
Signedness and Overflow Multiplication and Division MIPS Instructions

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 07: Signedness, Overflow,
Multiplication and Division

http://cs.nott.ac.uk/~txa/g51csa/


Signedness and Overflow Multiplication and Division MIPS Instructions

Signed and Unsigned Instructions

MIPS can interpret words as signed or unsigned

Many instructions have signed and unsigned variants

slt vs sltu dst, src0, src1 – Set on Less-Than

slt interprets src0 and src1 as signed integers

While sltu interprets src0 and src1 as unsigned

What is the result from each of the following instructions?
$s1 FFFFFFFF16

$s2 0000000116

slt $s0, $s1, $s2
sltu $s0, $s1, $s2

slt $s0 = 1 because −1 < 1

sltu $s0 = 0 because 232 − 1 #< 1



Signedness and Overflow Multiplication and Division MIPS Instructions

Sign Extension

What about signed bytes and half-words (in memory)?

Run: lbu $s0, ($a0) with M[$a0] = 123456FF16

Loads the byte FF16 (= −110) into $s0
But now $s0 contains 000000FF16 = 25510!
How do we preserve the intended value?

Sign Extension

For a signed byte, copy the MSB (bit 7) 24 times:
x · · · ← · · · x xyyy yyyy
← 24 bits → ← 8 bits →

e.g. D616 (= −4210) is sign-extended to FFFFFFD616

lb and lh performs sign extension; lbu and lhu does not
Usually use bytes for characters, so lbu used more often



Signedness and Overflow Multiplication and Division MIPS Instructions

Signed Overflow

add/addi/addu/addiu use the same addition circuits
But constants in addi/addiu are always sign-extended

However, add and addi also check for overflow
Overflow when result exceeds −231 ≤ x < 231

On overflow, trigger an error exception
Try li $t0, 0x7fffffff

addi $t0, $t0, 1
in SPIM!

addu/addiu doesn’t check for overflow
We can check for ourselves: avoid triggering exception

There is also subu, subtraction without overflow checking



Signedness and Overflow Multiplication and Division MIPS Instructions

Checking for Overflow

dst = src0 + src1

if(sign(src0) != sign(src1))
goto no overflow;

if(sign(dst) == sign(src0))
goto no overflow;
# we have overflow!

no overflow:
# rest of program

addu $s0, $s1, $s2
xor $t0, $s1, $s2
blt $t0, $zero, no overflow
xor $t0, $s0, $s1
bge $t0, $zero, no overflow

# we have overflow!

no overflow:
# rest of program

xor dst, src0, src1 returns
a positive dst when the sign bit of src0 and src1 match
a negative dst when the sign bit of src0 and src1 differ

sign(x)=x&0x8000 for 32 bit numbers.



Signedness and Overflow Multiplication and Division MIPS Instructions

Multiplication

Product of m- and n-digit numbers requires m + n digits
Multiplying 4-digit numbers needs 8 digits

Binary case needs only multiply by 0 or 1, and addition

Long Multiplication in Decimal

6 2 9 5
× 2 8 1 7

4 4 0 6 5
6 2 9 5

5 0 3 6 0
+ 1 2 5 9 0 Partial Sums
= 1 7 7 3 3 0 1 5



Signedness and Overflow Multiplication and Division MIPS Instructions

Multiplication

Product of m- and n-digit numbers requires m + n digits
Multiplying 4-digit numbers needs 8 digits

Binary case needs only multiply by 0 or 1, and addition

Long Multiplication in Binary

1 1 0 1 a = 1310

× 1 0 1 1 b = 1110

1 1 0 1
1 1 0 1

0 0 0 0
+ 1 1 0 1 Partial Sums
= 1 0 0 0 1 1 1 1 c = 14310



Signedness and Overflow Multiplication and Division MIPS Instructions

n-Bit Binary Multiplication

Given a and b, calculates c = a * b

Optimisation: exit as soon as b == 0

But doesn’t work for signed numbers!
Take magnitude, multiply, then fix sign?

Equivalent C code:
c = 0;
for(i = 1; i < n; i = i + 1) }

if(b & 0x01 != 0)
c = c + a;

b = b >> 1;
a = a << 1;
}



Signedness and Overflow Multiplication and Division MIPS Instructions

Signed Binary Multiplication

Signed numbers can be infinitely sign-extended
Positive numbers prefixed by an ‘infinite’ number of 0s
Negative numbers prefixed by an ‘infinite’ number of 1s

Sign-extend a and b to 2n digits for multiplication
Must loop 2n times as a result
But can still exit early when b == 0

Example: −3× 5

. . . 1 1 1 1 1 1 0 1 a = −310

× . . . 0 0 0 0 0 1 0 1 b = 510

. . . 1 1 1 1 1 1 0 1

. . . 0 0 0 0 0 0 0
+ . . . 1 1 1 1 0 1 Partial Sums
= . . . 1 1 1 1 0 0 0 1 c = 1510



Signedness and Overflow Multiplication and Division MIPS Instructions

Division

Long Division in Decimal

Divisor 0 0 2 1 3 Quotient
÷ 8 1 1 7 3 3 0 Dividend

8 1 0 0 0 0 × 0
8 1 0 0 0 × 0

8 1 0 0 × 2
− 1 6 2 0 0

1 1 3 0
8 1 0 × 1

− 8 1 0
3 2 0

8 1 × 3
− 2 4 3

7 7 Remainder



Signedness and Overflow Multiplication and Division MIPS Instructions

Division

Long Division in Binary

Divisor 0 0 1 0 1 1 1 Quotient
÷ 1 0 1 1 1 1 0 1 0 1 Dividend

1 0 1 0 0 0 0 0 0 × 0
1 0 1 0 0 0 0 0 × 0
− 1 0 1 0 0 0 0 × 1

1 0 0 1 0 1
1 0 1 0 0 0 × 0
− 1 0 1 0 0 × 1

1 0 0 0 1
− 1 0 1 0 × 1

1 1 1
− 1 0 1 × 1

1 0 Remainder



Signedness and Overflow Multiplication and Division MIPS Instructions

n-Bit Binary Division

Given dividend a and divisor b
Calculates their quotient d = a / b
Leaves the remainder in a = a % b

Equivalent C code:
d = 0;
b = b << n;
for(i = 0; i < n; i++) {

b = b >> 1;
d = d << 1;
if(a >= b) {

a = a - b;
d = d + 1;
}

}



Signedness and Overflow Multiplication and Division MIPS Instructions

Multiplication and Division on the MIPS

Muln produces a 64-bit word; divn two 32-bit results
No way to encode two destination registers. . .

Slow compared to e.g. addition; takes many cycles
Would stall the next instructions in the pipeline

Independent unit (from main ALU) for muln and divn

Source operands come from the usual register file
Results written to two special registers HI and LO

mfhi dst / mflo dst — move from HI/LO

mfhi dst — dst := HI

mflo dst — dst := LO



Signedness and Overflow Multiplication and Division MIPS Instructions

MIPS Multiplication

mult src0, src1 / multu src0, src1 — multiplication

HI := upper 32 bits of src0 * src1

LO := lower 32 bits of src0 * src1

mult treats src0/src1 as signed; multu as unsigned

mul dst, src0, src1 — multiplication (no overflow check)

dst := LO := lower 32 bits of src0 * src1

Single instruction equivalent of mult src0, src1

mflo dst

No mulu – same result signed or unsigned



Signedness and Overflow Multiplication and Division MIPS Instructions

Multiplication Overflow

Pseudoinstructions mulo and mulou check for overflow
Result too large for a 32-bit signed/unsigned word
How do these pseudoinstructions work?

Replace break $0 with your own error-handing code

mulou dst, src0, src1

mult src0, src1

mfhi $at

beq $at, $0, no overflow
break $0

no overflow:
mflo dst

mulo dst, src0, src1

mult src0, src1

mfhi $at
mflo dst
sra dst, dst, 31
beq $at, dst, no overflow

break $0
no overflow:
mflo dst



Signedness and Overflow Multiplication and Division MIPS Instructions

MIPS Division

div src0, src1 / divu src0, src1 — division

HI := src0 % src1

LO := src0 ÷ src1

div treats src0/src1 as signed; divu as unsigned

div dst, src0, src1 / divu dst, src0, src1 — division

Three argument pseudoinstruction version of div/divu

Expands to div src0, src1

mflo dst
or divu src0, src1

mflo dst


	Signedness and Overflow
	Signed and Unsigned Instructions
	Sign Extension
	Signed Overflow
	Checking for Overflow

	Multiplication and Division
	Multiplication
	n-Bit Binary Multiplication
	Signed Binary Multiplication
	Division


