School of Computer Science and Information Technology
Computer Systems Architecture (G51CSA) Autumn 2008
Thorsten Altenkirch

Coursework 8 (cw id 124)
Monday, 1 December 2008
Deadline: 8 December 2008, 12:00

Collaborating in small groups of up to three students is permitted,
but you must implement your own programs (absolutely do not copy
and paste from others) and provide your own answers where appro-
priate.

The solution has to be submitted using the departmental course-
work submission system, see

http://support.cs.nott.ac.uk/coursework/cwstud/.

Create a directory ex08 and put all the files to be submitted (but
nothing else) into this directory before submitting the directory.

Multiple submission before the deadline are allowed, only the last
one will be taken into account.

1. Implement a simple reaction game using timer and keyboard interrupts in
MIPS assembly language using SPIM’s simulated interrupts.

The game prints a sequence of dots (.) with a delay of 0.5s. After a
number of dots it prints a star (*). The user is supposed to press a button
as soon as possible after the star appears. If she manages to do this within
the next 0.5s the program prints the number of 10 ms it has taken to user
to hit the key. Otherwise it prints a message time limit exceeded. If the
user presses a key before the star has appeared, the program prints the
message too early and exits.

Hints:
e Make sure you enable memory-mapped IO in SPIM, e.g. for xspim
start with xspim -mio.

e Use the skeleton base08.asm/ as a starting point. It is based on the
code related to lecture 12.

e You can fix the number of dots, but you are also welcome to find a
way to randomize this.

Store your program in a file called react.asm

http://support.cs.nott.ac.uk/coursework/cwstud/
http://www.cs.nott.ac.uk/~txa/g51csa/base08.asm

2. Answer the following questions regarding pipelines and store your answers
in a file pipeline.txt.

(a) What is a data hazard? Name and describe a hardware technique
that overcomes most data hazards. What happens during the execu-
tion of the following sequence?

1w $t0, 0($a0)
add $s0, $s0, $t0

(b) What is a control hazard? How can we avoid stalling the pipeline
some of the time? What happens if this technique goes wrong?

(c) Identify the data hazards in the following code fragment and reorder
the instructions to avoid any pipeline stalls.

1w $t0, ($sp)

1w $t1, ($t0)
addi $t1, $t1, 4
1w $t2, ($t0)

add $t3, $t2, $t1
sw $t3, 4($sp)

sw $zero, ($sp)

