Computer Systems Architecture
http://cs.nott.ac.uk/~txa/gblcsa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 07: Signedness, Overflow,
Multiplication and Division

The University of

Nottingham

r

http://cs.nott.ac.uk/~txa/g51csa/

Signedness and Overflow

Signed and Unsigned Instructions

@ MIPS can interpret words as signed or unsigned

@ Many instructions have signed and unsigned variants

slt vs sltu dst, srcy, src; — Set on Less-Than

@ slt interprets srcy and src; as signed integers
@ While sltu interprets srcy and src; as unsigned

@ What is the result from each of the following instructions?
$s1 | FFFFFFFF6 slt $s0, $s1, $s2
$s2 | 0000000116 sltu $s0, $s1, $s2

slt because —1 < 1
sltu because 232 — 1 «£ 1

— 1YwvLun IBI Idm

Signedness and Overflow

Sign Extension

@ What about signed bytes and half-words (in memory)?
® Run: 1bu $s0, ($a0) with| M[$a0] = 123456FF; |
o Loads the byte FFi5 (= —119) into $s0

o But now $s0 contains 000000FF1 = 2551¢!
o How do we preserve the intended value?

@ For a signed byte, copy the MSB (bit 7) 24 times:
(x = x| xyyyyyy |
«— 24 bits — «— 8 bits —

—42,0) is sign-extended to FFFFFFD614

@ eg. D614 (:
@ 1b and 1h performs sign extension; 1bu and 1hu does not

o Usually use bytes for characters, so 1bu used more often |

|

Signedness and Overflow

Signed Overflow

@ add/addi/addu/addiu use the same addition circuits

e But constants in addi/addiu are always sign-extended
@ However, add and addi also check for overflow

o Overflow when result exceeds —231 < x < 231

o On overflow, trigger an error exception

o Try 1i $t0, Ox7fffffff in SPIM!

addi $t0, $to, 1

@ addu/addiu doesn't check for overflow

o We can check for ourselves: avoid triggering exception

@ There is also subu, subtraction without overflow checking

r

The University of

Nottingham

Signedness and Overflow

Checking for Overflow

dst = srcg + srcy addu $s0, $s1, $s2
if (sign(srcp) !'= sign(srci)) xor $t0, $s1, $s2
goto no_overflow; blt $t0, $zero, no_overflow
if (sign(dst) == sign(srcp)) xor $t0, $s0, $s1
goto no_overflow; bge $t0, $zero, no_overflow
we have overflow! # we have overflow!
no_overflow: no_overflow:
rest of program # rest of program

@ xor dst, srcy, Srci returns

e a positive dst when the sign bit of srcg and src; match
@ a negative dst when the sign bit of srcy and src; differ

@ sign(x)=x&0x8000 for 32 bit numbers.
I

The University of

Nottingham

Multiplication and Division

Multiplication

@ Product of m- and n-digit numbers requires m + n digits
o Multiplying 4-digit numbers needs 8 digits

Long Multiplication in Decimal

6 2 9 5
X 2 8 1 7
4 4 0 6 5
6 2 9 5
5 0 3 6 0
+ 1 2 5 9 0 Partial Sums
= 1 7 7 3 3 0 1 5

A’ | Nottingham

Multiplication and Division

Multiplication

@ Product of m- and n-digit numbers requires m + n digits
o Multiplying 4-digit numbers needs 8 digits

@ Binary case needs only multiply by 0 or 1, and addition

Long Multiplication in Binary

1 1 0 1 a= 1310
X 1 01 1 b=11y
1 1 01
1 1 0 1
0 0 0 O
+ 1 1 0 1 Partial Sums
= 1 0 0 0 1 1 1 1 c=143y

A’ | Nottingham

Multiplication and Division
.

n-Bit Binary Multiplication

Given a and b, calculatesc = a * b
Optimisation: exit as soon as b ==
But doesn't work for signed numbers!

o Take magnitude, multiply, then fix sign?

Equivalent C code:

c = 0;

for(i=1; i<n; i=1i+ 1)}
if(b & 0x01 '= 0)

b

}_

]
o
\4
\4
'_\

The University of

Nottingham

)y

Multiplication and Division
]

Signed Binary Multiplication

@ Signed numbers can be infinitely sign-extended

o Positive numbers prefixed by an ‘infinite’ number of Os
o Negative numbers prefixed by an ‘infinite’ number of 1s

@ Sign-extend a and b to 2n digits for multiplication

o Must loop 2n times as a result
o But can still exit early when b ==

Example: —3 x5

1 1 1 1 1 1 0 1 a= -3
X 0O 000 01 0 1 b= 510
111 1 1 1 0 1
0O 000 O OO
+ 1 1 1 1 0 1 Partial Sums
= 1 1 1 1 0 0 0 1 c=15 m

Multiplication and Division

Division
Long Division in Decimal
Divisor 0 0 2 1 3 Quotient
=~ 8 1|1 7 3 3 0 Dividend
8 1 0 0 0 0 xO
8 1 0 0 0 x0
8 1 0 0 x2
— 1 6 2 0 0
1 1 3 0
8 1 0 x1
— 8 1 0
3 2 0
8 1 x3
- 2 4 3 '
7 7 Remainder m

Multiplication and Division
°

Division

Long Division in Binary

Divisor 0 0 1 O 1 Quotient
= 1 0 1]1 1 1 O 1 Dividend
1 0 1 0 0 O 0 x0
1 0 1 0 O x 0
— 1 0 1 0 x 1

1 0 O
1 0 1 x 0

1 0

1 0

1

x 1

R RO O, ORO OO R|K

x 1 :
Remainder m

RO R RFRP OO OOO O O O

0
0
1
0
0 x1
1
0
1
1
0

Multiplication and Division
°

n-Bit Binary Division

@ Given dividend a and divisor b

b:=b<<n o Calculates their quotientd = a / b
4,1 o Leaves the remainderina = a % b

b:=b>1 @ Equivalent C code:
d=d<<1 d = 0;
b = b << n;
for(i = 0; i < n; i++) {
b=>b> 1;
d =d << 1;
if(a >= b) {
a=a-b;
d=d+ 1;
} r The University of
} #_ | Nottingham

MIPS Instructions
°

Multiplication and Division on the MIPS

@ Mul? produces a 64-bit word; div? two 32-bit results
o No way to encode two destination registers. ..

@ Slow compared to e.g. addition; takes many cycles
o Would stall the next instructions in the pipeline

@ Independent unit (from main ALU) for mul® and div®

o Source operands come from the usual register file
o Results written to two special registers HI and LO

mfhi dst / mflo dst — move from HI/LO

@ mfhi dst — dst :
@ mflo dst — dst :

HI
LO

The University of

Nottingham

r

MIPS Instructions
°

MIPS Multiplication

mult srcy, src; / multu srcy, sre; — multiplication
@ HI := upper 32 bits of srcg * srq
LO := lower 32 bits of srcg * src;

@ mult treats srcy/src; as signed; multu as unsigned

mul dst, srcy, src; — multiplication (no overflow check)

@ dst := L0 := lower 32 bits of srcy * src;

@ Single instruction equivalent of mult srcy, src
mflo dst

@ No mulu — same result signed or unsigned

The University of

Nottingham

r

MIPS Instructions
°

Multiplication Overflow

@ Pseudoinstructions mulo and mulou check for overflow

o Result too large for a 32-bit signed/unsigned word
o How do these pseudoinstructions work?

@ Replace break $0 with your own error-handing code

mulou dst, srcy, src; mulo dst, srcy, src

mult srcy, Sra mult srcg, src
mfhi $at mfhi $at
mflo dst

sra dst, dst, 31

beq $at, $0, no overflow beq $at, dst, no_overflow
break $0 break $0

no_overflow: no_overflow:

mflo dst | mflo dst

MIPS Instructions
°

MIPS Division

div srcy, src; / divu srcg, src; — division

@ HI := srcy % src
LO := sr¢g + srca

@ div treats srcy/src; as signed; divu as unsigned

div dst, srcy, src; / divu dst, srcy, src; — division

@ Three argument pseudoinstruction version of div/divu

@ Expands to div srcg, src; or divu srcy, src
mflo dst mflo dst

r

The University of

Nottingham

	Signedness and Overflow
	Signed and Unsigned Instructions
	Sign Extension
	Signed Overflow
	Checking for Overflow

	Multiplication and Division
	Multiplication
	n-Bit Binary Multiplication
	Signed Binary Multiplication
	Division

