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Abstract The idea of decomposition has been successfully applied to address large
combinatorial optimization problems across a range of applications. However, in timetabling,
it has not been widely applied. One major difficulty of course, is that early assignment in one
sub-problem may lead to later conflict in solving interrelated sub-problems. In our previous
work, timetabling problems were adaptively decomposed into a difficult set and an easy set of
exams. They were generated by using the information gathered from previous iterations during
the problem solving. The approach obtained promising results and showed somewhat
unsurprisingly, that a small set of difficult exams contributed to a much larger portion of the
total cost of the solution constructed. An interesting issue, which is explored in this paper, is to
investigate the effect of constructing complete solutions based on an optimal solution of this
difficult sub-problem.

In this paper, we first present an IP formulation for solving the difficult sub-problem. To have
a tighter initial formulation, a well-known inequality called the Clique Inequality is utilized.
We then examine the combinatorial properties of the problem to introduce a new family of
cutting planes. These are shown to be helpful in obtaining a solution which is within a gap of
less than 10% of optimal for the sub-problem, based on which the final solution is constructed.
Promising results have been obtained on several benchmark exam timetabling problems in the
literature.

1 Introduction

Exam timetabling is an important issue in universities and schools all over the world. It
has been very well studied in the last five decades [31]. The basic task of exam timetabling has
similarities across very different institutions although the requirements and needs can differ
markedly [5]. We need to assign exams to a limited number of time periods so that no hard
constraint violation occurs (e.g. no student is assigned more than one exam at a time). A
common soft constraint is to spread students’ exams out as far as possible to allow them time
between exams. Soft constraints tend to be institution specific, and are given different
priorities (weightings) in different institutions. The quality of a timetable is usually determined
by the exact soft constraint violation. For an overview of timetabling in general see [10, 13, 16,
21]. For a comprehensive specific review of exam timetabling methodologies, see a recent
survey in [31]. Due to their importance in practice and inherent scientific challenge, exam
timetabling problems have been widely investigated across both the operational research and
the artificial intelligence community.



Due to the large size and complex features of exam timetabling problems, IP models have
not been widely investigated in recent research. The only recent work on exam timetabling that
we are aware of is in [23], where an IP model was built to solve a specific problem. Some IP
formulations have been studied in course timetabling, where Branch-and-Bound [17] and
Branch-and-Cut [2] were employed. Different cutting planes were introduced to speed up the
Brand-and-Bound process.

In most cases, real-world exam timetabling problems are very large and difficult.
Heuristic approaches have been employed to solve the problem efficiently. Simple graph based
heuristics have been investigated [8, 14], and are still being employed and adapted within some
hybridized methods [7, 9, 30]. Meta-heuristics have become the state-of-the-art [31]. Local
search based techniques such as Simulated Annealing [4, 22, 27] and Tabu search [18, 26, 32]
have been explored with some success. Evolutionary algorithms have also been investigated
throughout of the years [5, 19, 28]. Multi-objective techniques [15] have also been
investigated. In recent research, hybrid approaches [11, 22] have played a prominent role in
timetabling research, integrating a variety of different techniques including constraint based
methods and graph based heuristics.

The basic idea of decomposition is to “divide and conquer”, as optimal solutions of
smaller sub-problems may be much easier to obtain by using relatively simple approaches or
even exact methods. However, the task of decomposition can represent a major challenge. It is
usually problem specific and little work exist during the years in the complex timetabling
problems. Carter and Johnson [12] considered a subset of quasi-clique (dense sub-graphs) as
the foundation upon which to generate complete solutions. Their results showed that the quasi-
clique initialization can significantly improve the quality of complete solutions. Qu and Burke
[29] adaptively decomposed the problem into two sets of exams (a difficult set and an easy
set). The level of difficulty of exams in specific problems is adaptively adjusted by information
gathered from previous iterations of the problem solving procedure. The approach obtained
promising results compared against the best results from a number of approaches in the
literature at that time. In particular, it was showed that the adaptive difficult set is usually of
small size, but makes a major contribution towards the total cost of the constructed solution. A
simple random greedy technique was used to find a good enough solution to the difficult set
sub-problem in [29].

In this paper, we carried out an in-depth analysis of these adaptively identified difficult
sets. The effect of the optimal solution for the crucial sub-problems within the complete
solution is studied. The difficult set sub-problems are formulated into a set packing problem
with side constraints, and solved by employing an exact IP model to obtain the optimal
solution (within a gap of < 10%). We study the structure of exam timetabling problems and
introduce new valid inequalities based on the specific combinatorial properties of the problem.
Computational results show that the quality of solutions for the difficult set sub-problems
contributes towards building high quality final complete solutions constructed.

This paper is organized as follows: Section 2 presents details of the benchmark exam
timetabling problems we are solving and overviews our hybrid adaptive decomposition
approach. Section 3 presents the IP formulation of the problem and the problem specific
cutting planes introduced in the IP model. Section 4 reports the computational results and
analysis, followed by Section 5, which presents the conclusion and future work.

2 Benchmark Exam Timetabling Problem and the Hybrid Adaptive Decomposition
Approach

2.1 Benchmark exam timetabling instances

The exam timetabling instances we investigate in this paper concern the University of
Toronto problem, firstly introduced by Carter et al. [14] and publicly available at



ftp://ftp.mie.utoronto.ca/pub/carter/testprob. Over the years they were widely employed as
testbeds in exam timetabling research. However, there has been an issue with different
instances circulating under the same name. To encourage future scientific comparisons, the
issues were clarified and different versions of the instances in the dataset were renamed as
version Ι, version ΙΙ and version ΙΙc (see more details in [31]). We use version Ι of the dataset
and present the characteristics of these problems in Table 1. More details of the problems and
an API evaluation function are provided at http://www.asap.cs.nott.ac.uk/resources/data.shtml.

Table 1 Characteristics of the benchmark exam timetabling problems in [14], also see [31]

Problem instance No. of Exams No. of Students No. of Time Periods Conflict Density
ear83 Ι 190 1125 24 0.27
hec92 Ι 81 2823 18 0.42
lse91 381 2726 18 0.06

sta83 Ι 139 611 13 0.14
tre92 261 4360 23 0.18

yor83 Ι 181 941 21 0.29

In the problem dataset, to indicate the density of conflicting exams (i.e. those exams with
common students thus cannot be scheduled in the same time period), a Conflict Matrix C was
defined where each element cij = 1 if exam i has common students with exam j, or cij = 0
otherwise. The Conflict Density represents the ratio between the number of elements cij of
value “1” to the total number of elements. A high conflict density indicates that the problem
difficult to solve. The objective is to minimize the average cost per student, calculated by an
evaluation function which is predicated around spreading conflicting exam out (rather than
having them allocated close to each other). For students sitting two exams s time periods apart,
a proximity cost ws is assigned, i.e. w1 = 16, w2 = 8, w3 = 4, w4 = 2, w5 = 1 and ws = 0 for s > 5. A
more formal description of the problem can be seen in [14].

2.2 The hybrid adaptive decomposition approach

In our previous adaptive decomposition approach [29], an initial ordering of the exams is
first obtained by using the Saturation Degree graph heuristic. Exams are ordered increasingly
by the number of remaining feasible time periods during solution construction. Earlier exams
with less number of feasible time periods in the ordering can be seen as more difficult and are
scheduled to the timetable first. In some cases, the ordering may need to be randomly adjusted
until a feasible solution can be obtained. Based on this initial ordering, this list of exams is
then decomposed adaptively into two subsets (named the difficult set and the easy set). The
pseudo-code presented in Algorithm 1 outlines the adaptive decomposition process to identify
the difficult set.

The approach is an iterative process where one solution is built at each iteration by
scheduling the exams in the difficult set and the easy set in the ordering at that iteration. The
exams in the difficult set are adaptively adjusted at each iteration by using information derived
from the solution construction in previous iterations i.e. the aim is to identify troublesome
exams, which can be dealt with higher priority in future iterations of the solution construction.
Problematic exams which cannot be scheduled in the previous iteration are added into difficult
set, and the quality of the previous solution is used to adjust its size.

After this set is identified by the above process, the ordering of exams in the easy set is
then randomly adjusted, while the difficult set is fixed. It was observed that detecting the
problematic exams in the difficult set is crucial in order to build high quality solutions, i.e.
better solutions after identifying the difficult set usually led to better final solutions after
adjusting the easy set. However, adjusting exams in the easy set also contributed towards
building good solutions, i.e. solutions after the difficult set is identified still can be greatly



improved in some cases. We refer to the work in [29] for more analysis on the identified
difficult set.
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Algorithm 1: Adaptive Decomposition by Identifying the Difficult Set

Build a feasible initial ordering of exams based on Saturation Degree heuristic
Initial size of difficult set Sd = number of exams / 2 // Sd[1, number of exams -1]
MaxNoIterations = 10,000; iteration = 0
while iteration < MaxNoIterations do

easy set = {eSd+1, eSd+2, ... ee}

reorder the exams in the difficult set {e1, e2, ... eSd}

construct a solution by using ordered exams in both difficult set and easy set
if a feasible solution or an improved solution is obtained

Sd = Sd + 1 // include more potential exams in the difficult set
else

move forward the difficult exam causing the infeasibility in the ordering
set the size of the difficult set to where the difficult exam was

store the difficult set and its size Sbest if the best solution is obtained
iteration = iteration + 1
h iteration, the exams are scheduled one by one according to their ordering in the
and the easy set into the time period leading to the least cost. In the case of ties, i.e.
e exam to two time periods leads to the same cost, the exam is randomly scheduled
e time periods. It was observed in our previous work that assigning the exam to the
andomly selected time period does not produce significantly different timetables.

work, the difficult set sub-problem detected by the above adaptive decomposition
the IP model (see Section 3) to obtain the optimal solution, based on which the
lution is constructed by scheduling the exams in the easy set. A simple steepest

thod is then applied to quickly improve the complete solution built based on the
ution of the difficult set sub-problem. The aim here is to demonstrate and analyze
eness of building solutions based on optimal solutions of crucial sub-problems.
dvanced meta-heuristics could of course be employed to further improve the
lution constructed and to provide better results given more computational time.

rmulation for the sub-problem

ormulation

fine the following notations:

of exams
f students registered to different exams in E

of time periods for scheduling all exams

e group of students enrolled to exam e, eE
he group of exams to which student s enrolled, s S

les:

ore binary variables and five additional counting variables are defined:

end while



Xet = 1 if exam e is scheduled in time period t, 0 otherwise.
Yst = 1 if student s is scheduled an exam in time period t, 0 otherwise.
C1 is the number of violations in conflicting type 1, i.e. two conflicting exams of a

student are scheduled one time period away.
C1 = , C1st = 1 if student s has adjacent exams starting from t, 0 otherwise.
C2 - C5 are defined in the same way, i.e. the number of violations in conflicting types 2-5,

i.e. two conflicting exams scheduled with one-four time periods in between
Different types of conflicting are given different importance, thus a weight is defined as:
w1 = 16, w2 = 8, w3 = 4, w4 = 2, w5 = 1 for two exams scheduled adjacently, and with one,

two, three and four time periods in between, respectively

Objective function:

Min w Ci i

s.t. = 1,eE; (1)

≤ 1,sS, tT; (2)

Xet ≤ Yst, eE, tT, sGSe; (3)
Yst + Yst+1 - C1st ≤ 1; (4)
Yst + Yst+2 – C2st ≤ 1; (5)
Yst + Yst+3 – C3st ≤ 1; (6)
Yst + Yst+4 – C4st ≤ 1; (7)
Yst + Yst+5 – C5st ≤ 1; (8)

The objective is to space out conflicting exams within the limited number of time periods
T. Constraint (1) requires that one exam can only be scheduled into exactly one time period;
Constraint (2) states that a student cannot take two exams at the same time; Constraint (3)
forces the following condition to define the relationship between exams and students, if Xet =
1, then sGSe, Yst = 1, otherwise Yst = 0. Constraints (4)-(8) are used to count the number of
violations for students, i.e. for student s and time period t, C1st = 1 if two exams are allocated in
adjacent time periods (i.e. Yst = 1 and Yst+1 = 1), otherwise C1st = 0.

3.2 Clique Inequality cutting planes

To derive valid inequalities for exam timetabling problems, we examine the relationship
between our problems and the Set Packing problem. The aim is to exploit the connection
between these two problems from the polyhedral description of the Set Packing polytope [3],
whose structure has been extensively investigated.

The set packing problem belongs to combinatorial optimization problems. Given a finite
set S, the problem is to find the maximum number of pairwise disjoint subsets in S, i.e. no two
subsets intersect. The problem can be defined as the following 0-1 integer linear programming
formulation:

Max {CX, AX ≤ eT, xi = 0 or 1 for i = 1, … n} (9)

where A is an mn matrix with elements from {0, 1}; X is a set of n variables and C is a
cost vector.

Constraint (2) in the above formulation take the form of a Set Packing problem (9), and
define a relaxation of our exam timetabling problem without considering other constraints (3)-
(8). We therefore use this to derive a family of Clique Inequalities [20, 25], which are very
effective in tightening the formulation for our exam timetabling problems.

Let G(V, E) be the intersection graph associated with the Set Packing relaxation and let
P(G) denote the Set Packing polytope, i.e., the convex hull of the incidence vectors of the
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stable sets in G(V, E). Let KV be a subset of nodes inducing a clique. It is well known that
the Clique Inequality


Kk

kx ≤ 1 (10)

is valid for P(G) and it is facet-inducing if K is a maximal clique [2]. This Clique Inequality is
implemented within our above IP formulation in CPLEX 10.0.

3.3 Problem specific inequalities (cutting planes)

We introduce two classes of valid inequalities to obtain a further tighter formulation for
exam timetabling problems.

1. Exam/time period cuts: if exams e and e’ involve the same students, then Xet + Xe’t ≤ 1.
Proposition 1: Xet + Xe’t ≤ 1, eE, tT, if GSe = GSe’, hold for exam timetabling
problems.
Proof. If exams e and e’ involve the same students s, then exams e and e’ must be
included in the list GEs. By constraint (2), we have Xet + Xe’t ≤ 1.

2. Implied bound cuts: for the cost counting constraints (4)-(8), we can obtain the bound
of Ci according to the number of exams each student takes.
Proposition 2: we denote n1 as the number of time periods; n2 as the number of exams
student s take; n2 ≤ n1; we then have the implied bound of Ci as

max{0, n2 – (
1

/ 2n   + 1)} ≤ C1 ≤ n2 - 1;

max{0, n2 – (
1

/ 3n   + 1)} ≤ C2 ≤ n2 - 1;

max{0, n2 – (
1

/ 4n   + 1)} ≤ C3 ≤ n2 - 1;

max{0, n2 – (
1

/ 5n   + 1)} ≤ C4 ≤ n2 - 1;

max{0, n2 – (
1

/ 6n   + 1)} ≤ C5 ≤ n2 - 1;

Proof. The upper bound of Ci indicates the worst case scenario (consecutive exams to
the student). For example, Figure 1 shows the maximum violations of type 1 for a
student. The lower bound of Ci is the best case scenario (exams are spread as much as
possible). Figure 2 shows the minimum violations of type 1 for a student. The upper
and lower bounds of types 2-5 can be obtained in the same way.

Figure 1. The maximum violations of type 1 a student may take (“X” represents the student has an exam
in the time period. n1 = 13, n2 = 9, C1 ≤ 8)

X X X X X X X X X

Figure 2. The minimum violations of type 1 the student take (“X” represents student has exam at the
time period. n1 = 13, n2 = 9, 2 ≤ C1)

X X X X X X X X X

4 Computational results

We report upon our analysis and computational experience on applying the IP
formulation with cutting planes in the adaptive decomposition approach for solving some
representative instances of the Toronto benchmark problem given in Section 2.1.
Computational experiments have been carried out on a personal computer with Intel Core



1.86GHz processor and 1.97GB RAM. We have used the callable library ILOG CPLEX as LP
solver using LP-based Branch-and-Bound technique for solving integer linear programs.
CPLEX provides functionalities to manage the tree search. ILOG CPLEX Barrier was used as
the LP solver, and cutting planes (valid Clique inequalities) were generated throughout the
search tree [24]. The problem specific cutting planes were only added statically at root node of
the Branch-and-Cut tree. All other CPLEX settings are set to default (i.e. CPLEX
automatically chooses the heuristic strategy, node and variable selection strategies, etc).

4.1 Analysis of the adaptive difficult set

In [12], a phase-based approach was employed where the first phase is to allocate a large
set of mutually conflicting exams (i.e. cliques in the associated graph). A solution to a
maximum clique, arbitrarily chosen among a number of cliques, was used as the initial
solution. It was shown that an improvement of the clique initialization in exam timetabling can
be made by building larger sets of exams which have a certain level of “density” and which
can be thought of as “almost a clique”.

In our approach, the difficult set which consists of troublesome exams is identified
adaptively by the information obtained from online problem solving in the previous iterations.
We first exam the adaptive difficult set and compare it with the maximum clique for the
specific problem instance. Our aim of decomposition is twofold: on the one hand, we try to
identify as many troublesome exams as possible. We consider not only the exams in maximum
cliques, but also the exams that form “almost cliques”. On the other hand, we only need real
difficult exams which cause trouble in our timetables to be included in our difficult set. The
inclusion of non-crucial easy exams in the difficult set could significantly increase the
computational time in searching for the optimal solution by using the IP model for the difficult
set sub-problem, and not contributing to the high quality final complete solution.

Table 2 presents the size of the original problem, the size of their maximum clique and
the size of the difficult set in terms of the number of students and the number of exams. We can
see that the size of the difficult set is larger than the size of the maximum clique so it includes
more troublesome exams. Also the adaptive difficult set forms almost clique (see an example
in Table 3). Note that the difficult set is adaptively obtained rather than by setting an accurate
threshold value of the density.

Table 2. Sizes of the original problem, its maximum clique and the difficult set identified

ear83 Ι hec92 Ι lse91 sta83 Ι tre92 yor83 Ι
Original
problem

no. students 1125 2823 2726 611 4360 941
no. time periods 24 18 18 13 23 21
no. exams 190 81 381 139 261 181
max-clique size 21 17 17 13 20 18

Difficult
set

no. students 999 1592 1717 269 1677 788
no. exams 54 46 54 13 28 53

Table 3 presents the elements and the density of the difficult set for an example instance
(sta83 Ι). It is interesting to see that the adaptive difficult set identifies the clique, i.e. it
includes all elements in a clique. Also the adaptive difficult set and the quasi-clique reported in
[12] have a large overlap of elements (with only one element being different), indicating that
those exams that are identified as being more troublesome form sufficiently dense sub-graphs.
The quality of the final complete solution built based on the clique, quasi-clique and adaptive
difficult set is also presented, showing that the complete solution built based on difficult set is
the best compared against those built based on clique and quasi-clique sets. This indicates that
cliques of higher density, which are statically measured, may not form a good basis for final
complete solutions.



Table 3. Properties of different sub-problems: set size, set elements, density of the set and the best
complete solution for the original problem based on the sub-problems.

Sets Size Set elements Density Final best solution
Clique 12 {4,18,27,39,59,72,86,107,121,133,136,139} 1.00 167.84

Quasi-clique 13 {4,18,27,39,59,72,86,107,121,122,133,136,139} 0.93 157.51
Difficult set 13 {4,18,27,39,59,72,79,86,107,121,133,136,139} 0.86 157.12

4.2 Analysis of the solutions to the difficult set sub-problems

The difficult set sub-problems are solved by our IP model with Clique inequalities and
problem specific cutting planes to reduce the number of branches searched. Cutting planes can
be added either at the root node or at other nodes. In our approach, we only add cutting planes
at the root node. Table 4 presents more details of the model with and without the added
inequalities and cutting planes. The second column gives the size of the original problem
formulation. The third column gives the number of Clique Inequalities generated by CPLEX.
Note that while the cuts added by CPLEX reduce the running time for most problems, they
may occasionally have the opposite effect. If CPLEX added too many cuts at the root node and
the objective value does not change significantly, we turn off the added cuts. The fourth
column is the reduced problem size after pre-processing and aggregating. The “Barrier LP”
column indicates the lower bound of the LP relaxation. The last column is the optimal integer
solution with the specific gap.

Table 4. LP relaxations of the problem formulation, with Clique Inequalities added automatically and
implied bounds added statically at the root node. Columns 2-6 present the problem size of the original
formulation (row*column); number of cliques; reduced problem size after reductions in CPLEX
(row*column, non-zeros); LP relaxation result and the best IP result (within the gap of 10% to the
optimal).

Sub-
problem

Original LP
size

Clique table
members

Reduced LP size
Barrier

LP
IP results

(gap<10%)
ear83 Ι 215976*130435 19631 103823*104730 360534 0.00 15.4985
hec92 Ι 200414*144137 16830 83280*83226 270372 0.00 6.94221
lse91 220754*156549 20104 96004*95088 321299 0.00 7.03902

sta83 Ι 29394*18072 3119 15069*15213 50202 3.13 16.0335
tre92 243043*188046 11413 60613*61160 188425 0.00 2.36017

yor83 Ι 141126*88133 12212 64322*65382 219267 15.50 16.3185

The quality of the solutions to the sub-problem plays an important role in the finial
complete solutions. Table 5 gives the solutions built based on the sub-problems of different
quality (by setting different gaps to the optimal). A steepest descent method is also applied to
quickly improve the complete solution. It shows that the better the solution of the IP sub-
problem (see the column “Initial”), the better the final complete solution would be (see the
column “Improved”). Δ% presents the improvement of the solution quality to the next smaller
gap, i.e. improvement from gap = 70% to gap = 60%, improvement from. gap = 60% to gap =
10%. It shows that the smaller the gap of the optimal solution to the sub-problem, the better the
final complete solution. However, it is also observed by experiments that a smaller gap of
optimal solution to the sub problem, say gap < 1%, dramatically increases the computational
time.

An issue to be investigated in our future work is to set a good balance between the quality
of the sub-solution and the final complete solution, and the computational time. Due to inter-
related constraints between the sub-problem and the other exams in the problem, the optimal
solution of gap 0 to the sub-problem may not be in the complete global optimal solution. It is
therefore not necessary to spend a large computational time to obtain zero-gap optimal



solutions for the sub-problems, i.e. there is no need to find the optimal solution of gap 0 for the
sub-problems identified.

Table 5 Complete solutions from optimal solution of different gaps for the difficult set sub-problem. Δ%
= (result of gap 1 - result of gap 2) / result of gap 2; “Initial” indicates the initial solution built based on
the IP sub-solution; “Improved” indicates the improved solution after the simple steepest descent method.
Results are average values from 10 runs.

IP (gap = 70%) IP (gap = 60%) IP (gap = 10%±5)
Results Δ% Results Δ% Results Δ%

ear83 Ι Initial 47.56 -- 46.28 2.7 43.14 7.2
Improved 40.30 -- 38.53 4.5 37.92 1.6

hec92 Ι Initial 13.50 -- 13.26 1.8 12.30 7.8
Improved 12.28 -- 11.91 3.1 11.74 1.4

lse91 Initial 12.76 -- 11.85 7.6 11.12 6.5
Improved 11.89 -- 11.48 3.5 11.11 3.3

sta83 Ι Initial 168.01 -- 167.06 0.5 160.78 3.9
Improved 167.84 -- 160.61 4.5 157.50 1.9

tre92 Initial 11.12 -- 10.60 4.9 9.92 6.8
Improved 9.92 -- 9.55 3.9 9.38 1.8

yor83 Ι Initial 52.30 -- 50.76 3.0 45.76 10.9
Improved 45.48 -- 43.70 4.0 42.62 2.5

4.3 Analysis of the complete solutions

To give more insights into the performance of our IP based approach, we compared
statistically the results with the previous adaptive decomposition approach in [29]. Table 6
presents the statistical distributions of the results from these two approaches.

Table 6. Results from our previous work [29] and our IP approach. The best average, best result and the
lowest standard deviation (s.d.) are given in italics and bold.

ear83 Ι hec92 Ι lse91 sta83 Ι tre92 yor83 Ι
[29] Average 37.84 12.09 11.31 157.60 8.98 43.27

Best 36.15 11.38 10.85 157.21 8.79 42.2
s.d. 1.40 0.43 0.38 0.28 0.15 1.03

Our IP approach Average 37.72 11.74 11.11 157.5 9.38 42.69
Best 37.30 11.48 11.07 157.12 9.24 41.97
s.d. 0.68 0.18 0.04 0.13 0.11 0.51

It can be seen that our IP based approach obtained better average results on 5 out of 6
problems being considered. It also has smaller standard deviation for all the problems,
meaning that its performance is more stable. This is because in [29] a simple random greedy
technique is used to build the solution to the sub-problem, and thus the effectiveness of the
approach was not warranted. In our IP based approach, solutions to the crucial sub-problems
are solved optimally.

Table 7 compares our approach with a number of other approaches in the literature. The
best results are highlighted. The first three approaches are all constructive based approaches
where improvement meta-heuristics are not the main approach to generate the solutions for the
problems. Our approach obtained similar results. The last three approaches generate at least
one of the best results in the current literature for the problem instances being considered. Our
IP based approach obtained the best result in the literature for one instance sta83 I. It should be
noted that so far the best results for the benchmark problem instances are generated from a
range of state-of-the-art approaches in the literature. No single approach can be seen as the best
for solving all problem instances.



Table 7. Best results from our IP based approach, compared with other approaches in the literature.

ear83 Ι hec92 Ι lse91 sta83 Ι tre92 yor83 Ι
graph heuristics [14] 36.4 10.8 10.5 161.5 9.6 41.7
adaptive ordering [7] 36.16-

38.55
11.61-
12.82

10.96-
12.53

161.91-
170.53

8.79-
8.96

40.77-
42.97

adaptive decomposition [29] 36.15 11.38 10.05 157.21 8.79 42.2
Our IP based approach 37.30 11.48 11.07 157.12 9.24 41.97

large neighborhood search [1] 34.87 10.28 10.24 159.2 8.4 36.2
hybrid local search [11] 29.3 9.2 9.6 158.2 9.2 36.2

4.4 Discussions and future work

It would be interesting, in our future work, to extend the study in several directions.
Firstly, the solutions to the sub-problem are not optimal (i.e. with a gap of 0%). It would be
interesting to investigate the trade-off between obtaining sub-problem solutions closer to the
real optimal and the computational time required. Due to the interrelations between exams in
the difficult set and the easy set, the optimal sub-solution may not remain the same in the
global complete solution. The task is not necessarily to search for the real optimal solution for
the difficult set sub-problem, but rather to find a high quality solution which may form a good
basis for a complete solution which is closer to the global optimal solution. Secondly, as the
solutions of sub-problems are fixed during the construction the complete solution, the final
complete solution is restricted within some specific regions of the search space. It would be
interesting to investigate how much this restriction should be relaxed so that potential global
optimal solutions are not excluded from the search. Thirdly, it is worth further investigation to
examine the size of the difficult set with regard to the “troublesomeness” of the exams
included. Due to the interrelated constraints between exams in the timetabling problem, the
static measurements such as the degree of difficult exams, the maximum cliques and dense
enough quasi-cliques are not enough to provide good evaluations on scheduling the exams into
the timetable. Our future work would include designing more robust decomposition methods to
include very troublesome exams in the crucial sub-problems. Finally, more efficient Branch-
and-Cut procedures will be investigated to obtain solutions with closer gap to the optimal for
larger size sub-problems.

5 Conclusions

Due to the large computational time of exam methods, in the literature there is little work
on IP for exam timetabling problems. In this paper, we developed and evaluated an IP model
for solving sub-problems of exam timetabling problems identified by an adaptive
decomposition approach. The difficult sets which are adaptively decomposed from the original
large problems are solved optimally by the IP model we proposed. To get a tighter
formulation, we not only induce Clique Inequalities deduced from Set Packing problems, but
we also introduce problem specific cutting planes. Better average complete solutions can be
built based on the solution of the difficult set sub-problem compared with the previous
adaptive decomposition approach. Closer investigations of the identified difficult set sub-
problem with cliques and quasi-cliques of higher density, and complete solutions built based
on optimal solutions of different gaps for the sub-problems are also carried out.

The quality of the complete solution lies in the size and elements of the sub-problem
identified and their solutions from the IP model. Due to the observation that the IP
formulations of real-world timetabling problems have a huge number of variables and
constraints, in future work we will investigate more problem specific properties to obtain more



efficient formulations, Branch-and-Cut procedures and alternative LP solution techniques.
Larger crucial sub-problems can be addressed and robust techniques can be employed to
further improve the adaptive decomposition approach.
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