.5 56.5 61.5 67 60 65.5 74

25-course new case 104 81 78.5 99 90.5 94.5 94

30-course new case 95.5 77.5 82.5 79 78 82 91

35-course new case 128.5 121 113 108.5 117.5 112.5 124

40-course new case 158.5 140 132.5 142.5 137.5 139.5 148

45-course new case 136.5 129 126.5 127 130 128.5 119.5

50-course new case 200.5 200 193.9 199.5 176 182.5 193

Figure 6 Penalties of Timetables by using GHT alone and CBR with (left: small, right: large) Simple Cases

Journal of Operations Research Society, 57(2): 148-162, 2006.

 32

0

20

40

60

80

100

120

140

160

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
 o

f
ti

m
et

ab
le

s

GHT

5 small

10 small

15 small

0

20

40

60

80

100

120

140

160

10 15 20 25 30 35 40 45 50

n-course new cases

p
en

al
ti

es
 o

f
ti

m
et

ab
le

s

GHT

5 large

10 large

15 large

 GHT 5 small 10 small 15 small 5 large 10 large 15 large

10-course new case 28.5 12.5 12.5 15 15 10 12

15-course new case 61.4 20 30 40 30 34.4 36.9

20-course new case 80.5 35 47.5 52.5 37.5 55 60

25-course new case 104 57.5 45 57.5 70 57.5 70

30-course new case 95.5 70 110 75 70 95 102.5

35-course new case 128.5 97.5 112.5 97.5 110 100 125

40-course new case 158.5 90 108.8 100 122.5 97.5 123.5

45-course new case 136.5 117.5 140 130 110 120 143.5

50-course new case 200.5 125 150 112.5 130 140 167.5

Figure 7 Penalties of Timetables by using GHT alone and CBR with (left: small, right: large) Complex Cases

Journal of Operations Research Society, 57(2): 148-162, 2006.

 33

10

30

50

70

90

110

130

150

170

10 15 20 25 30 35 40 45 50

size of new cases

pe
na

lti
es

 o
f t

im
et

ab
le

s

GH

5 simple

10 simple

15 simple

10

30

50

70

90

110

130

150

170

10 20 30 40 50

size of new cases

p
en

al
ti

es
 o

f
ti

m
et

ab
le

s

GHT

10 complex

5 complex

15 complex

Figure 8 Penalties of Timetables by using GHT alone and CBR with (left: simple, right: complex) Small cases

Journal of Operations Research Society, 57(2): 148-162, 2006.

 34

0

1

2

3

4

5

6

7

8

9

10 15 20 25 30 35 40 45 50

size of new cases

re
tr

ie
ve

 ti
m

e
(s

ec
on

ds
)

5 small

10 small

15 small

5 large

10 large

15 large

0

5

10

15

20

25

30

35

10 15 20 25 30 35 40 45 50

size of new cases

re
tr

ie
ve

 t
im

e
(s

ec
o

n
d

s)

5 small

10 small

15 small

10 large

5 large

15 large

Figure 9 Retrieval Time on Case Bases (Left: simple cases; Right: complex cases)

Journal of Operations Research Society, 57(2): 148-162, 2006.

 35

10-

course

20-

course

30-

course

40-

course

50-

course

60-

course

70-

course

80-

course

90-

course

GHT + TS 135 172 305 266 295 294 307 266 245

CBR with 5 cases + TS 49 99 175 169 186 159 199 196 197

CBR with 10 cases + TS 46 80 130 166 117 130 149 153 171

CBR with 15 cases + TS 31 55 101 178 120 133 149 134 151

GHT + SA 22 45 55 65 77 96 121 103 134

CBR with 5 cases + SA 16 33 49 63 76 98 121 107 134

CBR with 10 cases + SA 14 25 40 58 64 81 104 98 128

CBR with 15 cases + SA 14 26 42 59 68 87 97 100 124

GHT+HC 152(3) 56(2) 66(2) 87(1) 85 106 127 111 156

CBR with 5 cases + HC 144 63 74 134 85 103 113 101 144

CBR with 10 cases + HC 148(3) 42(1) 59(2) 79(1) 74 92 112 99 140

CBR with 15 cases + HC 150(3) 43(1) 57(2) 78(1) 78 93 105 103 139

10

60

110

160

210

260

310

10 20 30 40 50 60 70 80 90

n-course new cases

p
en

al
ti

es
 o

f
ti

m
et

ab
le

s

GHT + SA

5 + SA

10 + SA

15 + SA

GHT + TS

5 + TS

10 + TS

15 + TS

Figure 10 GHT and Multiple-Retrieval CBR with Small Complex Cases as the Initialization Methods for Local

Search Methods

Journal of Operations Research Society, 57(2): 148-162, 2006.

 36

Label Attribute Value(s) Notes

0 Ordinary course N/A Takes place once a week

1 Multiple course N (No. of times) Takes place N times a week

2 Pre-fixed course S (Slot No.) Assigned to timeslot S

3 Exclusive course S (Slot No.) Not assigned to timeslot S

Table 1 Vertex Attributes of Course Timetabling Problems

Journal of Operations Research Society, 57(2): 148-162, 2006.

 37

Label Attribute Value(s) Notes

4 Before/after 1 or 0 (direction) Before or after another course

5 Consecutive N/A Be consecutive with each other

6 Non-consecutive N/A Not consecutive with each other

7 Conflict N/A Not assigned simultaneously

Table 2 Edge Attributes of Course Timetabling Problems

Journal of Operations Research Society, 57(2): 148-162, 2006.

 38

Figure 1 A Case-Based Reasoning Framework

Figure 2 A Course Timetabling Problem Represented by the Attribute Graph

Figure 3 Schematic Diagram of the Multiple-Retrieval CBR System

Figure 4 New Attribute Graph Generated after Each Retrieval

Figure 5 Combining the Solutions of the Sub-problems

Figure 6 Penalties of Timetables by using GHT alone and CBR with (left: small, right: large) Simple Cases

Figure 7 Penalties of Timetables by using GHT alone and CBR with (left: small, right: large) Complex Cases

Figure 8 Penalties of Timetables by using GHT alone and CBR with (left: simple, right: complex) Small cases

Figure 9 Retrieval Time on Case Bases (Left: simple cases; Right: complex cases)

Figure 10 GHT and Multiple-Retrieval CBR with Small Complex Cases as the Initialization Methods for Local

Search Methods

Journal of Operations Research Society, 57(2): 148-162, 2006.

 39

Table 1 Vertex Attributes of Course Timetabling Problems

Table 2 Edge Attributes of Course Timetabling Problems

