Hybridising Heuristics within a Graph based Hyper-Heuristic Framework

Dr Rong Qu, Associate Professor **ASAP Group**, The University of Nottingham rong.qu@nottingham.ac.uk http://www.cs.nott.ac.uk/~pszrq

Educational Timetabling

- Assigning a set of exams into limited timeslots satisfying
 - Hard constraints: cannot be violated
 - Soft constraints: desired
 - Quality of solutions: objective function

0	Events
---	--------

- Timeslots
- Rooms
- Etc.

Pro	Programme: Computer Science 12 month PG (Session start) Full time/1 Vieeks: 19-26, 31-34 (25 Jan 2016-16 May 2016)																	
Clic	:k here to g	o to a list vie	ew of this	timetable														
_	9:00	9:30		10:00	10:30	11:00	11:30		12:30	13:00	13:30	14:00 14:3		15:30	16:00	16:30	17:00	17:30
I	G54SIM JC-COM		tion For I	Decision Supp	ort		Tutorial elligent Agents 50 19-26, 31-32	G54SWE/C2/01 Software Er JC-COMPSCI-A3	10.00 01.00	G53FUZ/L1/01	And Fuzzy Logi		e G53DIA/L1/01 Designing Inte 4 JC-COMPSCI-0	10.26	G53GRA/C1/01	Computer Gr 2	aphics	Computing 19-26, 34
Мо		D/S1/01 w Media Des DUTH-A25 ₃						G54GAM/L1/01 Gan JC-EXCHGE-B.L7	19-26, 31-32,	Parallel And	1 Computing 4 Distributed puting A32 20-26, 31-32, 34	G54DMA/ Dat JC-COMP	a Modelling And	Computing Analysis 20-26, 31-32	Commu	nications		
T	G54SWI		oftware E	ingineering		G54SWE/C1/01 JC-COMPSCI-A	Software E	ingineering		G54SIM/L1/01 Simulation JC-COMPSCI-	n For Decision		e G53DIA/L2/01 Designing Inte 3 JC-COMPSCI-0	10.26				
TUE						Intelligence	Lecture th And Artificial Programming T1 19-26, 31-34	Comput JC-COMPSCI-C1	1, 19-26,				G54DET/T1/01 Design Et JC-COMPSCI-	inography	G54DMA/L1/01	Data Modelling Ar	nd Analysis	Lecture 19-26, 31-33
We	d G54SPM		vare Proje	ct Managemer	Lecture at 19-26, 31-34	Planning, Search Intelligence	Lecture th And Artificial Programming T1 20-26, 31-34	G54GAM/L2/01 Gam										
Ē													G54PDC/L1/01 Parallel And Comp JC-BSSOUTH-	uting			G54SWE/L2/ Software E JC-COMPSC	Engineering
1 hu	C	C/L1/01 /anced Comp ommunicatio <u>RING-B43</u>	ns	Advance	01 Computing ed Computer unications I-B52 19-26, 31-34	G54GAM/C1/01 JC-COMPSCI-A	Gar 32	nes	Computing 19-26, 31-34	G54DET/L1/0: Design Et JC-DEARING	hnography	New I	/C1/01 Computing Media Design SCI-A32 20-26 31		G53MLE/L2/01 JC-EXCHGE-C3	Machine Lea	ming	Lecture 19-26, 31-32
		/L1/01 <25-2 Selected T RING-B43		artificial Intell	Lecture igence 25-26													
Fri		/L1/01 <19-2 Selected T IPSCI-C60		artificial Intell	igence	G53DIA/T1/02 Designing Int JC-COMPSCI-Co	Tutorial elligent Agents 50 19-26, 31-32			Comp JC-EXCHGE-0	1 Distributed puting 233 19-26, 31-33				G53GRA/L1/01 JC-BSSOUTH-B5	Computer Gr	aphics	Lecture 19-26
	G53MLI JC-COM		Machine	Learning	Computing 21-26, 31	Comp				G53FUZ/P1/01 Fuzzy Sets An Syst JC-COMPSCI-	tems	G53MLE/	Machine Learni	Lecture ng 19-26, 31-32	Planning, Search	rogramming		

Educational Timetabling

- Important activities in all universities
 - Hard constraints: No events for students at the same time
 - Soft constraints: Spread students' events
- State-of-the-art: different "tailormade", "fine-tuned" techniques
 - Graph heuristics, constraint based techniques
 - Meta-heuristics, multi-criteria
 - Recent developments:
 - hybrid techniques, hyper-heuristics, VNS, ILS, GRASP, adaptive techniques, etc.

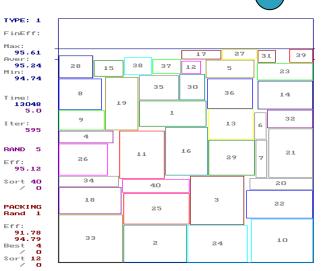
R. Qu, Burke E.K., McCollum B., Merlot L.T.G. and Lee S.Y.: A Survey of Search Methodologies and Automated Approaches for Examination Timetabling. Journal of Scheduling, 12(1): 55-89, 2009. Top 1% cited by ISI

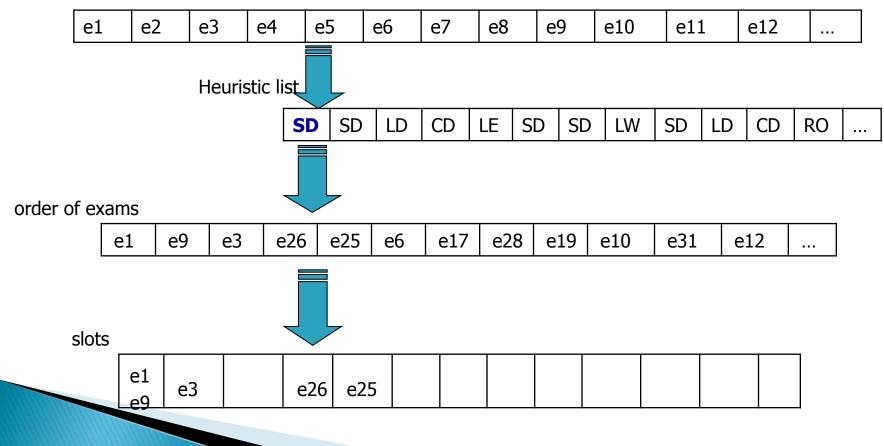
Educational Timetabling

- Carter, Laporte & Lee (1996): exam timetabling instances
 - Hard constraint: conflicts between exams
 - Objective function: min time slots (graph colouring) 0
 - Soft constraints: spread out exams over time slots 0
 - Objective function: $C(t) = (\sum_{s}^{T} w_s Ns) / S$
- Meta-heuristic Network (200): course timetabling instances
 - Hard constraints: exams conflicts, room features
 - Soft constraints: minimise only one class a day, class in the last slot of a day, more than two classes in a row
 - Objective function: min sum of the costs for soft constraints
- New benchmark: internat 0

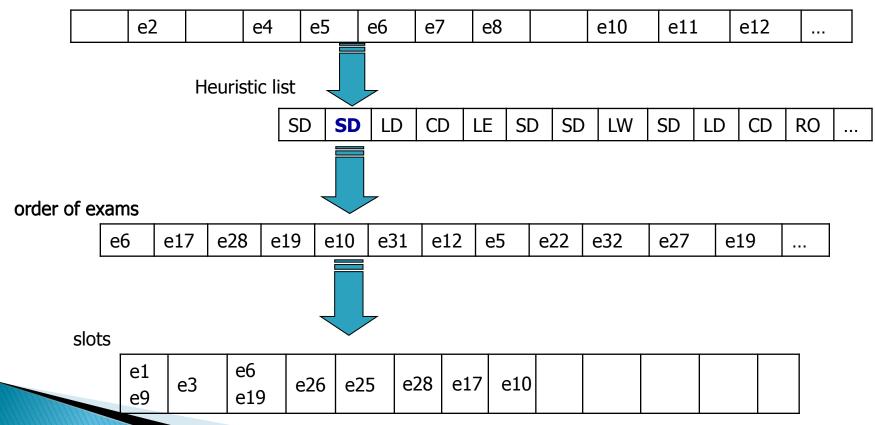
- Hyper-heuristics: Heuristics that choose heuristics
 - High level: Meta-heuristics, Choice function, CBR, etc.
 - Low level: moving strategies, constructive heuristics, etc.

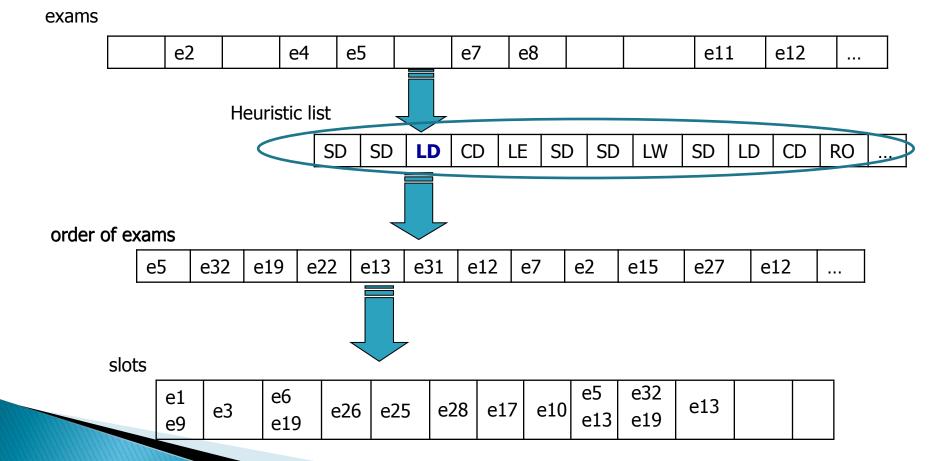
Aim of hyper-heuristic


- Explore general techniques for wider problems
- High level search doesn't look into domain knowledge
- Applications
 - bin packing, educational timetabling, personal scheduling, etc.

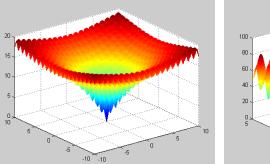

KEEP CALM AND GET HYPER

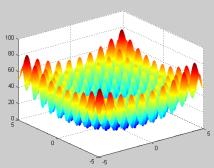
R. Qu, co-authors: E. K. Burke, A. Meisels, S. Petrovic. A Graph-based Hyper-Heuristic for Exam Timetabling Problems. EJOR, 176: 177-192, 2007. Five Year Top Cited Article EJOR 2007-2011 Award


- High level search: Any meta-heuristics
 - Search for lists of low level heuristics to construct solutions
- Low level heuristics: order events by how *difficult* to schedule them
 - Saturation Degree: least available slots
 - Colour Degree: most conflicted with those scheduled
 - Largest Degree: most conflicted with the others
 - Largest Weighted Degree: LD + students
 - Largest Enrolment: students enrolled
 - Random Ordering: brings randomness
 - Bin packing: best fit, first fit



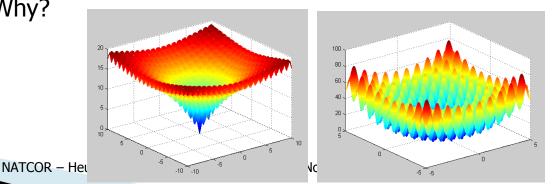
exams


exams



Graph based Hyper-heuristics (GHH) Framework

- Search space: permutations of graph heuristics, rather than actual solutions
- Moving operator: randomly change two heuristics in the heuristic list within a local search
- Objective function: maps heuristic lists to penalty of timetables constructed
- Further investigations
 - Role of different high / low level heuristics (ILS, TS, SDM, VNS)
 - Characteristics of *heuristic* search space
 - Search in two search spaces



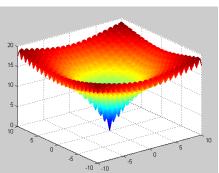
Which High Level Heuristics?

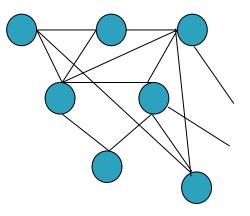
High level search methods

- Iterated Local Search
- Tabu Search
- Steepest Descent
- Variable Neighbourhood Search
- Objective function
 - heuristic lists \rightarrow penalties (costs of timetables constructed)
 - "Walks" are allowed. Why?

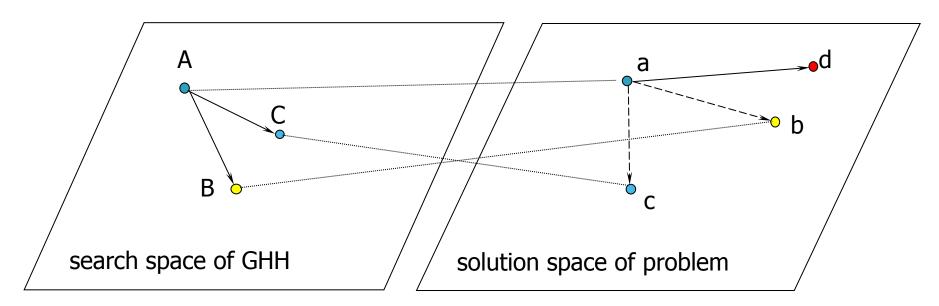
Which High Level Heuristics?

		car91	car92	ear83	hec92	kfu93	lse91	sta83	tre92	ute92	uta93	yor83
SDM	best	5.44	4.87	35.54	12.59	15.25	13.01	160.3	9.01	31.77	3.61	42.77
SDM	avg	6.18	5.3	36.8	12.74	15.63	13.51	163.7	9.37	32.6	4.5	43.6
SDM	time	15367	8001	584	22	2502	1722	69	1597	87	8018	426
ILS	best	5.3	4.77	38.39	12.72	15.09	12.72	159.2	8.74	30.32	3.32	40.24
ILS	avg	6.01	5.18	39.58	13.01	15.35	13.1	161.6	8.92	31.3	4.01	43.15
ILS	time	17334	8200	617	31	2629	1832	73	1638	100	10464	527
TS	best	5.43	4.94	38.19	12.36	15.97	13.25	165.7	8.87	32.12	3.52	41.3
TS	avg	6.3	5.34	45.56	14.6	19.55	14.29	169.1	9.67	37.02	4.38	47.97
TS	time	20393	9111	649	32	2768	1970	80	1800	100	10464	527
VNS	best	5.4	4.7	37.29	12.23	15.1	12.71	159.3	8.67	30.23	3.56	43
VNS	avg	6.1	5.1	38.63	12.72	15.24	13.06	163.3	8.88	31.7	4.05	43.93
VNS	time	16321	8107	672	42	2531	1653	47	1721	677	9210	501


Which High Level Heuristics?

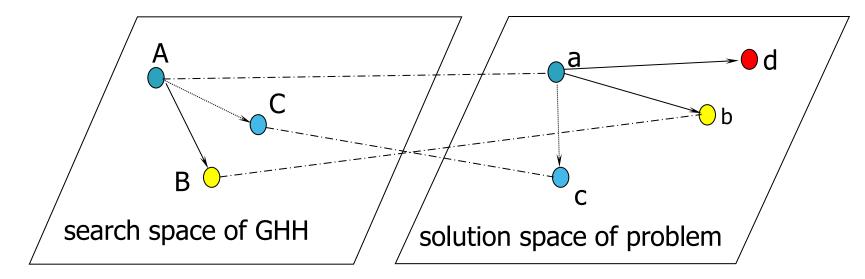

		s1	s2	s3	s4	s5	ml	m2	m3	m4	m5	large
SDM	best	7	8	3	6	10	368	100%	367	356	195	100%
SDM	avg	10.8	15.6	5	11.8	12.2	382.5	100%	383	374.5	194.5	100%
SDM	time	15	38	10	8	30	3823	3672	3752	3637	1989	4013
ILS	best	6	9	4	6	8	373	461	375	374	172	1132
ILS	avg	8.8	13.2	5.4	7.6	12	375	480.5	377.5	380.5	179.7	1144 60%
ILS	time	32	47	15	11	23	3656	3018	3382	3451	1822	3811
TS	best	11	11	5	11	16	496	533	460	529	214	1164
TS	avg	12.2	16.4	9.2	12.2	18.2	511.5	533 80%	468	539	236	1164 80%
TS	time	12	18	9	7	19	3326	2996	3160	3280	1650	3564
VNS	best	7	12	4	6	6	346	433	359	370	156	1148
VNS	avg	10	14.8	5.2	8	10.6	365	443 40%	369.5	377.5	165.5	1148 80%
VNS	time	32	45	16	10	30	3920	3723	3856	3667	2013	4079

- Similar performance within GHH framework (same total no. of evaluations, same initials, etc.), ILS and VNS are slightly better
- Results are comparable to state-of-the-art approaches on both course and exam benchmark problems


Which Low Level Heuristics?

- Within the GHH framework
 - Different subsets of graph heuristics (SD+LD, SD+LWD, SD+LE, SD+LWD+CD, etc.)
 - With a limited computational time: SD + LWD performed the best
 - With more graph heuristics: Longer time given, the better the results
 - *h* (I: length of the sequence, h: number of graph heuristics)
 - Larger search space, more solutions sampled
 - Random ordering also contributes

Two Search Spaces


- Search space of high level heuristics: permutations of low level heuristics
- Solution space of problem: actual solutions
- Are all the solutions in solution space reachable?
 - GHH: search is upon heuristics, not solutions

R. Qu and E.K. Burke. Hybridisations within a Graph Based Hyper-heuristic Framework for University Timetabling Problems. JORS, 60: 1273-1285, 2009. Top 5 highly cited paper at JORS 2009-2010

Two Search Spaces

	Heuristic space	Solution space
Representa- tion		-
Size (Upper Bound)		
Neighbor- hood Operator		
Objective Function		

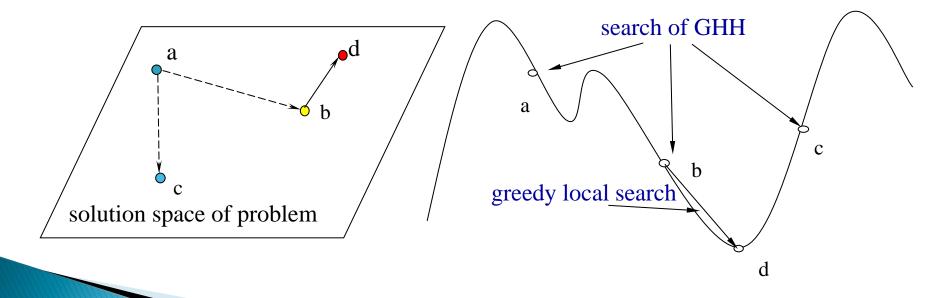
Search in Two Spaces

With one move

- Local search approaches
- Graph based hyper-heuristics

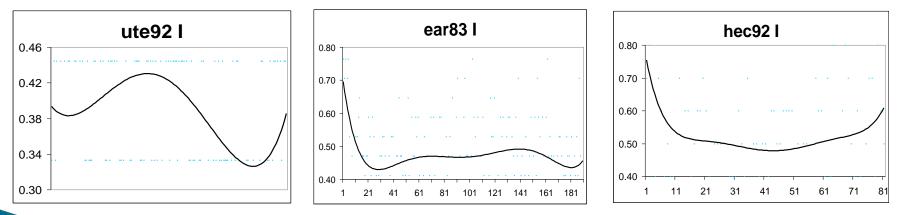
One bit different One part different (from different heuristic lists)

Search in Two Spaces


- Local search based algorithms
 - Move within limited search areas
 - Easily stuck to local optima: different mechanisms developed
 - Search attracted within limited parts of search space

▶ GHH

- Change the way of building the solutions at a high level
- Search space of heuristics -> solutions far from each other in the solution space
- Key feature: coverage of the solution space
- GHH vs. VNS?

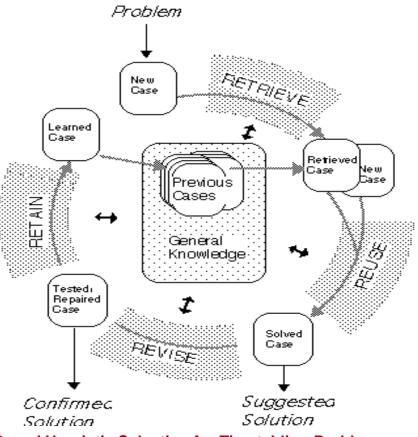

Search in Two Spaces

- Hybridisation with greedy local search
 - Coverage of solution space: Results greatly improved!
 - **Diversification** by GHH in the heuristic space, vs.
 - Intensification by local search in the solution space
 - Hybrid GHH vs. Memetic Algorithms

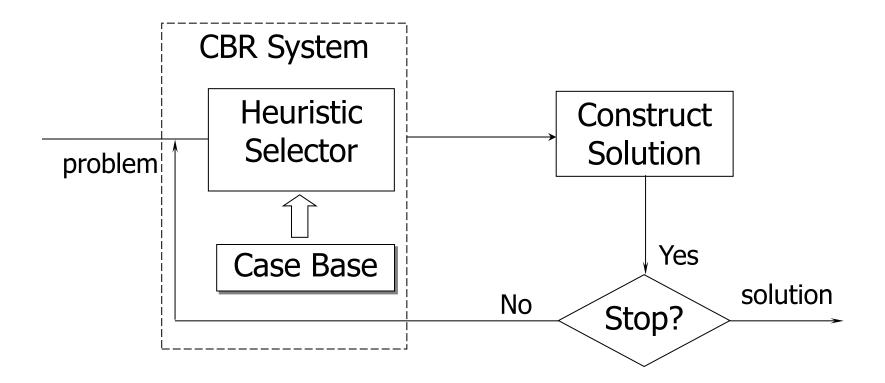
Extension I: Adaptive GHH

- Heuristic hybridisations in GHH
 - Knowledge: best solutions \rightarrow good heuristic hybridisation
 - I Random GHH (SD+LWD, SD+LE, SD+LD)
 - A large collection of different heuristic sequences
 - II Analyse the best 5% heuristic sequences
 - Rates of hybridisation at different parts of heuristic sequences
 - Patterns of hybridizations in the best sequences

R. Qu and E. K. Burke. Adaptive Automated Construction of Hybrid Heuristics for Exam Timetabling and Graph Colouring Problems. EJOR, 198(2): 392-404, 2009, Top 10% cited by ISI


Extension I: Adaptive GHH

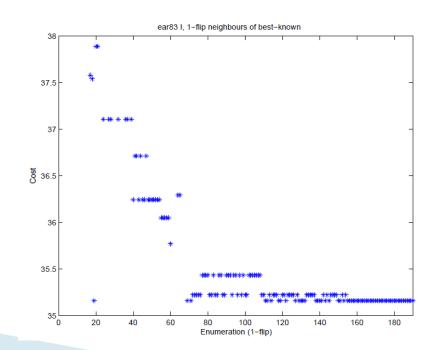
- Heuristic hybridisations in GHH
 - SD + LWD: better results compared with LE or LD
 - In the best 5% (and 10%) sequences
 - Higher proportion of LWD at early stage
 - No obvious patterns in the worst LWD hybridizations
- Adaptive heuristic hybridization
 - GHH: focuses on early sequences
 - Adaptively adjust LWD hybridisation


For *iterations* hybridize a% of LWD into the first half of hproduce a solution s using hIf s is better or infeasible, increase aotherwise decrease aKeep the best h so far

- Extract/record knowledge of heuristic selection during problem solving
- Learn to select and suggest good heuristics for particular situations
- Obtained good results on simulated problems, and test on real-world problems
- Assumption: similar problems similar solutions

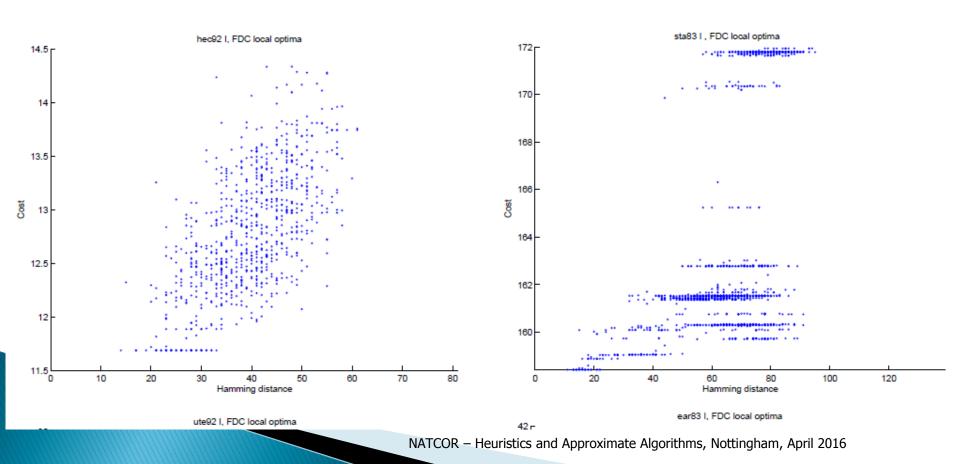
R. Qu, co-authors: E. Burke, S. Petrovic, Case Based Heuristic Selection for Timetabling Problems. Journal of Scheduling, 9: 115-132, 2006. Top 1% cited by ISI.

- CBR: suggests good heuristics that worked well in previous similar situations employing knowledge stored in the system
- Case base
 - problems and their partial solutions during problem solving
 - best heuristics for that situations
- Similarity measure: nearest neighbourhood approach
- Key issue of meaningful comparison between two problem solving situations
 - features describe the characteristics of problem and partial solution (cases)


- Analysis on all possible features
- Training process on feature list
 - Search for most relevant features by which cases (problems and problem solving situations) can be compared concerning most appropriate heuristics used
 - Tabu search
- Training process on cases in case base
 - Leave-one-out strategy: refine the cases stored in case base for problem solving
 - Only cases that may make contribution to problem solving are retained

Observations

- the more features, the better?
- features selected are more important than their weights in the similarity measure
- search methods for the feature list are not crucial
- vs. graph based hyper-heuristics
- not an easy task for selecting the best meta-heuristics to solve the whole problem


Extension III: GHH Landscape

- Landscape of high level heuristic space
 - More likely to have "walks" or plateau
 - Not mapped to all solutions in solution space (hypothesis)
 - Size of neighbourhoods is very large
 - Computational time: limited number of evaluations within a limited time
 - 1-flip on a heuristic list
 - Fitness distance correlation (fdc): local optimal vs. best

Extension III: GHH Landscape

Landscape of high level heuristic space

Other Extensions

- Landscape of high level heuristic space
 More likely to have plateau (neutral)
- Synchronise the search in two search spaces
 Difficulty of landscape analysis in solution space
- Other recent extensions in the literature
 Hierarchical hybridisation of graph heuristics

More details available at: http://www.cs.nott.ac.uk/~rxq/publications.htm