
G51CSA – Computer Systems Architecture

Operating Systems (Linux)
Red Hat

Jon Masters <jcm@redhat.com>

About the speaker

 Jon Masters is a Senior Software Engineer at Red Hat

 History in embedded devices with Real Time requirements

 Professional author, including titles “Professional Linux
Programming” and “Building Embedded Linux Systems”

 jcm@redhat.com

mailto:jcm@redhat.com

Agenda

 A little background about the presenter

 Computer Systems Architecture(s)

 What is an Operating System?

 A brief introduction to Linux

 Where is Linux headed?

 Questions?

My experiences with Linux

 Started with a single-floppy disk “distribution” (~13 years ago)

 Downloaded Slackware onto 200 floppy disks

 Slackware, Red Hat, SuSE, Debian, Ubuntu, Fedora/RHEL

 Linux User Groups, Conferences, Community

 Ported Linux to scientific instrumentation

 Worked with MontaVista

 Wrote a book on Linux

 Joined Red Hat

 Maintainer

 Another book

 Real Time Linux, Device Drivers

Computer Systems Architecture

 A modern computer system is built from many parts:

● CPU – 32/64-bit, big/little endian, RISC/CISC, Harvard, Von Neumann., etc.

● Buses – HyperTransport, PCIe, PCI-X, etc.

● Memory – Caches (I/II/III), RAM, VRAM (GART), etc.

● Peripherals – Hard disks (SATA, SCSI, SSD),DVD, Graphics, Sound, WiFi, etc.

● IO – External buses (USB), Firewire, “legacy buses” (serial), etc.

● Flash memory – firmware, microcode, BIOS, etc.

 Can you name more examples?

Computer Systems Architecture

 Time for some handy definitions:

 Architecture (arch) – a family of microprocessors that can be used to
build complete and compatible(!) computer systems.

● Intel IA32/IA64,

● ARM,

● Xscale,

● MIPS.

● Think of some examples? What was the first compatible architecture?

 Platform – a system built upon a particular configuration of
microprocessor and certain other components

● “PC”

● Macintosh

● iPod, iPhone...

Computer Systems Architecture

 Platforms – a standard base upon which to build Operating Systems

 Most modern platforms are heavily standardized

● PowerMac vs. Intel Macintosh

● iPod vs. iPhone

● Sun OpenBoot and OpenFirmware

 “PC” is a poor example of a standard platform

● Original IBM PC was very non-standard in many ways

● Used non-configurable, inflexible bus technology (ISA)

● Lack of information provided to Operating System

● Later added EISA, PCI (PCI-X, PCIe), ACPI

 ACPI, OpenFirmware, Device Trees

 Development Boards

Computer Systems Architecture

Computer Systems Architecture
CPU

R0 R31

SPR0 SPRn

MMUCache L1/L2/L3

IRQs

NMIs

Computer Systems Architecture

char *foo = “my pet dog”;

my

pet

dog

0

1

2

3

0

2

my

pet

dog

Virtual Memory

Computer Systems Architecture

CPU0 CPU1

IO-APIC RAMPCIe

USB WiFi (e)SATA

What is an Operating System?

 Just a bunch of privileged library functions with supporting code

● Bringup

● Housekeeping

● Applications

 A resource broker that manages access to underlying hardware

● Finite resources

● Virtualized/abstraction

● Standardized interfaces

 Built for a set of platforms based on a particular architecture(s)

● Microsoft Windows vs. Windows CE/Mobile – IA32/X86_64, PowerPC.

● Linux – IA32/IA64, PowerPC, ARM, Xscale, S390, MIPS, etc.

● Need for standardized platform(s)

What is an Operating System?

 Reliant upon certain architectural/platform features:

● Memory Map

● Virtual Memory

● Platform descriptor(s)

● Hardware

 Must perform/provide the following:

● System initialization

● Device Drivers

● Libraries

● Graphical Desktop

What is an Operating System?

 Two kinds of Operating System:

Applications

Hardware

Core Kernel/Modules

Hardware

Microkernel

VM Drivers

Applications

Linux, UNIX Windows, Mac OS X

What is an Operating System?

 System boot process goes roughly:

● Firmware (“BIOS”) handles POST

● Bootloader loads Operating System

● Firmware/Bootloader supply info to Operating System

● Operating System manages resources

● Operating System loads applications

 Core of the Operating System is called a “kernel”

● Provides privileged functions – timers, system calls, etc.

● Manages hardware devices

● Schedules user applications

● Highly event driven

What is an Operating System?

 Monolithic vs. Microkernel

● “Slow” vs. “Fast”?

● “Stable” vs. “Unstable”?

● Classical examples?

 Reality!

● Neither exist

● Performance?

● Maintainability

● Linux vs. Windows vs. OS X

A brief introduction to Linux

 Getting ahold of Linux – who here today uses Linux?

● What does “Linux” mean to you anyway?

● Fedora, OpenSuSE, Ubuntu?

 Recommendations for all experience levels

● Distributions

● Communities

 More than Linux

● FreeDesktop

● Firefox

● Thunderbird, Evolution, etc.

● Examples?

A brief introduction to Linux

 Traditional style UNIX-like kernel used to build a complete system

 Project started in summer of 1991 by some Finnish guy :)

 Linux vs. Minix vs. flamewars!

 Originally supported only the (shiny!) Intel 80386

 Today many millions of lines of code – co-ordination?

 Big Corporations

 Research

A brief introduction to Linux

 Playing with the Linux kernel

● Visit kernel.org and download the source code

● Buy a book and sign up at LWN.net

● Sign up to mailing lists

● Kernelnewbies

 Kernel development

● How does it work?

● Complexity

A brief introduction to Linux

 The Linux kernel source

● Documentation

● Include

● Kernel

● Arch

● Drivers

● Filesystems

● ?

 Building the kernel

● Create a config

● Build a kernel

● Install

A brief introduction to Linux

 Did you know...

● That many Linux developers have real lives?

● That Linux is growing in popularity – why?

● That you can contribute and learn?

● That Linus Torvalds is a manager?

● Magic numbers used in the kernel

Where is Linux headed?

 Enterprise Server Systems

● Scalability

● Performance

● Reliability

 Embedded Devices

● TiVo, Routers, Mobile Phones, TVs...

● Real Time Systems

 End Users?

● Lots of distributions

● Improved hardware support

● Faster boot times

● Feature complete

Questions?

 #include <std_disclaimer.h>

 All views and opinions expressed are those of the author and do not
necessarily represent those of Red Hat, Inc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

