Computer Systems Architecture
http://cs.nott.ac.uk /~txa/gblcsa/

Thorsten Altenkirch

School of Computer Science and IT
University of Nottingham

Lecture 03: MIPS32, Arithmetic and System |/0O

r

The University of

Nottingham

http://cs.nott.ac.uk/~txa/g51csa/

MIPS32 Overview
.

Memory and Registers

Program
Counter

Register
File

Program

AN
CPU

Memory

Arithmetic
and Logic
Unit

Data

@ Addresses are 32-bits words
— 232 different locations
@ Words are 32-bits, or 4 bytes
— 230 addressable words
o Word address must be aligned
@ Registers are also word-sized
e Only 32 general purpose

o Special: PC, Status, HI, LQ, ...
o Floating point registers, ...

)y

The University of

Nottingham

MIPS32 Overview

CPU Internals: Registers

Name Number Description

$zero 0 constant 0

$at 1 assembler temporary — do not use

$vo-$v1 | 2-3 function select; return result

$a0-%a3 | 4-7 function arguments

$t0-$t9 | 8-15, 24-25 | temporaries

$s0-$s7 | 16-23 saved registers

$k0-%k1 | 2627 kernel registers — do not use

$gp 28 global heap pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address . o

The University of

!‘: Nottingham

MIPS32 Overview

CPU Overview

Register
File
Program @ Most instructions use ALU
@ Function from instruction
Control Logic :> ! ' .
1 Memory @ Two input, one output
function Data @ One input may be immediate
@ Output always to register

input
operands

ALU
Qoutput e Memory access orthogonal
L]
I
~

The University of

Nottingham

Basic Arithmetic
.

Instruction Format

General Syntax

Three operands \ Two operands \ Other
op dst, src, src op dst, src op
op dst, src, imm op dst, imm op src

op operation code, or mnemonic
dst destination register
@ always come before source operands
Src source register
imm immediate value (16-bit)
@ encoded in the instruction r
A

The University of

Nottingham

Basic Arithmetic

Arithmetic: Add

add dst, srcy, src
@ Adds srcy and srcy, placing the result in dst

@ dst := srcy + sr¢

Before‘$sO:4\$tO:5\$t1:6\

add $s0, $t0, $ti1

After | $s0 =11 [$t0=5|$t1 =6 |

The University of

Nottingham

r

Basic Arithmetic
°

Arithmetic: Subtract

sub dst, srcy, src
@ Subtracts src; from srcy, placing the result in dst

@ dst := srcyg - src¢

Before‘$sO:4\$tO:5\$t1:6\

add $s0, $t0, $ti1

After | $s0=—1 | $t0 =5 | $t1 =16 |

The University of

Nottingham

r

Basic Arithmetic
[1]

Arithmetic: Add Immediate

addi dst, src, imm
@ Adds the 16-bit imm to src, placing the result in dst

@ dst := src + imm

(S'ET]][
Before ‘ $s0 =4 ‘ $t0 =5 ‘ $t1 =106 ‘

addi $s0, $t0, 37

After | $s0 =42 [$t0 =5 | $t1 =6 |

The University of

Nottingham

r

Basic Arithmetic
oe

Other arithmetic operations

Multiplication

@ Multiplies srcy by srcy, placing the result in dst

@ dst := srcy * sr¢

@ The result may not fit into 32 bit.

Division

div dst, srcy, srcg

@ Divides srcy by srcy, placing the result in dst

@ dst := srcg / sr¢

The University of

@ We loose the remainder. m Nottingham

Basic Arithmetic
°

Example: A Short Calculation

Before | $s0 =3 [$s1 =4 | $t0=5 |

add $s0, $s1, $si
addi $s1, $s0, 6
sub $s0, $s1, $tO

After | $s0=19 | $s1 =14 [$t0 =5 |

r

The University of

Nottingham

Assignment
°

Assignment

@ Assign the value in src to dst — dst := src

There is no move instruction. ..

@ Assembler translates dst := src as dst := src + O:
o add dst, src, $zero

@ move is one of many pseudoinstructions
o RISC philosophy of keeping features orthogonal

r

The University of

Nottingham

Assignment

Load Immediate / Load Address

1li dst, imm [/ la dst, label
@ Loads constant imm into dst — dst := imm

@ Loads address represented by label — dst := [labell

There is no 1i or la instruction...

@ Instructions are 32 bits; imm may not fit!
o If imm representable with 16 bits:

o ori dst, $zero, imm
@ Otherwise, imm = xxxxyyyyis:

o lui dst, xxxxig
ori dst, dst, yyyyie

The University of

Nottingham

r

System 1/0
.

System Services

@ Requests an operating system service

@ SPIM mimicks a simple OS
o User input / output via the ‘Console’ window

@ Function selected depends on $vO0
@ May destroy $v0-$v1, $a0-$a3, $t0-$t9, $ra
@ But always preserves $s0-$s7

The University of

Nottingham

r

System Calls Reference

System 1/0
.

@ Complete list in Hennessey and Patterson, Appendix A-44

Service $v0 Arguments Result
print_int 1 $a0 none
print_string | 4 address in $a0 none
read_int 5 none $v0
read string 8 | into $a0, $al length none
sbrk 9 allocate $a0 bytes | starting at $vO
exit 10 none never!

The University of

Nottingham

r

System 1/0
°

Example: Input, Output and Arithmetic

nl:

main:

.data

.asciiz "\n"

.text

.globl main

1i $v0, 5 # read_int
syscall

add $a0, $v0, $vO

1i $v0, 1 # print_int
syscall

la $a0, nl

1i $v0, 4 # print_string
syscall

j $ra

The University of

Nottingham

r

System 1/0
.

Reading. ..

@ Read Hennessey and Patterson

e §2.1-62.2 for revision
e §2.3 for information; essential parts will be covered later

The University of

Nottingham

r

	MIPS32 Overview
	Memory and Registers
	CPU Internals: Registers
	CPU Overview

	Basic Arithmetic
	Instruction Format
	Arithmetic: Add
	Arithmetic: Subtract
	Arithmetic: Add Immediate
	Example: A Short Calculation

	Assignment
	Assignment
	Load Immediate / Load Address

	System I/O
	System Services
	System Calls Reference
	Example: Input, Output and Arithmetic
	Reading…

