
Hybridisations within a Graph Based
Hyper-heuristic Framework for University

Timetabling Problems

Rong Qu and Edmund K Burke
Automated Scheduling, Optimisation and Planning (ASAP) Group

School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
rxq@cs.nott.ac.uk, ekb@cs.nott.ac.uk

Abstract. A significant body of recent literature has explored various research directions in hyper-

heuristics (which can be thought as heuristics to choose heuristics). In this paper, we extend our previous

work to construct a unified graph based hyper-heuristic (GHH) framework, under which a number of local

search based algorithms as the high level heuristics are studied to search upon sequences of low level

graph colouring heuristics. To gain an in-depth understanding on this new framework, we address some

fundamental issues concerning neighbourhood structures and characteristics of the two search spaces

(namely the search spaces of the heuristics and the actual solutions). Furthermore, we investigate efficient

hybridisations in GHH with local search methods and address issues concerning the exploration of the

high level search and the exploitation ability of the local search. These, to our knowledge, represent

entirely novel directions in hyper-heuristics. The efficient hybrid GHH obtained competitive results

compared with the best published results for both benchmark course and exam timetabling problems,

demonstrating its efficiency and generality across different problem domains. Possible extensions upon

this simple yet general GHH framework are also discussed.

Keywords: university timetabling, graph colouring heuristics, hyper-heuristics, Tabu Search, Variable

Neighbourhood Search, Iterated Local Search

1. Introduction

Timetabling Problems

Timetabling problems have been widely investigated in the operational research and artificial intelligence

research communities for more than four decades (e.g. see [16, 45, 49, 53]). They appear in the forms of

educational timetabling (e.g. [5, 20, 23, 24, 44, 45]), nurse rostering (e.g. [10]), sports timetabling (e.g. [29])

and transportation scheduling (e.g. [37]).

This paper is concerned with university (course and exam) timetabling problems, which have attracted

particular attention over the years. They are important administrative activities which have to be addressed

on a regular basis in almost all academic institutions. There are several surveys of educational timetabling



research covering a variety of research issues (e.g. [13, 16, 20, 44, 45, 49, 53]). Specific papers on course

[24] and exam [23] timetabling provide excellent surveys up to 1998 and 1996, respectively. A discussion of

the difference between course and exam timetabling is presented in [4140].

In [16], the goal of a general timetabling problem is defined as being “to assign times and resources to the

meetings so as to satisfy the constraints as far as possible”. This is to assign a set of events (courses or

exams) to a limited timeslots while satisfying a number of constraints. Constraints in university timetabling

can usually be grouped into two types:

 Hard Constraints which must be satisfied under any circumstances. For example, conflicting events

(i.e. those courses/exams/meetings with common resources such as students) cannot be scheduled

simultaneously (i.e. xi ≠ xj, i ≠ j and Dij > 0; Dij: the number of students in both events i and j; xi: the

time period that event i is assigned). Room capacity needs to be large enough to accommodate all

students (i.e. ∑si ≤ Ct; xi = t; si: number of students taking exam i; Ct: room capacity of time period t).

Solutions which satisfy all of the hard constraints are often called feasible solutions.

 Soft Constraints are desirable but not essential requirements. For example, in exam timetabling, it is

preferable to avoid students sitting two exams in consecutive time periods. On the other hand, in

course timetabling, students may prefer to have consecutive courses.

Soft constraints are usually used to evaluate how good the feasible timetables are. For real world

university timetabling problems, it is usually impossible to find solutions satisfying all the soft constraints.

Indeed, it is sometimes very difficult to just find a solution which satisfies all the hard constraints.

Timetabling problems in their simplified form (i.e. with only the conflicting hard constraints) can be

modelled as graph colouring problems [16]. Graph colouring heuristics represent some of the very early

timetabling approaches (from the 1960s) (e.g. [16, 53]). Constraint based techniques have also been

employed (e.g. [39, 54]) by modelling timetabling problems as Constraint Satisfaction Problems [7]. Meta-

heuristics [14, 46] have been very successful over a range of complex timetabling problems in recent

research. These include Tabu Search (e.g. [31, 43, 55]), Simulated Annealing (e.g. [9, 28, 52]) and

Evolutionary Algorithms (e.g. [18, 51]).

Recent new techniques and methodologies on timetabling include Ant Algorithms (e.g. [30, 50]), Case-

Based Reasoning (e.g. [11, 21]), fuzzy reasoning (e.g. [4]), GRASP (e.g. [26]) and hybrid approaches [22].

Innovative neighbourhood design in search algorithms has also obtained some success (i.e. Very Large Scale

Neighbourhood Search [1, 40], multi-neighbourhood search [3] and Variable Neighbourhood Search [2],

etc). An overview of the timetabling literature can be seen by consulting the following papers: [23, 24, 45,

49].



1.2 Hyper-heuristics

Most meta-heuristic [14, 46] implementations need to be fine tuned for solving particular problems, and such

fine-tuned methods do not usually transfer easily to different problems. The definition of hyper-heuristics is

rather simple. They are “heuristics to choose heuristics” [12, 47]. They search upon a search space of

heuristics rather than actual solutions. This implies that any heuristics (meta-heuristics and population based

algorithms, etc) could be employed as high level heuristics to operate upon a search space of low level

heuristics, which could also, essentially, be any heuristics. In most of the papers in the literature, meta-

heuristics are employed directly on a solution based search space. There is, of course, the possibility of using

meta-heuristics as the “low level” heuristics (i.e. those to be selected) in a hyper-heuristics approach but, as

far as we are aware, this has never been addressed in the literature.

The heuristics being searched are used (at a lower level) to solve the actual problems. The high level

heuristics choose from a set of low level heuristics rather than dealing with the actual elements in the

problems. The driving motivation behind this newly emerging framework is to raise the generality of search

algorithms in order to solve a wider range of problems. By defining our search spaces upon heuristics rather

than actual solutions, hyper-heuristics avoid dealing with the specific details of problem domains. Domain

knowledge of the actual problems is left to the low level heuristics. The idea is that the high level search

should be more generic. The representation of the search space is usually quite simple (rather than having

complex structures representing problem solutions). The role of the high level search is purely to manage and

learn upon the set of low level heuristics so that they can be adaptively applied to a range of problems.

The idea of hyper-heuristics originated in 1960s, although, at the time, the particular term was not used

[12]. It is thus related to some algorithms, however, is also fundamentally different from most heuristic

approaches. For example, in resource constrained project scheduling [8], permutations of jobs are usually

obtained by using certain (fixed) strategies and jobs are then scheduled one by one in this specific order. In

hyper-heuristics, the aim is to search for a set of (low level) strategies which permute the jobs during the

scheduling to construct high quality solutions. The goal is to learn to adaptively adjust the low level

strategies used at different stages of the scheduling. In [27], a framework was built to integrate multiple

heuristics within a stochastic sampling search algorithm, where online statistical models of the search

performance were used to select heuristics during the search for resource-constrained project scheduling. As

an emerging research direction, the field of hyper-heuristics is also strongly related to some other research in

the literature. In [33], algorithm portfolios were developed where a set of heuristics was used for solving

combinatorial optimisation problems. In [42], reinforcement learning was used to adaptively choose

promising heuristics during the search process within a constraint programming environment for two

optimisation problems.



Hyper-heuristics have been investigated either on using moving strategies (i.e. [15, 28, 32]) or on using

constructive heuristics [6, 11, 17, 21, 48, 51] as the low level heuristics. In [15], Tabu Search was employed

as the high level heuristic upon a set of moving strategies on both the nurse rostering problems and course

timetabling. A Simulated Annealing hyper-heuristic was developed in [28] to deal with the shipper sizes in

transportation problems. In [32], a distributed choice function was also proposed as a hyper-heuristic for

exam timetabling problems.

Another body of hyper-heuristic work has employed constructive heuristics as the low level heuristics. In

[6], heuristic selection and move acceptance criteria were analysed in depth within a hyper-heuristic for both

optimisation functions and exam timetabling problems. In [21], graph colouring heuristics were selected by

using Case Based Reasoning to order the events upon problem solving situations. A Genetic Algorithm was

also developed in [48] to evolve event picking and slot picking heuristics to construct timetables for both

class and exam benchmark timetabling problems. Issues of representation and fitness functions were also

addressed. Constraint satisfaction strategies were also evolved by using Evolutionary Algorithms in [51] for

constructing exam timetables.

In our previous work [17], the search space under consideration consisted of sequences of graph colouring

heuristics as the low level heuristics. We employed Tabu Search for solving both course and exam

timetabling problems. We also raised the issue of two search spaces in hyper-heuristics. Based on the above

approach, in this paper, we formally define a unified graph based hyper-heuristic (GHH) framework, within

which a number of high level heuristics are analysed systematically to obtain a deeper understanding of the

framework. Important issues on neighbourhood structures and the search space of heuristics, compared with

search space of solutions, are addressed. Within the research covered in the hyper-heuristic literature, to our

knowledge, there is no work which analyses the structure and nature of the search space of heuristics in this

way. Hybridisations of the GHH framework with local search methods within the solution space are also

investigated on both course and exam benchmark timetabling problems. Note that exactly the same GHH is

applied for both problems which are quite different in terms of problem constraints [41]. There are very few

papers in the literature which deal with both problems by using the same system.

1.3 Benchmark Course and Exam Timetabling Problems

The course timetabling problems tested in this paper were generated by the Meta-heuristic Network

(http://www.metaheuristics.net/). The problem set consists of 11 problems in three (small, medium and large)

sizes, where from 100 to 400 courses need to be assigned into 45 timeslots, 9 timeslots per day for 5 days of

a week. Room capacity and features need to be considered to accommodate all the students in a particular

course. We list both the hard and soft constraints in Table 1. The penalty of the feasible timetables generated

is the sum of the number of violations of the soft constraints.

http://www.metaheuristics.net/


INSERT TABLE 1 HERE.

The exam timetabling problems we tested in this paper were first introduced in [25], and have been widely

tested by a number of approaches during the last ten years [45]. The dataset consists of 13 problems from

different institutions, among which 11 have been more heavily investigated because of errors in the other two

problems. A more detailed discussion of those datasets (and the difficulties caused by different instances

circulating under the same name) was given in [45]. The constraints in the problems can be outlined as

follows:

 Hard constraint: no conflicting exams (with common students) should be scheduled into the same

timeslot.

 Soft constraint: to spread conflicting exams across the timetables.

Table 2 presents the characteristics of the 11 problems in the dataset. The "conflict density" gives the

density of elements with value 1 in the conflict matrix, where element Cij = 1 if events i and j conflict, Cij = 0

otherwise. The penalty of the timetable generated is the sum of costs per student, where costs wi, i  0, 1, 2,

3, 4, indicate the timeslots between two conflict exams. More details can be found at

http://www.asap.cs.nott.ac.uk/resources/data.shtml.

INSERT TABLE 2 HERE.

The rest of the paper is organised as follows. The GHH framework is formally presented in Section 2. A

number of high level heuristics are investigated and analysed within this framework in Section 3. In Section

4, we present a hybrid GHH and analyse the search in two search spaces. Experimental results for both the

course and exam benchmark timetabling problems are reported in Section 5. We present our conclusions on

this work in Section 6.

2 The Graph Based Hyper-heuristic Framework

2.1 Graph Colouring Heuristics

Graph colouring heuristics [16] are constructive heuristics which order the events (courses or exams in

timetabling) in terms of difficulty measures. These ordered events are then assigned, one by one from the

most difficult ones, to construct the solutions (timetables). The basic assumption is that the most difficult

events need to be scheduled earlier to avoid causing problems at a later stage. A list of the graph colouring

heuristics widely employed in timetabling is presented in Table 3. For example, if Saturation Degree is used

in an exam timetabling problem, the exams are ordered by the number of remaining valid timeslots in the

http://www.asap.cs.nott.ac.uk/resources/data.shtml


partial timetable during the solution construction. These ordered exams are scheduled one by one to the

timetable being constructed.

INSERT TABLE 3 HERE.

As simple constructive heuristics, straightforward implementations of graph colouring heuristics on their

own are not appropriate methodologies for addressing complex timetabling problems. Indeed, for some of the

problem instances we are testing in this work, they failed to even generate feasible solutions on their own.

However, recent research has shown that they can be very effectively employed as initialisation methods for

meta-heuristics (e.g. [16]), or intelligently hybridised to solve complex timetabling and optimisation

problems [4, 11, 21] for exam timetabling. This motivates us to investigate using hyper-heuristics to choose

graph colouring heuristics for constructing high quality timetables.

2.2 The Graph Based Hyper-heuristic Approach

In our previous Graph Based Hyper-heuristic (GHH) [17], sequences of graph colouring heuristics (at the

low level) were searched by a Tabu Search and applied to construct timetables. In most of the work on

classical heuristics (such as graph colouring heuristics), solutions are built by assigning events in a specified

order using a single or static strategy. These approaches often failed to obtain even feasible solutions. The

GHH approach searches upon sequences of graph colouring heuristics, which order the events using different

strategies during the solution construction. This can be seen as adaptively employing different and

appropriate heuristics in different problem solving situations.

Figure 1 presents the process of the solution construction by using a sequence of graph colouring

heuristics. At iteration i, the ith low level graph colouring heuristic in the sequence is employed to order the

events (courses or exams) not yet scheduled by using the corresponding difficulty measuring strategy in

Table 3. For example, if Saturation Degree in the heuristic sequence is employed at the current step of

solution construction, the events that are not yet scheduled are ordered by the number of feasible timeslots

available for the events at that time. Then the most difficult event (the 1st event in the ordered list) is

scheduled into the timetable. In the next step, the next graph colouring heuristic in the heuristic sequence will

be used to reorder the events that are left by using the corresponding (maybe different) difficulty measuring

strategy. This process is repeated until a complete solution is constructed or no further feasible construction

can be made. In this work the same solution construction process is used within the GHH framework.

INSERT FIGURE 1 HERE.

The role of the Tabu Search is to find, at a higher level, the best heuristic sequences to construct the best

solutions. The penalty of the timetable constructed by the corresponding heuristic sequence is returned as the



objective value for the next step of the Tabu Search. The process is illustrated by the pseudo-code in Figure

2.

INSERT FIGURE 2 HERE.

The GHH approach [17] highlights two search spaces: the search space of high level heuristic sequences

and the search space of solutions. Each of the heuristic sequences in the heuristic search space is used to

construct a complete solution that corresponds to a point in the solution space. The quality of a solution in the

solution space is used in the objective function for the high level heuristic in the heuristic search space. The

GHH approach search is carried out upon combinations of difficulty measuring strategies (heuristic

sequences) rather than actual solutions. The solutions constructed by similar (“close to each other’s

neighbourhood”) heuristic sequences in the heuristic search space may be very different from each other in

the solution space. This means that the GHH may cover solutions across different areas in the solution space

by making neighbourhood moves in the high level search. Note that in most local search based timetabling

methods, search is undertaken by moving just a few events in actual solutions (i.e. being just a few events

apart within a local area). By making a neighbourhood move on heuristic sequences in the GHH high level

heuristic, the solutions constructed have the potential to be far more different from each other. The search by

the high level heuristic can be seen as jumping within the solution space. This is because the way of

constructing the solutions is fundamentally changed. With the same amount of moves in the high level

heuristic search, the mapping solutions are (potentially) widely distributed within the solution space.

2.2 Defining the GHH Framework

In this work, we extend the above approach by firstly presenting a formal definition of the GHH framework

as follows:

Given an optimisation problem P, let H be the search space of P, and let f be the objective function that

we are aiming to optimise. A moving operator O changes the incumbent solution hH to its neighbourhood

N(h)H by a moving strategy M. In terms of our timetabling problems, we consider the following problem

and terminology.

 Optimisation problem P: to optimise the sequences of graph colouring heuristics h, which are

employed to construct timetables concerning the objective function f. That is P = min f(h), hH.

 Search space H: consists of heuristic sequences hH.

 Objective function f: maps the heuristic sequences to the penalties of the corresponding timetables

constructed (by evaluating the violations of soft constraints).

 Moving operator O: randomly changes any two heuristics in the heuristic sequence h.



 Neighbourhoods N: N(h)H are all the heuristic sequences h that can be reached by a moving

operator O applied on h.

 Moving strategy M: a move is taken by using moving operator O and evaluating neighbourhoods N.

This is defined by different high level heuristics. Walks, which accept moves to heuristic sequences of

the same quality, are allowed in the GHH framework.

 Low level heuristics: elements (graph colouring heuristics) in the heuristic sequences h, which are used

to construct timetables.

 High level heuristics: different search algorithms upon the search space H using different moving

strategies M.

3 High Level Heuristics within the GHH Framework

We investigate a number of high level heuristics without any fine-tuning on their parameters (standard

versions of the Steepest Descent method, Tabu Search, Iterated Local Search and Variable Neighbourhood

Search) based on the unified framework defined above. The objective is to compare their performance under

the unified framework with the aim of studying the heuristic search space, rather than fine-tuning them to get

the best solutions. In practice, any of these algorithms can be employed to carry out local search. Five graph

colouring heuristics (presented in Table 3) are employed as the low level heuristics in the framework. Of

course, more constructive heuristics may be employed in the framework and we have investigated the effect

of employing a different number of low level heuristics in the Tabu Search based GHH in [17].

In the context of testing different high level heuristics in this framework, there is no greedy local search

on each complete solution that is generated at each move (as was the case in [17]). The aim is two fold.

Firstly, the high level search in the GHH framework will not deal with the domain knowledge of the actual

problems but rather it will work upon the objective values returned from the low level heuristics. All the

necessary information about problems is dealt with by the low level heuristics. This establishes a certain level

of generality in the GHH framework. Secondly, we would like to compare their behaviour within the unified

framework in order to draw general conclusions about the GHH. Our aim is not to obtain the best possible

results by putting effort into developing problem specific techniques. The goal is to develop methods which

can be immediately used on a broad range of problems than can be achieved at the moment.

We will investigate the performance of different high level heuristics starting from the same initial points

(initial heuristic sequences consisting of only Saturation Degree) and with the same computational cost (the

same total number of evaluations). Walks (which accept heuristic sequences of the same quality) are always

accepted because solutions of the same quality may be constructed by different heuristic sequences. Allowing



such moves within the search space of heuristic sequences gives more flexibility to the high level search. The

methods that we employ are outlined in the following subsections.

3.1 Steepest Descent method (SDM)

We test a simple SDM where the best heuristic sequence among neighbourhoods is always selected if it is

better than or the same as the current one. The search stops when there is no same or better neighbourhood,

or after a set number of evaluations (which is the same as that used for the other high level heuristics) is

carried out.

3.2 Iterated Local Search (ILS)

In the ILS [38], the search is re-started after a certain number of iterations of SDM. The re-starting point is

made different from the previous one by changing the heuristics at the beginning of the heuristic sequence.

Note that the earlier a different constructive heuristic is employed in the heuristic sequences, the larger the

differences in the solutions generated by them. The aim is to explore wider regions of solution space. Again

the same number of evaluations is set as the stopping condition.

3.3 Tabu Search (TS)

The TS we employ here is similar to that of our previous work [17]. The difference is that we do not carry

out the greedy local search on the complete solutions at each step. The length of the tabu list is set to be 9,

which is determined by empirical experience and suggested by classical settings in the literature [46]. The

search stops after the set number of evaluations is carried out.

3.4 Variable Neighbourhood Search (VNS)

The motivation for employing VNS within the framework is to investigate the effect of employing more

neighbourhood structures upon the performance of the high level search. The VNS employed is an iterative

process where search is re-started after a certain number of walks are made by a standard VNS (see [34, 35]).

The total number of evaluations is set as the same as it is for other high level heuristics.

We define a set of simple neighbourhood structures as randomly changing 2, 3, 4 or 5 heuristics in the

sequence to any other graph colouring heuristics. These neighbourhood structures are simple, general and

easy to implement and are widely employed in different VNS implementations. We do not employ a

swapping neighbourhood because the search is upon heuristics rather than actual solutions. The two

heuristics in the sequence do not have any link/relationship in the way that two events in actual solutions may

have. Swapping two heuristics in the sequence has the same effect as that of changing the two corresponding

heuristics in the sequence, which is included in the neighbourhoods we defined.



4 Hybridisations within the GHH Framework

Based on the GHH framework, we further explore how local search can be hybridised in terms of the search

within the two search spaces. We also further investigate the hypothesis in [17] that only a subset of the

solutions in the solution space can be sampled by the high level search.

4.1 Local Search within the GHH

We study two ways of hybridising the local search, which is a simple greedy search, within the GHH. They

are marked in Figure 1 as (1) and (2), and are described below:

(1) Local Improvement upon Complete Solutions (GHH1): At each step of the high level heuristic, a

complete solution will be generated by a heuristic sequence. A greedy search is implemented on these

complete solutions in the solution space to improve their quality in terms of their respective local optima.

(2) Local Improvement during the Solution Construction (GHH2): During the solution construction by a

heuristic sequence, at each step, the 1st event in the ordered list is scheduled into the partial solution. The

greedy search is then implemented upon this partial solution to further reduce the costs to the lowest

possible. In the next step of solution construction, the 1st event measured by the next graph colouring

heuristic is scheduled based on the improved partial solution from the last step.

INSERT FIGURE 3 HERE.

We present, in Figure 3, the pseudo-code of the hybrid GHH within a general framework without

specifying a particular high level search algorithm. Instructions marked with a * are optional depending on

the particular high level heuristics or the hybrid local search employed.

4.2 Two Search Spaces within the Hybrid GHH

In the hybrid GHH, two search spaces are involved. They are the search space of high level heuristics upon

heuristic sequences, and the search space of the local search upon actual solutions. That is, not only the

sequences in the search space of heuristics are searched to generate the best possible solutions mapping to

certain solutions in the solution space, but also the mapping solutions are improved by the local search in the

search space of actual solutions. The latter is similar to most of the local search algorithms in the literature

which operate upon a search space of solutions.

Table 4 presents the characteristics of these two fundamentally different search spaces in the GHH

framework. Not only the representations, but also the upper bounds of the size of the search spaces (including

infeasible points) are different. The objective functions are different. They evaluate the quality of the

solutions generated by the corresponding sequences, or evaluate the delta costs incurred in the solutions by



the neighbourhood operators, respectively. The neighbourhood operators are also different depending on the

high level heuristics and local search employed in the hybrid GHH framework.

INSERT TABLE 4 HERE.

Also note that in the GHH, at each step, five possible graph colouring heuristics may be used to assign

each event. The upper bound of the size of the heuristic search space is then 5e. This is much smaller than

that of the solution space (which is te, where t is the number of timeslots) because, in practice, the number of

timeslots is usually much higher than 5. This implies that the search of the high level heuristics is carried out

within a much smaller search space. This also further shows that not all of the solutions in the solution space

correspond to sequences in the heuristic space.

4.3 Exploring and Exploiting within the Hybrid GHH

The aim of hybridising local search methods within the GHH framework is twofold. Firstly, along with the

exploration by the high level heuristics (jumping within different areas of the solution space), the local search

moves (in the solution space) to local optima. Secondly, as not all of the solutions can be mapped to the

heuristic sequences, performing a local search can make more solutions in the solution space reachable.

At a higher level, the overall idea of the exploration and exploitation by the hybridisation in GHH is

similar to that of a Memetic Algorithm or genetic local search [36], where recombination and/or mutation on

population facilitates the exploration of the search, while the local search exploits within local regions. The

difference is that in our hybrid GHH the high level heuristic explores the search space of solutions by

searching heuristic sequences in the manner of local search at a higher level. Also in Memetic Algorithms, an

initial population is needed, while the GHH constructs solutions iteratively, thus is not sensitive to

initialisation methods. This makes the hybrid GHH much simpler yet still capable of exploring and exploiting

the search space simultaneously.

5 Experimental Results on Benchmark Timetabling Problems

We carried out two sets of experiments to test the GHH which a) employs different high level heuristics (see

Section 3) and b) is hybridised with local search (see Section 4). Two sets of the widely studied benchmark

course and exam timetabling problems are used (see Section 1.3). These datasets are very different and have

been widely employed by a number of state-of-the-art approaches (but have not been tackled together by one

approach). Our aim with these experiments is not to beat the state-of-the-art approaches in the literature

(although the results are competitive with the best results reported), but to present the potential of this more

generic methodology to be easily employed and to perform adaptively on a range of different timetabling or



optimisation problems. Fundamental issues such as neighbourhood structures and search spaces are also

analysed to gain a deeper understanding of the technique.

5.1 Analysis on the High Level Search Space of Heuristics

Different high level heuristics described in Section 3 are tested on both of the benchmark problems within the

unified GHH framework. Due to the fact that there is no domain knowledge required in the framework, the

only difference in the GHH upon these two different problems is the evaluation functions that are used to

evaluate the solutions generated. This can be easily switched between different problems and this is the key

achievement of the work: to develop a methodology that can be easily switched between different problems.

In both sets of experiments, the best and average results obtained from five runs with distinct seeds are

reported. As the same number of evaluations is set as the stopping condition for all the high level heuristics,

similar computational time is observed for each of these approaches. It is important to note that the purpose

of this section is to investigate the employment of different methods on the heuristic space. We use the

results of this section to produce the better results which are generated by the hybridised method in the next

section.

5.2.1 Course Timetabling Problems

Table 5 presents the best and average results by the GHH employing the Steepest Descent Method (SDM),

Iterated Local Search (ILS), Tabu Search (TS) and Variable Neighbourhood Search (VNS) as the high level

heuristics for the benchmark course timetabling problems. It can be seen that within the unified GHH

framework, most of the high level heuristics (except SDM) perform similarly. VNS obtained the best results

(on a small scale) on 6 out of 11 problems, and the best average results on 5 out of 11 problems.

Another observation is that when GHH is applied to course timetabling problems, some of the soft

constraints (such as soft constraint 3 in Table 1) cannot be evaluated accurately during the solution

construction until a complete solution is generated. This may affect GHH's ability to obtain high quality

solutions for some problems.

INSERT TABLE 5 HERE.

5.2.2 Exam Timetabling Problems

The results on the benchmark exam timetabling problems by the GHH employing SDM, ILS, TS and VNS

are presented in Table 6. It can be observed that, again, all high level heuristics (except SDM) perform quite

similarly. ILS obtained the best results on 6 out of 11 problems and the best average results on 5 out of 11

problems. VNS is the 2nd best algorithm (again on a small scale though) on these problems, obtaining the best

results for 4 out of 11 problems and the best average results for 5 out of 11 the problems.



INSERT TABLE 6 HERE.

5.2.3 Discussion

The comparisons between the different high level heuristics on both course and exam timetabling problems

have shown that high level heuristic moving strategies are not crucial within the unified GHH framework.

Elaborate algorithms such as TS are not effective for searching in the search space of heuristics. Iterative

techniques such as ILS and VNS (which is, overall, an iterative process - see Section 3.4) were shown to be

effective on both the course and exam timetabling problems tested.

The reason is that very large and different areas of the solution space can be covered by relatively small

moves in the heuristic space. With the search in the heuristic space, the chance of the high level search

having better or same quality neighbourhoods is higher than that of local search methods. During the high

level heuristic search, it was observed that a large number of walks were performed before the search

obtained the next better heuristic sequences. The search space of the high level heuristic is more likely to be

smooth and to contain large areas of plateaus where different heuristic sequences can produce similar quality

solutions.

Due to the characteristics of the high level search space of heuristic sequences, we thus conclude that the

role of high level heuristics within the GHH is to search quickly within limited areas and to restart iteratively

at different areas. More parts of the solution space (even disconnected from each other) can thus be searched,

which increases the chance of obtaining more high quality solutions in a limited time.

5.3 Analysis of the Hybridisations within the GHH Framework

In this section, the two hybridisations of the GHH (see GHH1 and GHH2 in Section 4.1) are tested on both

benchmark course and exam timetabling problems. Due to the above observations (see subsection 5.2.3), we

employ ILS as the high level heuristic.

5.3.1 Course Timetabling Problems

Table 7 presents the results of our hybrid GHH, together with the best results reported in the literature by

different approaches. We can observe that both of the hybrid GHH methods work well. In particular, GHH2

obtained the best and best average results on all of the small instances and two of the medium instances

among all of the approaches reported in the literature. During the experiments of GHH2, we observed that

high quality solutions can usually be obtained fairly quickly after each re-start of the high level ILS. This, in

practice, can significantly reduce the computational time of this hybrid GHH. Also note that for GHH2, the

best and average results on all the problems are very close, meaning that the approach is consistent over

different runs.



INSERT TABLE 7 HERE.

As explained above, because GHH searches for heuristic sequences to construct solutions, some of the

soft constraints (such as soft constraint 3 in Table 1) cannot be accurately evaluated on the partial solution

built at that time. By hybridising local search upon actual solutions, these soft constraints can be effected on

a complete or a partial solution during the solution construction.

5.3.2 Exam Timetabling Problems

Table 8 presents the results on the benchmark exam timetabling problems by the two hybrid GHH

approaches. Again, GHH2 outperforms GHH1 over all of the problems on average results, and 9 out of 11

problems on the best results. Hybridising local greedy search to carry out exploitive search upon partial

solutions during the solution construction is observed to be more effective than that of on a complete

solution. Again the GHH2 is very consistent on all of the runs with distinct seeds.

INSERT TABLE 8 HERE.

It can be observed that the best results reported in the literature were obtained by different approaches

over the years. Among the 8 approaches compared (which have obtained the best results in the literature on

the benchmarks), our hybrid GHH obtained competitive results. However, the most important point to make

here is that all of the other approaches were specifically designed for the exam timetabling problem. Only our

method, which does not require parameter tuning, can also work well on the course timetabling problem by

simply changing its evaluation function.

6 Conclusions and Future Work

This paper defined a unified graph based hyper-heuristic (GHH) framework. It investigated different high

level heuristics on both benchmark course and exam timetabling problems. Hybridisations of the GHH with

local search methods were also investigated.

We studied the search space of high level heuristics within the GHH framework. Experimental results

indicate that iterative techniques such as Iterated Local Search and Variable Neighbourhood Search are more

effective than Tabu Search and Steepest Descent Method within this GHH framework on both course and

exam timetabling problems. It is observed that by employing neighbourhood moves within the heuristic

search space, the high level search is capable of jumping within the solution space of problems. The heuristic

sequences cover only a subset (but well distributed areas) of the solution space. It is also observed that the

search space of heuristics is relatively smooth (i.e. it contains a large number of plateaus where solutions

with the same quality exist). We thus suggest that the role of the high level heuristic in GHH is to search



within the limited areas quickly and to explore as widely as possible the solution space by re-starting from

different heuristic sequences within a limited computational time.

We investigated two ways of hybridising the GHH with local search. Of particular interest is the

hybridisation of local search during the solution construction, which can quickly obtain good results for both

benchmark course and exam timetabling problems compared with the different approaches that appeared in

the literature over the years. Compared with the basic GHH, the hybridisation of local search during the

solution construction presented significant improvement on solution quality and computational time.

The comparisons of the characteristics of the two search spaces (of heuristics and of solutions) further

strengthen the views that not all of the solutions in the solution space can be mapped to the heuristic

sequences in the heuristic search space. This implies that the high level search is carried out within a much

smaller search space (of heuristics) but is still able to cover wide areas of the solution space. The hybrid

GHH has the ability of exploring and exploiting within the solution space simultaneously by searching within

the two search spaces.

The hybrid GHH is a more general framework than other timetabling methods. Simple and fast search

techniques can be employed as the high level heuristic and the local search on the solution space without

much tuning effort. In fact, the basic methodology can be applied to any problems that can be modelled as

graph colouring problems. Testing on a wider range of application domains such as general timetabling and

scheduling problems represents a significant direction in our future research. The hyper-heuristic search has a

simple structure and is focused on high level heuristics, leaving much scope for hybridisation with other

techniques. Further in-depth performance analysis and understanding may also lead to general observations

benefiting general meta-heuristic research. For example, knowledge of the good sequences that generate high

quality solutions can be extracted and collected in helping build fundamentally more general approaches for

timetabling and optimisation problems. As an iterative constructive approach, the computational time of

GHH is usually much larger than that of local search improvement algorithms. More knowledge and better

understanding of the GHH framework may further improve the efficiency of this general approach for a

range of optimisation problems.
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Table 1 Constraints of the benchmark course timetabling problems

Hard constraints Soft constraints

no students can be scheduled to more than one event at the same time a student has a class in the last timeslot of the day

the room meets all features required by the event a student has more than two classes in a row

no more than one event is allowed per room and per timeslot a student has only one class on a day

room capacity is respected

Table 2 Characteristics of the benchmark exam timetabling problems

car91 I car92 I ear83 I hec92 I kfu93 lse91 sta83 I tre92 ute92 uta93 I yok83 I

exams 682 543 190 81 461 381 139 261 184 622 181

timeslots 35 32 24 18 20 18 13 23 10 35 21

students 16925 18419 1125 2823 5349 2726 611 4360 2750 21266 941

conflict density 0.13 0.14 0.27 0.42 0.6 0.6 0.14 0.18 0.8 0.13 0.29

Table 3 Difficulty measuring strategies based upon graph heuristics for timetabling problems

Graph Heuristics Difficulty Measuring Strategy that Orders Events

Largest Degree decreasingly by the number of conflicts the event has with the other events

Largest Weighted Degree the same as above but weighted by the number of students involved in the events

Largest Enrolment decreasingly by the number of enrolments in the events

Colour Degree decreasingly by the number of conflicts the event has with those already scheduled

Saturation Degree increasingly by the number of feasible timeslots available for the event at that time

Table 4 Characteristics of the search spaces of the heuristics and solutions in the hybrid GHH

Search Space Heuristics Solutions

Representation sequences of graph colouring heuristics actual timetables

Size (Upper Bound) hl (l: length of the sequence, h: number of graph

colouring heuristics)

te (t: number of timeslots, e: number of events)

Neighborhood Operator randomly change two heuristics in the sequence move events in the timetable to other timeslots

Objective Function penalty of timetables constructed by heuristic

sequence

penalty of timetables, or difference of costs

caused by moving events in the timetable



Table 5 Different high level heuristics in the GHH framework on benchmark course timetabling problems (s1-s5: small problems;

m1-m5: medium problems). The best results and the best average results are highlighted and italicised for each problem,

respectively. “x%”: the percentage of runs where no feasible solutions can be obtained.

s1 s2 s3 s4 s5 m1 m2 m3 m4 m5 large

SDM best 7 8 3 6 10 368 100% 367 356 195 100%

SDM avg 10.8 15.6 5 11.8 12.2 382.5 100% 383 374.5 194.5 100%

SDM time (s) 15 38 10 8 30 3823 3672 3752 3637 1989 4013

ILS best 6 9 4 6 8 373 461 375 374 172 1132

ILS avg 8.8 13.2 5.4 7.6 12 375 480.5 377.5 380.5 179.7 1144 60%

ILS time (s) 32 47 15 11 23 3656 3018 3382 3451 1822 3811

TS best 11 11 5 11 16 496 533 460 529 214 1164

TS avg 12.2 16.4 9.2 12.2 18.2 511.5 533 80% 468 539 236 1164 80%

TS time (s) 12 18 9 7 19 3326 2996 3160 3280 1650 3564

VNS best 7 12 4 6 6 346 433 359 370 156 1148

VNS avg 10 14.8 5.2 8 10.6 365 443 40% 369.5 377.5 165.5 1148 80%

VNS time (s) 32 45 16 10 30 3920 3723 3856 3667 2013 4079

Table 6 Different high level heuristics in the GHH framework on benchmark exam timetabling problems (the best and best average

results are highlighted and italicised, respectively.)

car91 I car92 I ear83 I hec92 I kfu93 lse91 sta83 I tre92 ute92 uta93 I yor83 I

SDM best 5.44 4.87 35.54 12.59 15.25 13.01 160.3 9.01 31.77 3.61 42.77

SDM avg 6.18 5.3 36.8 12.74 15.63 13.51 163.7 9.37 32.6 4.5 43.6

SDM time (s) 15367 8001 584 22 2502 1722 69 1597 87 8018 426

ILS best 5.3 4.77 38.39 12.72 15.09 12.72 159.2 8.74 30.32 3.32 40.24

ILS avg 6.01 5.18 39.58 13.01 15.35 13.1 161.6 8.92 31.3 4.01 43.15

ILS time (s) 17334 8200 617 31 2629 1832 73 1638 100 10464 527

TS best 5.43 4.94 38.19 12.36 15.97 13.25 165.7 8.87 32.12 3.52 41.3

TS avg 6.3 5.34 45.56 14.6 19.55 14.29 169.1 9.67 37.02 4.38 47.97

TS time (s) 20393 9111 649 32 2768 1970 80 1800 100 10464 527

VNS best 5.4 4.7 37.29 12.23 15.1 12.71 159.3 8.67 30.23 3.56 43.0

VNS avg 6.1 5.1 38.63 12.72 15.24 13.06 163.3 8.88 31.7 4.05 43.93

VNS time (s) 16321 8107 672 42 2531 1653 47 1721 677 9210 501



Table 7 State-of-the-art approaches and GHH hybridising local search (GHH1: on complete solutions; GHH2: during solution

construction) on benchmark course timetabling problems. “x/y": the percentage x that cannot obtain feasible solutions, and the best

result y of feasible solutions. The best results and the best average results are highlighted and italicised, respectively.

s1 s2 s3 s4 s5 m1 m2 m3 m4 m5 large

GHH1 best 0 0 0 0 0 257 259 192 235 112 0.8/1132

GHH1 avg 0.2 0.6 0 0.4 0.1 261 273 214.5 242 116 1135

GHH1 time (s) 50 54 48 45 65 19411 15750 18512 18782 9725 20328

GHH2 best 2 2 1 1 0 310 419 332 324 162 0.8/1162

GHH2 avg 2.6 2.8 1 3 2.6 323 428 345 335 182 1162

GHH2 time (s) 155 218 240 171 260 62115 50403 57387 65821 36955 81148

ANT [50] 1 3 1 1 0 195 184 248 164.5 219.5 851.5

CNS [3] 0 0 0 0 0 242 161 265 181 151 757

TS-HH [15] 1 2 0 1 0 146 173 267 169 303 1166 80%

RRLS [50] 8 11 8 7 5 199 202.5 77.5% 177.5 100% 100%

VNS [2] 0 0 0 0 0 317 313 357 247 292 929

Table 8 State-of-the-art approaches and GHH hybridising local search (GHH1: on complete solutions; GHH2: during solution

construction) on benchmark exam timetabling problems. A selection of appropriate methods which includes those that generate the

best results among all of the approaches in the literature are highlighted.

car91 I car92 I ear83 I hec92 I kfu93 lse91 sta83 I tre92 ute92 uta93 I yor83 I

GHH2 best 5.16 4.16 35.86 11.94 14.79 11.15 159 8.6 28.3 3.59 41.81

GHH2 avg 5.21 4.20 36.2 12.1 15.01 11.24 160.81 8.65 28.64 3.62 41.96

GHH2 time (s) 26001 11666 740 105 3417 2015 128 2293 131 10045 641

GHH1 best 5.3 4.77 38.39 12.01 15.09 12.72 159.2 8.74 30.32 3.42 40.24

GHH1 avg 6.01 5.18 39.58 12.33 15.35 13.1 161.6 9.0 31.3 4.01 43.15

GHH1 time (s) 13684 6553 462 70 1887 1125 72 1433 101 5429 340

[1] 5.21 4.36 34.87 10.28 13.46 10.24 159.2 8.7 26 3.63 36.2

[4] 5.2 4.52 37.02 11.78 15.81 12.09 160.42 8.67 27.78 3.57 40.66

[19] 4.6 4.0 37.05 11.54 13.9 10.82 168.73 8.35 25.83 3.2 36.8

[9] 4.8 4.2 35.4 10.8 13.7 10.4 159.1 8.3 25.7 3.4 36.7

[22] 6.6 6.0 29.3 9.2 13.8 9.6 158.2 9.4 24.4 3.5 36.2

[25] 7.1 6.2 36.4 10.8 14.0 10.5 161.5 9.6 25.8 3.5 41.7

[31] 6.2 5.2 45.7 12.4 18.0 15.5 160.8 10.0 29.0 4.2 42.0

[39] 5.1 4.3 35.1 10.6 13.5 10.5 157.3 8.4 25.1 3.5 37.4



Figure 1 Solution construction by a sequence of graph heuristics

Figure 2 Pseudo-code of the graph based hyper-heuristic

Figure 3 The hybrid GHH framework

initialisation of the heuristic sequence hl
// Tabu Search upon heuristic sequences
for i = 0 to i = the number of iterations

h = change two heuristics in heuristic sequence hl //a move in Tabu Search
if h is not in the tabu list

construct a complete solution using heuristic sequence h (see Figure 1)
if penalty of solution c < the least penalty cg obtained

save the best solution, cg = c
update the tabu list
hl = h

//end if
//end of Tabu Search
output the best solution with penalty of cg

initialisation of the heuristic sequence hl = {h1 h2 … hk} //k: number of events

// high level search upon heuristic sequences
for i = 0 to i = the number of iterations

*multiple starts in Iterated Local Search //optional
h = change upon heuristic sequence hl //a move in the high level search

//construct solution using heuristic sequence h
for j = 0 to j = k //k: length of heuristic sequence

schedule an event using heuristic hj
*(2) local improvement on the partial solution (see (2) in Figure 1)

*(1) local improvement on complete solution (see (1) in Figure 1)
if penalty of solution c <= the least penalty cg obtained

save the best solution according to acceptance criteria in the high level
search, cg = c
*update tabu list //optional for Tabu Search
hl = h

//end of high level search
output the best solution with penalty of cg

(1) yesno

heuristic
sequence
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1st event in
the order

can
schedule?

complete
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order the rest of
events by the ith

graph heuristic



List of Figures

Figure 1 Solution construction by a sequence of graph heuristics.

Figure 2 Pseudo-code of the graph based hyper-heuristic.

Figure 3 The hybrid GHH framework.

List of Tables

Table 1 Constraints of the benchmark course timetabling problems

Table 2 Characteristics of the benchmark exam timetabling problems

Table 3 Difficulty measuring strategies based upon graph heuristics for timetabling problems

Table 4 Characteristics of the search spaces of the heuristics and solutions in the hybrid GHH

Table 5 Different high level heuristics in the GHH framework on benchmark course timetabling problems (s1-s5:

small problems; m1-m5: medium problems). The best results and the best average results are highlighted and italicised

for each problem, respectively. “x%”: the percentage of runs where no feasible solutions can be obtained.

Table 6 Different high level heuristics in the GHH framework on benchmark exam timetabling problems (the best and

best average results are highlighted and italicised, respectively.)

Table 7 State-of-the-art approaches and GHH hybridising local search (GHH1: on complete solutions; GHH2: during

solution construction) on benchmark course timetabling problems. “x/y": the percentage x that cannot obtain feasible

solutions, and the best result y of feasible solutions. The best results and the best average results are highlighted and

italicised, respectively.

Table 8 State-of-the-art approaches and GHH hybridising local search (GHH1: on complete solutions; GHH2: during

solution construction) on benchmark exam timetabling problems. A selection of appropriate methods which includes

those that generate the best results among all of the approaches in the literature are highlighted.


