
C Making Decisions Loops Bitwise Operations

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science and IT
University of Nottingham

Lecture 05: Comparisons, Loops and Bitwise Operations

http://cs.nott.ac.uk/~txa/g51csa/

C Making Decisions Loops Bitwise Operations

Using C

Java syntax is based on C.

C is more low-level than Java:
Pointers.
goto.

C++ is an extension of C.

wikibook: Programming in C available at
http://en.wikibooks.org/wiki/C Programming

http://en.wikibooks.org/wiki/C_Programming

C Making Decisions Loops Bitwise Operations

Hello World in C

#include <stdio.h>

int main() {
printf("Hello, world!\n");

}

Store in hello.c.

Compile with:

gcc hello.c -o hello

Under UNIX run with:

hello

C Making Decisions Loops Bitwise Operations

Inequalities

Previously we learnt beq and bne (branch on = and "=)
Can implement if(a == b) ... and if(a != b) ...

But we want other arithmetic comparision operators:

Operator Name Abbreviation
= equals eq
"= not equals ne
< less than lt
≤ less than or equals le
> greater than gt
≥ greater than or equals ge

C Making Decisions Loops Bitwise Operations

Comparison Instructions

slt dst, src0, src1 – Set on Less Than

Set dst to 1 if src0 is less than src1, otherwise 0

if(src0 < src1)
dst := 1;

else
dst := 0;

dst := src0 < src1 ? 1 : 0;

There is also slti – Set on Less Than Immediate

Other pseudoinstructions: seq, sne, sle, sgt, sge, . . .

C Making Decisions Loops Bitwise Operations

Decisions on Inequalities

How do we implement if(a < b) { ... },
given if(c != d) { ... } and c = a < b ? 1 : 0 ?

We can use two comparisons:
c = a < b ? 1 : 0;
if(c != 0) { ... }
Suppose a and b are $s0 and $s1 respectively:

slt $t0, $s0, $s1
beq $t0, $zero, a ge b
then-block

a ge b: # rest of program

C Making Decisions Loops Bitwise Operations

Example: Maximum of Two Numbers

Given two numbers x and y,
calculate which is the larger and store it in m

In Java/C: m = x; if(m < y) m = y;

In MIPS assembly, with $s0, $s1 and $a0 for x, y and m:
move $a0, $s0
slt $t0, $a0, $s1
beq $t0, $zero, a0 ge s1
move $a0, $s1

a0 ge s1:
Largest number now in $a0

C Making Decisions Loops Bitwise Operations

A Note on Pseudoinstructions

The MIPS processor only has slt, beq and bne . . .

But the assembler also accepts sge, blt, ble and so on
These are pseudoinstructions (like li, move, . . .)

Pseudoinstructions makes assembly programming easier
Write what we mean, not what the processor can do
Let the assembler insert the necessary instructions
Assembler uses $at to implement pseudoinstructions

In the previous example, we can replace:
slt $t0, $a0, $s1
beq $t0, $zero, a0 ge s1

with:
bge $a0, $s1, a0 ge s1

C Making Decisions Loops Bitwise Operations

While Loops

Loops are important building blocks in larger programs

while repeats code block as long as condition holds

What if i ≥ 8 before the loop begins?

Java/C

while(i < 8) {
j = j + 3;
i = i + 1;

}

C (using goto)

goto while cond;
while loop:

j = j + 3;
i = i + 1;

while cond:
if(i < 8) goto while loop;

C Making Decisions Loops Bitwise Operations

Implementing While Loops

Rewritten in C using labels and gotos
Made our high-level description more concrete
Easier to read than assembly instructions
Each line has a simple and direct MIPS implementation

Assume
i j

$s0 $s1

j while cond
while loop:

addi $s1, $s1, 3
addi $s0, $s0, 1

while cond:
blt $s0, 8, while loop

C Making Decisions Loops Bitwise Operations

For Loops

For loops consist of initialiser, condition and counter parts

A for loop is just a syntactic shortcut for a while loop
. . . but we already know how to implement while loops!

For Loop

for(i = 0; i < 8; i = i + 1)
j = j + 3;

While Equivalent
i = 0;
while(i < 8) {

j = j + 3;
i = i + 1;

}

C Making Decisions Loops Bitwise Operations

Example: How Long is a String?

Arrive at assembly via a series of translations

*p means “look up the contents of memory location p”

C (For Loop)

length = 0;

for(p = string; *p != 0; p++)
length++;

C Making Decisions Loops Bitwise Operations

Example: How Long is a String?

Arrive at assembly via a series of translations

*p means “look up the contents of memory location p”

C (While Loop)

length = 0;
p = string;

while(*p != 0) {
length++;
p++;

}

C Making Decisions Loops Bitwise Operations

Example: How Long is a String?

Arrive at assembly via a series of translations

*p means “look up the contents of memory location p”

C (using goto)

length = 0;
p = string;
goto strlen cond

strlen loop:
length++;
p++;

strlen cond:
c = *p;
if(c != 0) goto strlen loop;

C Making Decisions Loops Bitwise Operations

Example: How Long is a String?

Arrive at assembly via a series of translations

length = $v0, p = $a0, c = $t0

MIPS Assembly

li $v0, 0
la $a0, string
j strlen cond

strlen loop:
addi $v0, $v0, 1
addi $a0, $a0, 1

strlen cond:
lbu $t0, ($a0)
bne $t0, $zero, strlen loop

C Making Decisions Loops Bitwise Operations

Shift to the Left and Shift to the Right

Shifts move a word’s bit pattern to the left or right

Each shift left (x = x << 1 in Java syntax)
Drops the most significant (leftmost) bit
Appends a 0 bit to the least significant end (right)
Equivalent to multiplying by 2, ignoring overflow
e.g. 0000 01012 << 3 = 0010 10002

Each shift right (x = x >> 1 in Java syntax)
Drops the least significant (rightmost) bit
Prepends a 0 bit to the most significant end (left)
Equivalent to dividing by 2, ignoring remainder
e.g. 1001 00112 >> 3 = 0001 00102

C Making Decisions Loops Bitwise Operations

Shift Instructions

sll dst, src, shamt – shift left logical

dst := src << shamt

srl dst, src, shamt – shift right logical

dst := src >> shamt

Example

Before
$s0 = 7C08 02A616

= 0111 1100 0000 1000 0000 0010 1010 01102

srl $s0, $s0, 8
sll $s0, $s0, 12

After
$s0 = C080 200016

= 1100 0000 1000 0000 0010 0000 0000 00002

C Making Decisions Loops Bitwise Operations

Bitwise Logical Operations

Bitwise – no interaction between different bits of a word

AND (&) can be used for testing certain bits of a word

OR (|) can be used for setting certain bits of a word

XOR (^) can be used for inverting certain bits of a word

NOT (~) inverts all the bits in a word

a 11002 a 11002 a 11002

b 10102 b 10102 b 10102

a & b 10002 a | b 11102 a ^ b 01102

C Making Decisions Loops Bitwise Operations

Bitwise Logical Instructions

Immediate variants omitted: andi, ori and xori

and dst, src0, src1 – Bitwise AND

dst := src0 & src1

or dst, src0, src1 – Bitwise OR

dst := src0 | src1

xor dst, src0, src1 – Bitwise XOR

dst := src0 ^ src1

nor dst, src0, src1 – Bitwise NOR

dst := ~(src0 | src1)

To get bitwise NOT: nor dst, src, $zero

	C
	Making Decisions
	Inequalities
	Comparison Instructions
	Decisions on Inequalities
	Example: Maximum of Two Numbers
	A Note on Pseudoinstructions

	Loops
	While Loops
	Implementing While Loops
	For Loops
	Example: How Long is a String?

	Bitwise Operations
	Shift to the Left and Shift to the Right
	Shift Instructions
	Bitwise Logical Operations
	Bitwise Logical Instructions

