
School of Computer Science and Information Technology
Computer Systems Architecture (G51CSA) Autumn 2008
Thorsten Altenkirch

Coursework 4 (cw id 120)
Monday, 20 October 2008

Deadline: 27 October 08, 12:00

Collaborating in small groups of up to three students is permitted,
but you must implement your own programs (absolutely do not copy
and paste from others) and provide your own answers where appro-
priate.

Part 1 has to be submitted on paper to the school office before the
deadline. Clearly write CSA, coursework 4, your name, your student
id, and the email address of your CSA tutor, i.e. either asg or lyh
on the top of your submission. If your submission is more than one
page then the pages have to be stapled together.

Parts 2 and 3 have to be submitted using the departmental course-
work submission system, see

http://support.cs.nott.ac.uk/coursework/cwstud/.
Create a directory ex04 and put all the files to be submitted (but

nothing else) into this directory before submitting the directory.
Multiple submission before the deadline are allowed, only the last

one will be taken into account.

1. The following exercise is about binary arithmetic. It is important that
you carry out these calculations by hand on paper. Hence, the answers to
this question have to be submitted to the school office on paper!

Given

a = 123
b = −45
c = 61

Translate a, b, c into 8-bit twos complement and calculate in binary:

(a) a + b

(b) b + c

(c) b− c

(d) a + c

Show all the steps of your calculation. Use addition of the twos comple-
ment for subtraction. Write clearly and use vertical pencil lines to layout
your calculations.

Check your results by translating back into decimal. In which cases did
an overflow occur?

1

http://support.cs.nott.ac.uk/coursework/cwstud/

2. The following C program reads two numbers, adds them and prints the
result.

#include <stdio.h>

int main() {

int x,y,z;

/* input */

printf("x=");

scanf("%d",&x);

printf("y=");

scanf("%d",&y);

/* calculation */

z=x+y;

/* output */

printf("x+y = %d\n",z);

}

Translate this program into MIPS assembler using add for addition. Call
your program add.asm

Test your program using SPIM with a + b,a + c,b + c using a, b, c from
part 1.
Modify your program by using addu instead of add calling the new pro-
gram addu.asm. Can you find an input for which this program behaves
differently from the previous one? Summarize your observations in a text
file called add.txt

3. Modify your previous program for a super-riscy version of MIPS which
doesn’t implement addition but only shift and logical operations. Call
your program myadd.asm.
Hint: In C this could be achieved by replacing the line z=x+y by:

int xi,yi,ci,zi,i;

ci=0;

z=0;

for(i=1;i!=0;i=i<<1) {

xi=x&1;

x=x>>1;

yi=y&1;

y=y>>1;

zi=xi^yi^ci;

ci=(xi&yi)|(yi&ci)|(xi&ci);

if(zi) z = z|i;

}

Test your program using SPIM with a + b,a + c,b + c using a, b, c from
part 1.

4. (*) The logical operations are performed in parallel on all bits of a word
but the program from the previous question always operates only on one
bit. Can you implement a more efficent version of the program (either in C
or MIPS assembler) which exploits this parallelism to reduce the number
of operations it has to perform to calculate the sum of two numbers.

2

