
The University of Nottingham

School of Computer Science

A Level 1 Module, Autumn Semester 2007-2008

Computer Systems Architecture (G51CSA)

Time Allowed: TWO Hours

Candidates must NOT start writing their answers until told to do so

Answer QUESTION ONE and THREE other questions

No calculators are permitted in this examination

Dictionaries are not allowed with one exception. Those whose first language
is not English may use a standard translation dictionary to translate

between that language and English provided that neither language is the
subject of this examination. Subject-specific translation dictionaries

are not permitted.

No electronic devices capable of storing and retrieving text, including
electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

G51CSA-E1 1 Turn Over

2 G51CSA-E1

Question 1: (Compulsory) The following questions are multiple choice.
There is at least one correct choice but there may be several. For each
of the questions list all the roman numerals corresponding to correct
answers but none of the incorrect ones.

Questions are marked as follows:

no errors 5 points
1 error 3 points
2 errors 1 point
≥3 errors 0 points

where an error is a correct answer left out, or an incorrect one included.

no error 5 points

1 error 2 points

2 or more errors 0 points

where an error is a correct answer left out or an incorrect one included.

a. Which of the following statements is correct?

(i) A word is always two bytes.

(ii) On MIPS an aligned half-word can only start at even ad-
dresses.

(iii) A Unicode character can be stored in 8 bits

(iv) On a little endian processor, the least significant byte of a
word can be found at the same address as the word

(v) One byte can be represented by two hexadecimal digits

(5)

Solution

• On MIPS an aligned half-word can only start at even
addresses.

• On a little endian processor, the least significant byte of a
word can be found at the same address as the word

• One byte can be represented by two hexadecimal digits

b. What are the typical features of the von Neumann architecture?

(i) Programs cannot be modified while the processor is running

(ii) Data and programs share the same address space

(iii) The processor has a special register called the program counter
(PC).

G51CSA-E1 2

3 G51CSA-E1

(iv) Each machine instruction contains the address of the next
instruction

(v) Programs have to be written in assembly language.

(5)

Solution

• The processor has a special register called the program
counter (PC).

• Data and programs share the same address space

c. Consider the following program fragment in MIPS32 assembly
code:

li $s0, -1

srl $v0, $s0, 1

addiu $a0, $v0, 1

Which of the following statements are correct?

(i) The fragment will occupy 128 bits in memory

(ii) Register $a0 will contain the largest positive representable
signed number after executing the fragment

(iii) Register $a0 will contain the least negative representable signed
number after executing the fragment

(iv) The fragment will raise an overflow exception

(v) Register $v0 will contain −1 after executing the fragment

(5)

Solution

• The fragment will occupy 128 bits in memory

• Register $a0 will contain the least negative representable
signed number after executing the fragment

d. Which of the following statements about 8-bit two’s complement
are correct?

(i) The most significant bit has a weight of −26

(ii) The representable range is −128 to +127

(iii) The representable range is −127 to +128

(iv) To calculate −x from x, we flip all the bits and add 1

(v) To calculate x from −x, we flip all the bits and subtract 1

G51CSA-E1 3 Turn Over

4 G51CSA-E1

(5)

Solution

• The representable range is −128 to +127

• To calculate −x from x, we flip all the bits and add 1

e. Which of the following statements about IEEE 754 single precision
floating point numbers are correct?

(i) The exponent is represented in two’s complement.

(ii) The word 0000 000116 is the largest denormalised number

(iii) The word 8000 000016 represents the number −0

(iv) ∞−∞ = 0

(v) The number 1.11110 × 102 can be represented exactly

(5)

Solution

• The word 8000 000016 represents the number −0

G51CSA-E1 4

5 G51CSA-E1

Question 2

a. Implement a MIPS assembly fragment which, given the values of
x and y in $s0 and $s1, calculates the expression x3 + 6x2y +
12xy2 + 8y3, saving the result in $s2. You don’t have to check for
overflows.

Hint: use high-school algebra to make it easier. (8)

Solution The hard way

mul $t0, $s0, $s0 # $t0 = x^2

mul $t1, $s1, $s1 # $t1 = y^2

mul $a0, $t0, $s0 # $a0 = x^3

li $a0, 6

mul $a0, $a0, $t0

mul $a0, $a0, $s1 # $a0 = 6x^2y

add $s2, $s2, $a0 # $s2 = x^3 + 6x^2y

li $a0, 12

mul $a0, $a0, $s0

mul $a0, $a0, $t1 # $a0 = 12xy^2

add $s2, $s2, $a0 # $s2 = x^3 + 6x^2y + 12xy^2

mul $a0, $t1, $s1 # $a0 = y^3

sll $a0, $a0, 3 # $a0 = 8y^3

add $s2, $s2, $a0 # $s2 = x^3 + 6x^2y + 12xy^2 + 8y^3

Solution The easy way: calculate (x + 2y)3

sll $t0, $s1, 1 # $t0 = 2y

add $t0, $t0, $s0 # $t0 = x + 2y

mul $s2, $t0, $t0 # $s2 = (x + 2y)^2

mul $s2, $s2, $t0 # $s2 = (x + 2y)^3

b. Consider the following program in MIPS32 assembler:

.text

main: li $v0,5

syscall # read integer

move $s0,$v0

start: li $s1,0

G51CSA-E1 5 Turn Over

6 G51CSA-E1

j test

loop: andi $t0,$s0,1

xor $s1,$s1,$t0

srl $s0,$s0,1

test: bne $s0,$zero,loop

out: move $a0,$s1

li $v0,1

syscall # print integer

li $v0,10

syscall # exit

(i) Simulate the program by hand for the inputs: 15, 64, −1. In
each case, how many times does the program loop, and what
will it output? (6)

Solution For 15 the program loops 4 times and then prints
0.
For 64 the program loops 6 times and then prints 1.
For −1 the program loops 32 times and then prints 0.

(ii) Summarise the action the program performs in one sentence.
(2)

Solution The program prints 1 if the binary representation
of the input contains an odd number of 1s and 0 otherwise.

c. Implement a loop in MIPS assembly which given a positive integer
n in register $s0, calculates the nth fibonacci number, i.e. the nth
element in the series 1, 1, 2, 3, 8, 11 . . . - each fibonacci number is
the sum of the two previous ones.

For example, if $s0 contains 5 then the code should store 8 in
$s1. (9)

Solution Three points for style: naming, layout, comments &c.;
six points for functionality. Does it work for 0?

li $s1, 0

li $t1, 1

li $t0, 0

j fib_cond

fib_loop:

add $t2, $s1, $t1

move $t1, $s1

move $s1, $t2

addi $t0, $t0, 1

G51CSA-E1 6

7 G51CSA-E1

fib_cond:

blt $t0, $s0, sum_loop

G51CSA-E1 7 Turn Over

8 G51CSA-E1

Question 3

a. Calculate the 8-bit two’s complement representation of the follow-
ing decimal numbers:

a = 114 b = 17 c = −73 (3)

Solution a = 11410 = 0111 00102

b = 1710 = 0001 00012

c = −7310 = −0100 10012 = 1011 01112

b. Showing details of your working, calculate using signed 8-bit two’s
complement the following sums:

a + b b + c a + c

Which case results in an overflow? (4)

Solution
0 1 1 1 0 0 1 0 a = 114

+ 0 0 0 1 0 0 0 1 b = 17
1 0 0 0 0 0 1 1 a + b = 131 ∼= −125 Overflow!

0 0 0 1 0 0 0 1 b = 17
+ 1 0 1 1 0 1 1 1 c = −73

1 1 0 0 1 0 0 0 b + c = −56

0 1 1 1 0 0 1 0 a = 114
+ 1 0 1 1 0 1 1 1 c = −73

0 0 1 0 1 0 0 1 b + c = 41

c. Calculate in detail using signed 8 bit arithmetic, the 16 bit result
of a × b and b × c. Give the final product in both decimal and
binary. Take care with sign extension. (7)

Solution

0 1 1 1 0 0 1 0 a = 114
× 0 0 0 1 0 0 0 1 b = 17

0 1 1 1 0 0 1 0

+ 0 1 1 1 0 0 1 0

0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 a× b = 1938

1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 c = −73
× 0 0 0 1 0 0 0 1 b = 17

1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

+ 1 1 1 1 1 0 1 1 0 1 1 1

Negate 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 b× c = −1241
0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 −b× c = 1241

G51CSA-E1 8

9 G51CSA-E1

d. Calculate in detail using unsigned 8-bit arithmetic, the 8 bit quo-
tient and remainder of a÷ b. (4)

Solution

0 0 0 0 0 1 1 0 a÷ b = 6
1 0 0 0 1 0 1 1 1 0 0 1 0

1 0 0 0 1 0

1 0 0 0 1 0

1 0 0 0 1 0

1 0 0 0 1 0

1 0 0 0 1 0

− 1 0 0 0 1 1

0 0 1 0 1 1 1 0

− 1 0 0 0 1 1

0 0 0 0 1 1 0 0 Remainder: 12
1 0 0 1 0 0

e. If we perform

addu $s0, $s1, $s2

the MIPS processor will ignore overflows. Implement in MIPS32
assembly a test following the above instruction which jumps to a
label named overflow, if an overflow has indeed occured. (7)

Solution

xor $t0, $s1, $s2

blt $t0, $zero, no overflow # sign($s1) !=

sign($s2)

xor $t0, $s0, $s1

blt $t0, $zero, overflow # sign($s0) !=

sign($s1)

no overflow:

continue normal processing
overflow:

error handler

G51CSA-E1 9 Turn Over

10 G51CSA-E1

Question 4

a. The following questions are about the binary representation of
single-precision (32-bit) IEEE 754 floating-point numbers? (10
total)

(i) Show, using a diagram like the one below, how many bits are
used for each of the sign, exponent and mantissa fields, and
their ordering in a 32-bit word.

field field field
← x bits → ← y bits → ← z bits → (3)

Solution
sign exponent mantissa

← 1 bit → ← 8 bits → ← 23 bits →
(ii) How is the exponent encoded? How would you represent an

exponent of 42? (2)

Solution Exponent in excess-127 encoding. An exponent of
42 is represented by 42 + 127 = 169 = 1010 10012.

(iii) In general, floating-point numbers are normalised before be-
ing encoded. What does this mean for the most significant
bit of the mantissa? (1)

Solution The MSB is always 1, so we do not need to store
it explicitly for normalised numbers.

(iv) Give the 32-bit IEEE 754 representation of the following float-
ing point numbers as 8 hexadecimal digits: −1.125, 385 (4)

Solution 1.125 = 1.0010...2 × 20

Exponent: 0 + 127 = 0111 11112;
Drop MSB of mantissa: 0010...2

So −1.125 = 1 01111111 0012. . . and 20 trailing 0s. . .
= BF90000016

Solution 385 = 1 1000 00012 = 1.1000 0001...2 × 28

Exponent: 8 + 127 = 1000 01112

Drop MSB of mantissa: 1000 0001...2

So
385 = 0 10000111 100000010002. . . and 12 trailing 0s. . .

= 43C0800016

b. Suppose there exists a 12-bit IEEE 754 floating point format, with
1 sign bit, 6 exponent bits, and 5 mantissa bits. (15 total)

(i) How would −∞ be represented in this 12-bit format? And
the smallest positive normalised number? Give the value in

G51CSA-E1 10

11 G51CSA-E1

decimal of the second number, and show both either as 12
bits or as 3 hexadecimal digits. (4)

Solution Value Binary Hex
−∞ 1 111111 000002 FE016

2−30 0 000001 000002 02016

Two points for each representation; one point for 2−30.

(ii) Give the nearest representation n of 5.612 in this format. (3)

Solution 0.612 .

6 1.224 1

0.448 0

0.896 0

6 1.692 1

6 1.284 1

5.61210 = 101.10011...2

≈ 101.1012

= 1.011012 × 22

Excess-31 exponent is 1000012, so 0 100001 011012.
Drop MSB of mantissa: 011012

One mark for evidence of working out, one for rounding to
the nearest answer and one for giving the full 12 bits.

(iii) What is the actual value of n? Hence, work out its relative
error r, to 3 significant digits.
You may use the fact that a/5.612 ≈ a× 0.1782. (2)

Solution 101.1012 = 5 + 1/2 + 1/8 = 5.625
Relative error
r = (5.625− 5.612)/5.612 ≈ 0.013× 0.1782

= 13× 10−3 × 1782× 10−4

= 23166× 10−7

≈ 2.32× 10−3

(iv) Calculate n2 using binary floating point multiplication. Show
rounding, normalisation and where you might check for over-
flow. Give the result as a 12-bit IEEE 754 number. (6)

Solution 1.0 1 1 0 1× 22

× 1.0 1 1 0 1× 22

1.0 1 1 0 1

1 0 1 1 0 1

1 0 1 1 0 1

+ 1 0 1 1 0 1

Round 1.1 1 1 1 1 0 1 0 0 1× 24

Result 1.1 1 1 1 1× 24

No normalisation necessary; 6-bit excess-31 exponent can
accommodate 4 = 1000112, so no overflow.
Result: 0 100011 111112 = 11111.12 = 31.510

G51CSA-E1 11 Turn Over

12 G51CSA-E1

Question 5

a. Following standard MIPS procedure calling conventions, imple-
ment a procedure strrchr (str ing reversed character) which re-
ceives the starting address of a NUL-terminated string in $a0, an
ASCII character code in $a1, and returns the position of the last
occurrence of the character in the string. If the character is NUL,
you are to return the position of the terminating byte. If the char-
acter cannot be found, return −1. The first character of the string
is position 0. (13)

Solution

strrchr(str, chr)

r = -1;

i = 0;

while(true)

if(str[i] == chr)

r = i;

if(str[i] == ’\0’)

break;

i++;

return r;

strrchr: # $a0: haystack starting address, $a1: needle

li $v0, -1

move $t0, $zero

j strrchr_load

strrchr_loop:

addi $t0, $t0, 1

strrchr_load:

lbu $t0, 0($a0)

addi $a0, $a0, 1

bne $t0, $a1, strrchr_skip

move $v0, $t0

strrchr_skip:

bne $t0, $zero, strrchr_loop

j $ra

b. The following program reads in a string from the user and prints
out a number, but is missing some code in the middle:

G51CSA-E1 12

13 G51CSA-E1

.data

buffer: .space 1024

.text

.globl main

main: la $a0, buffer

li $a1, 1024 # size of buffer

li $v0, 8 # read_string

syscall

insert your code here

li $v0, 1

syscall # print_int/$a0

li $v0, 10

syscall # exit

Provide the missing code in the above program, calling the strrchr
function from the previous part, such that it calculates and prints
the length of the user input to the console. (4)

Solution

la $a0, buffer

move $a1, $zero

jal strrchr

move $a0, $v0

c. Describe the procedure calling conventions for MIPS32: (8 total)

(i) How are arguments passed? (2)

Solution First four in registers $a0–$a3, with the
remaining pushed onto the stack.

(ii) How are results returned? (1)

Solution In registers $v0 and $v1.

(iii) Which of the user registers (ignoring $at, $k0 and $k1) have
to be saved by the caller? (Assuming the caller needs them
preserved.) Which ones are always saved by the callee? (4)

Solution Caller: $t0–$t9, $a0–$a3, $v0 and $v1.
Callee: $s0–$s7, $sp, $fp and $ra.

(iv) Where are local variables stored? (1)

Solution On the stack.

G51CSA-E1 13 Turn Over

14 G51CSA-E1

Question 6

a. How does the technique of pipelining increase performance? Ex-
plain the increased instruction throughput, compared with a multi-
cycle non-pipelined processor. Does pipelining reduce the execu-
tion time for individual instructions? Why? (4)

Solution Pipelining splits the execution of instructions into
several simpler stages, each of which is guaranteed to complete
within one clock cycle.

Instructions are fed through the pipeline overlapped, increasing
the total throughput.

Each instruction will still take several cycles to pass through the
pipeline completely, so the individual instruction execution time
is not reduced.

b. Below is an idealised schematic for the 5-stage MIPS pipeline.

pgflastimage

What do each of the abbreviations IF/ID/EX/MEM/WB stand
for? Give a short description of what happens at each stage. (5)

Solution
IF Instruction Fetch machine code retrieved from memory
ID Instruction Decode set control signals, load source registers
EX Execute Perform ALU operation

MEM Memory Read/write from/to memory
WB Write-Back Result written back into register file

c. Give four features of MIPS instruction set architecture which make
it especially suitable for a pipelined implementation. (3)

Solution

• Fixed width 32-bit instructions simplifies instruction fetch

• Only three instruction formats; with operand fields in the
same positions, operands can be fetched while the instruction
is being decoded – no need for a separate register read stage

• Memory access only with load/store instructions, which
means the register + offset address can be calculated during
the execute stage by the ALU – avoids structural hazards

G51CSA-E1 14

15 G51CSA-E1

• Multi-cycle instructions such as mul write to dedicated
registers, so it doesn’t need to finish in the one cycle imposed
by the EX stage

• Memory accesses must be aligned, so the data for each
load/store can be transferred in one cycle

• (Not taught) Branch delay slot / delayed branches
compensates for the cost of flushing the pipeline

d. What is a data hazard? Name and describe a hardware technique
that overcomes most data hazards. What happens during the
execution of the following sequence?

lw $t0, 0($a0)

add $s0, $s0, $t0 (4)

Solution Exercise 8.

e. What is a control hazard? How can we avoid stalling the pipeline
some of the time? What happens if this technique goes wrong?(4)

Solution Exercise 8

f. Identify the data hazards in the following code fragment and re-
order the instructions to avoid any pipeline stalls.

lw $t0, ($sp)

lw $t1, ($t0)

addi $t1, $t1, 4

lw $t2, ($t0)

add $t3, $t2, $t1

sw $t3, 4($sp)

sw $zero, ($sp) (5)

Solution Exercise 8

G51CSA-E1 15 END

