
Knowledge-Based Intelligent Information Engineering Systems and Allied
Technologies, Volume 82. Proceedings of KES'02, 336-340. Sep, 2002

Case-Based Reasoning as a Heuristic Selector
in a Hyper-Heuristic for Course Timetabling

Problems

S. Petrovic, R. Qu
School of Computer Science and Information Technology, Jubilee Campus,

University of Nottingham, Nottingham, NG8 1BB, U.K.

Abstract. This paper studies Knowledge Discovery (KD) using Tabu Search and Hill Climbing within
Case-Based Reasoning (CBR) as a hyper-heuristic method for course timetabling problems. The aim of

the hyper-heuristic is to choose the best heuristic(s) for given timetabling problems according to the
knowledge stored in the case base. KD in CBR is a 2-stage iterative process on both case representation

and the case base. Experimental results are analysed and related research issues for future work are
discussed.

1. Introduction

 Case-Based Reasoning (CBR) is a knowledge-based technique that solves new problems
based on knowledge and experiences from old problems that have been previously collected
in the form of cases and stored in a case base (source cases) [1]. The overall idea is that by
retrieving the most similar source case(s), CBR is capable of solving problems based on
previous good solutions, avoiding solving problems from scratch and saving a lot of effort.
Recently CBR has been employed with some success on some scheduling problems [2].
 The term ‘hyper-heuristic’ is a relatively new term refers to a “heuristic which chooses
heuristics” [3, 4, 5]. The main difference between hyper-heuristic and the widely studied
meta-heuristic is that hyper-heuristic is a heuristic that chooses proper heuristics/meta-
heuristics from a given set of heuristics, rather than operating directly on the problem. Meta-
heuristics are usually (but not exclusively) pre-defined heuristics that operate directly on
problems. A hyper-heuristic is thus a more flexible and more general approach that may be
employed on a wider range of problems. Recently some research on scheduling has obtained
promising results by employing hyper-heuristics, although sometimes the approaches do not
use this name [6, 7, 8].
 Timetabling problems have been heavily studied for the last 40 years [9, 10, 11, 12, 13, 14].
This paper studies course timetabling problems, which can be considered as multi-
dimensional assignment problems that assign students and teacher into timeslots, and courses
into rooms subject to certain constraints [10]. A large amount of work has been carried out
using a variety of approaches. Some work has made comparisons between different
heuristics on specific problems. This serves as a good starting point for using CBR as a large
amount of data is available to be collected and studied. The aim of this paper is to investigate
the employment of CBR as a heuristic selector in a hyper-heuristic to predict the best
heuristic according to the knowledge discovered.

2. Knowledge Discovery in Case-Based Reasoning for Timetabling

 The basic assumption that CBR works on is that similar problems will have similar
solutions [1]. The retrieval is a similarity-driven process that finds the most similar source
cases. The key issue of our work is to discover and represent the knowledge of problem
solving in a way that allows us to find the most similar source cases that give good
predictions of the best heuristics for the new problem.
 Knowledge discovery (KD) was defined by Fayyad, Piatetsky-Shapiro and Smyth [15] as a
“non-trivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data”. Some work has been carried out using evolutionary
algorithms to fulfil this task [16]. Our work studies a 2-stage iterative process of KD on the
case representation and the case base.

 The first stage of KD on case representation. In the CBR system:
• Cases are represented by a list of feature-value pairs. Tabu Search and Hill Climbing will

be used to search for the feature list from a number of given features. We introduce two sets
of features – Fs that contains simple features and Fc that contains simple features and their
combinations.
Fs = {f0, … fI} = {No. of courses; No. of slots; No. of constraints; No. of rooms; No. of
hard constraints (which must not be violated, for example, two courses with common
students are scheduled in the same slot); No. of soft constraints (all the other constraints
that are desirable); No. of inclusive/exclusive courses (courses should/should not be
scheduled to a fixed slot); No. of consecutive/non-consecutive courses (courses
should/should not be scheduled to consecutive slot)}
Fc = {f0, f1, … fI, f0/f1, f0/f2, … fI/fI-1}, fi ∈ Fs, i = 0, … I

• The case base is a database of a set of cases of timetabling problems with the best 2
heuristics from H for solving them.
H = {Hill climbing; Largest degree first; Largest degree with tournament selection; Colour
degree; Saturation degree} (see [17])

• The training cases are a set of cases in hand for the training in the knowledge discovery
process. The best heuristic from H for solving them is obtained beforehand.

• The similarity measure given in formula (a) employs a nearest-neighbour approach that
calculates the weighted sum of differences between each pair of features within two cases.

1)(1),(
1

2 +−×= ∑
=

j

i
iiits ftfswCCS (a)

 The notation in formula (a) is defined as follows:
 j is the number of features in the case representation
 wi is the weight of the ith feature reflecting its relevance on the prediction
 fsi, fti are the values of the ith feature in source case Cs and training case Ct, respectively
• Retrieval uses the similarity measure to compare each source case and the training case

represented by a list of feature-value pairs. If the best heuristic of the training case is
within one of the best 2 heuristics of the retrieved source cases, the retrieval will be seen
as sucessful on the case representation with the features selected.

 A schematic diagram of the discovering process on the CBR system described above is
given in Figure 1. Tabu search and Hill climbing are used to discover features and their
weights. The search space includes all the possible enumerations of features selected from Fc
or Fs that describe the characteristics of the timetabling problems. An initial feature list is
randomly selected for Tabu Search or Hill Climbing. During the search, feature lists are
selected by moves that change one of the features and its weight. For each feature list

selected, retrieval compares the heuristics proposed in the training cases and the source cases
retrieved. The percentage of successful retrievals indicates the system performance on the
feature vector selected. This process will be carried out iteratively until the stopping condition
is met (here a pre-set time for searching). The feature vector that gives the highest accuracy of
prediction will be used in the next stage of KD.

Figure 1 Schematic Diagram of Knowledge Discovery on Featrues and Their Weights

 The second stage of KD on the case base. Source case selection is one of the key issues for
the system performance of CBR. Irrelevant source cases may confuse the retrieval and
decrease the system performance. In CBR, source cases are usually collected by studying the
previous cases, or by gradually retaining solved cases during the lifetime of the system.
 The knowledge discovery on the case base uses the “Leave-One-Out” strategy that removes
one source case a time from a given case base. If the system performance is decreased, then
the removed source case will be added back. Otherwise, another source case will be removed
and this process will be carried out repeatedly until the best system performance is obtained.
Then the case base is refined and only the relevant and representative cases are retained.

3. Experiments and Discussions on the Results

 A set of experiments is carried out for the KD that is described in the last section.
 Experiment 1. Knowledge discovery on features. Figure 2 shows the chart of the average
system performance (percentage of successful retrievals for all the training cases) on 10 runs
with the different number of features searched by Tabu Search and Hill Climbing.

50

55

60

65

70

75

80

85

3 5 7 9 11 13 15 17 19

Number of Features

S
ys

te
m

 P
er

fo
rm

an
ce

 (
%

)

Hill Climbing

Tabu Search

Figure 2 System Performance by Tabu Search and Hill Climbing on Different Number of Features from Fc

 We can see that not surprisingly in general Tabu Search operates better than Hill Climbing.
With 5 features in the case representation, the system has the highest performance. Using
more features than needed decreases the system performance. We studied the similarity from
different feature lists during the search and found that when there are more features, the
similarities between the source cases and the training case are too close to each other and
thus the retrievals are too confused to find good source cases for prediction.

ye

no

feature/weight
discovery

Case Base

initial
features

stop the
search?

discovered features

retrieval

training
cases

 Experiment 2. – Knowledge discovery on feature weights. This experiment was carried
out because we found that when the features chosen are from Fc, the best performance is
always obtained when their weights are the same. Table 1 shows the weights discovered for
the best system performance when the features are selected from Fs that contains smaller
number of simpler features.

Table 1 Weights Discovered when Features are Selected Form Fs

No. of Features 3 5 7 9
Tabu Search {7, 8, 9} {1, 1, 1, 1, 1} {6, 10, 2, 5, 1, 2, 7} {1, 9, 4, 3, 7, 5, 9, 4, 3}
Hill Climbing {6, 7, 7} {1, 1, 1, 1, 1} {1, 2, 1, 3, 3, 7, 1} {2, 2, 3, 3, 4, 5, 9, 1, 9}

 We can see that when there are a lower number of simpler features to choose from, the
system performs best on features with different weights. This may be because with simpler
features, the similarity measure cannot get enough information for comparison between the
cases. Thus the weights of these features need to be adjusted to give a better retrieval. When
there are more complex features, the similarity measure may have enough information for
comparison so adjusting the weights of features may not provide much improvement on the
system performance. Another explanation may be that the features are much more important
than their weights in the similarity measure. The feature list that gives the highest system
performance in the first stage will be employed in the CBR system.
 Experiment 3. – Knowledge discovery on the case base. We build up 2 case bases with a
different number of source cases with different heuristics as their solutions. They are:
 “CB1” – a database of 45 source cases with 10, 15, … 50 courses (9 different sizes) in the
problem. For each size there is a set of 5 cases each solved with one heuristic from H.
 “CB2” – a database of 90 source cases with 9 different sizes, each has a set of 10 cases,
each two of them solved with one heuristic in H.
 The “Leave-One-Out” strategy is used to refine the case bases. The system performance
before and after this process is presented from the second column to the fourth column in
Table 2. We can see that the sizes of the refined “CB1” and “CB2” are vastly reduced but
higher system performance is obtained with more relevant source cases. Also we can observe
that the refined “CB2” has a better performance as more source cases are trained in “CB2”.

Table 2 System Performance Before and After the Second-Stage Process on Case Bases

Case Base CB1 CB2 Refined CB1 Refined CB2 Learnt CB1 Learnt CB2
No. of Source Cases 45 90 6 8 12 13
System Performance 40% 56% 60% 66% 68% 70%

 Experiment 4. – Case-based learning. We tested the refined case bases on another set of
new cases. The results are slightly worse than those on the training cases used in the KD
process. This means that new knowledge needs to be gradually discovered for solving more
new problems. We know that CBR has the ability of learning by retaining useful cases during
the problem solving. Solving new problems improves the system performance and that is
presented in the last two columns in Table 2. Our study on knowledge discovery in the CBR
system uses a limited number of cases. After the discovering process, the CBR system will
need to learn to solve a wider range of problems that are not trained during that process.

4. Remarks and Future Work

 In this work we studied knowledge discovery on CBR in a hyper-heuristic method to
predict the best heuristic for timetabling problems. The observations obtained from the
reasonably good experimental results may provide indication for further work on using CBR
within a hyper-heuristic framework.

 Experimental results show that the feature selection is more important than their weights in
the retrieval if the features are elaborated enough. This gives us an indication that current
features we are using to select from are reasonably good for case representation. More
relevant features will be studied for a more precise case representation to improve the system
performance. As irrelevant features in the case representation confuse the retrieval, refining
the features selected is also an important task.
 Source case selection is one of the key issues in CBR. Knowledge and problem solving
experiences in timetabling need to be continuously discovered and stored in the case base.
Our work investigated knowledge discovery on a limited number of artificially produced
problems. Higher performance may be obtained by studying a large number of cases for the
case base. Training on a higher number of real-world data needs to be carried out to obtain a
wider range of knowledge in the timetabling domain.
 The knowledge discovery techniques we studied in choosing heuristics may also be
employed to discover knowledge in the search space that may guide the search towards a
more promising region in problem solving using a variety of Artificial Intelligence methods.
Our future work will also investigate more complicated hyper-heuristic methods using CBR
for timetabling problems.

References

[1] Leake, D. (ed.): Case-based Reasoning: Experiences, Lessons and Future Directions. AAAI Press,

Menlo Park, CA. 1996.
[2] B.L. MacCarthy and P. Jou, Case-based reasoning in scheduling. In: M.K. Khan and C.S. Wright (eds.),

Proceedings of the Symposium on Advanced Manufacturing Processes, Systems and Techniques
(AMPST96), (MEP Publications Ltd, 1996), 211-218, 1996.

[3] P. Cowling, G. Kendall, and E. Soubeiga, A parameter-free hyperheuristic for scheduling a sales
summit. In: Proceedings of the 4th International Metaheuristic Conference (MIC2001), 127-131, 2001.

[4] E.K. Burke, S. Petrovic, Recent research directions in automated timetabling, To appear in European
Journal of Operational Research 2002.

[5] E.K. Burke, B.L. MacCarthy, S. Petrovic, R. Qu, Knowledge discovery in hyper-heuristic using case-
based reasoning on course timetabling, Accepted in the 4th Interanational Conference on the Practice
and Theory of Automated Timetabling (PATAT 2002), 2002.

[6] E. Hart, P. Ross and J. Nelson, Solving a real-world problem using an evolving heuristically driven
schedule, Evolutionary Computation 6 (1998) 61 – 80.

[7] P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems,
Proceedings of Principles and Practice of Constraint Programming, 417-431, 1998.

[8] H.T-Marin, P. Ross, M.V-Rendon, Evolution of constraint satisfaction strategies in examination
timetabling, In Proceedings of the Genetic and Evolutionary Computation Conference, 635-642, 1999.

[9] M.W. Carter, and G. Laporte, Recent developments in practical exam timetabling. In: [11], 3-21, 1995.
[10] M.W. Carter, and G. Laporte, Recent developments in practical course timetabling. In: [12] 3–19, 1997.
[11] E.K. Burke, and P. Ross, (eds.), The First International Conference on the Practice and Theory of

Automated Timetabling, Lecture Notes in Computer Science 1153, Springer-Verlag, 1995.
[12] E.K. Burke, and M. Carter, (eds.), The Second International Conference on the Practice and Theory of

Automated Timetabling, Lecture Notes In Computer Science 1408. Springer-Verlag, 1997.
[13] A. Schaef, A survey of automated timetabling. Artificial Intelligence Review. 13 (1999) 87-127.
[14] E.K. Burke, and W. Erben, (eds.), The Third International Conference on the Practice and Theory of

Automated Timetabling, Lecture Notes in Computer Science 2079, Springer-Verlag, 2000.
[15] U. Fayyad, G. Piatetsky-Shapiro, Smyth and R. Uthurusamy, (eds.) Advances in Knowledge Discovery

and Data Mining, AAAI Press, Melo Park, CA, 1996.
[16] A. Freitas, A survey of evolutionary algorithms for data mining and knowledge discovery. To appear in:

A. Ghosh, and S. Tsutsui, (eds.), Advances in Evolutionary Computation. Springer, 2002.
[17] E.K. Burke, J. Newall, and R. Weare, A simple heuristically guided search for the timetabling problem.

Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems (EIS'98), 574-
579, 1998.

