Computer Systems Architecture http://cs.nott.ac.uk/~txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science University of Nottingham

Lecture 08: Real Numbers and IEEE 754 Arithmetic

Representing Real Numbers

- So far we can compute with a subset of numbers: Unsigned integers [0, 2³²) ⊂ N Signed integers [-2³¹, 2³¹) ⊂ Z
- What about numbers such as
 - 3.1415926...
 - 1/3 = 0.333333333...
 - 299792458
- How do we represent smaller quantities than 1?

Shifting the Point

- Use *decimal point* to separate integer and fractional parts
 - $\bullet\,$ Digits after the point denote $1/10^{th},\,1/100^{th},\,\ldots\,$
- Similarly, we can use the binary point

Bit	3 rd	2 nd	1^{st}	0^{th} . -1^{st}	-2 nd	-3 rd	-4 th
Weight	2 ³	2 ²	2 ¹	2 ⁰ . 2 ⁻¹	2-2	2 ⁻³	2-4

• Left denote integer weights; right for fractional weights

• $0.101_2 = 2^{-1} + 2^{-3} = 0.5 + 0.125 = 0.625$

• What is 0.1₁₀ in binary?

- $0.1_{10} = 0.0001100110011..._2$
- Digits repeat forever no exact finite representation!

The University of Nottingham

Nottingham

Fixed Point Arithmetic

- How do we represent non-integer numbers on computers?
- Use binary scaling: e.g. let one increment represent $1/16^{th}$ Hence, $0000.0001_2 = 1 \cong 1/16 = 0.0625$ $0001.1000_2 = 24 \cong 24/16 = 1.5$
- Fixed position for binary point

- Addition same as integers: a/c + b/c = (a + b)/c
- Multiplication mostly unchanged, but must *scale* after

$\frac{a}{a} \times \frac{b}{c} = \frac{(a \times b)/c}{c}$
с с с
e.g. $1.5 \times 2.5 = 3.75$
$0001.1000_2 \times 0010.1000_2 = 0011.11000000_2$
Thankfully division by 2 ^e is fast!

Overview of Fixed Point

- Integer arithmetic is simple and fast
 - Games often used fixed point for performance;
 - Digital Signal Processors still do, for accuracy
 - No need for a separate floating point coprocessor
- Limited range
 - A 32-bit Q24 word can only represent $[-2^7, 2^7 2^{-24}]$
 - Insufficient range for physical constants, e.g. Speed of light $c = 2.9979246 \times 10^9 m/s$ Planck's constant $h = 6.6260693 \times 10^{-34} N \cdot m \cdot s$
- Exact representation only for (multiples of) powers of two
 - Cannot represent certain numbers exactly, e.g. 0.01 for financial calculations

The University of Nottingham

Scientific Notation

• We use *scientific notation* for very large/small numbers

- e.g. 2.998×10^9 , $6.626 \times 10^{\text{-}34}$
- General form $\pm m imes b^e$ where
 - The mantissa contains a decimal point
 - The *exponent* is an integer $e \in \mathbb{Z}$
 - The base can be any positive integer $\mathit{b} \in \mathbb{N}^*$
- A number is *normalised* when $1 \le m < b$
 - Normalise a number by adjusting the exponent e
 - 10×10^0 is not normalised; but 1.0×10^1 is
- In general, which number cannot be normalised?
 - Zero can never be normalised
 - NaN and $\pm\infty$ also considered denormalised

The University of **Nottingham**

Floating Point Notation

- Floating point scientific notation in base 2
- In the past, manufacturers had incompatible hardware
 - Different bit layouts, rounding, and representable values
 - Programs gave different results on different machines
- IEEE 754: Standard for Binary Floating-Point Arithmetic
 - IEEE Institute of Electrical and Electronic Engineers
 - Exact definitions for arithmetic operations
 - the same wrong answers, everywhere
- IEEE Single (32-bit) and Double (64-bit) precision
 - Gives exact layout of bits, and defines basic arithmetic
- Implemented on coprocessor 1 of the MIPS architecture
- Part of Java language definition

IEEE 754 Floating Point Format

- Computer representations are finite
- IEEE 754 is a sign and magnitude format
 - Here, magnitude consists of the exponent and mantissa

Single Precision (32 bits)						
	sign	exponent	mantissa			
	1 bit	$\leftarrow 8 \text{ bits } \rightarrow$	\leftarrow	23 bits	\rightarrow	

Signexponentmantissa1 bit \leftarrow 11 bits \leftarrow 52 bits \rightarrow

The University of Nottingham

IEEE 754 Encoding (Single Precision)

- Sign: 0 for positive, 1 for negative
- Exponent: 8-bit *excess*-127, between 01_{16} and FE_{16}
 - 00_{16} and FF₁₆ are *reserved* see later
- Mantissa: 23-bit binary fraction
 - No need to store leading bit the hidden bit
 - Normalised *binary* numbers always begin with 1
 - c.f. normalised decimal numbers begin with 1...9
- Reading the fields as unsigned integers,

$$(-1)^s \times 1.m \times 2^{e-127}$$

- $\bullet\,$ Special numbers contain $\textsc{00}_{16}$ or FF_{16} in exponent field
 - $\pm\infty$, NaN, 0 and some very small values

m

IEEE 754 Special Values

- Largest and smallest *normalised* 32-bit number?
 - Largest: 1.1111... $_2\times 2^{127}\approx 3.403\times 10^{38}$
 - Smallest: 1.000... $_2\times2^{\text{-126}}\approx1.175\times10^{\text{-38}}$
- We can still represent some values less than 2⁻¹²⁶
 - Denormalised numbers have 00_{16} in the exponent field
 - The hidden bit no longer read as 1
 - Conveniently, 0000 000016 represents (positive) zero

IEEE 754 Single Precision Summary						
	Exponent Mantissa		Value	Description		
-	00 ₁₆	= 0	0	Zero		
	0016	\neq 0	$\pm 0.m imes 2^{ ext{-}126}$	Denormalised		
	01_{16} to FE_{16}		$\pm 1.m \times 2^{e-127}$	Normalised		
	FF_{16}	= 0	$\pm\infty$	Infinities		
	FF_{16}	eq 0	NaN	Not a Number		

Overflow, Underflow, Infinities and NaN

- Underflow: result < smallest normalised number
- Overflow: result > largest representable number
- Why do we want infinities and NaN?
 - Alternative is to give a wrong value, or raise an exception
 - Overflow gives $\pm\infty$ (underflow gives denormalised)
- In long computations, only a few results may be wrong
 - Raising exceptions would abort entire process
 - Giving a misleading result is just plain dangerous
- Infinities and NaN propagate through calculations, e.g.

•
$$1 + (1 \div 0) = 1 + \infty = \infty$$

• $(0 \div 0) + 1 = NaN + 1 = NaN$

Examples

- Convert the following to 32-bit IEEE 754 format
 - $1.0_{10} = 1.0_2 \times 2^0 = 0$ 01111111 00000...

•
$$1.5_{10} = 1.1_2 \times 2^0 = 0$$
 01111111 10000...

•
$$100_{10} = 1.1001_2 \times 2^6 = 0$$
 1000 0101 10010...

•
$$0.1_{10} \approx 1.10011_2 \times 2^{-4} = 0 01111011 100110...$$

- Check your answers using http://www.h-schmidt.net/FloatApplet/IEEE754.html
- Convert to a hypothetical 12-bit format, 4 bits excess-7 exponent, 7 bits mantissa:

• $3.1416_{10} \approx 1.1001001_2 \times 2^1 = 0$ 1000 1001001

Floating Point Addition

- Suppose $f_0 = m_0 \times 2^{e_0}$, $f_1 = m_1 \times 2^{e_1}$ and $e_0 \ge e_1$ • Then $f_0 + f_1 = (m_0 + m_1 \times 2^{e_1 - e_0}) \times 2^{e_0}$
- Shift the smaller number right until exponents match
- Add/subtract the mantissas, depending on sign
- Ormalise the sum by adjusting exponent
- Oneck for overflow
- Round to available bits
- Result may need further normalisation; if so, goto step 3

Floating Point Multiplication

- Suppose $f_0 = m_0 imes 2^{e_0}$ and $f_1 = m_1 imes 2^{e_1}$
 - Then $f_0 imes f_1 = m_0 imes m_1 imes 2^{e_0 + e_1}$
- Add the exponents (be careful, excess-*n* encoding!)
- Ø Multiply the mantissas, setting the sign of the product
- Ormalise the product by adjusting exponent
- Oheck for overflow
- Round to available bits
- Result may need further normalisation; if so, goto step 3

IEEE 754 Rounding

- Hardware needs two extra bits (round, guard) for rounding
- IEEE 754 defines four rounding modes
 Round Up Always toward +∞
 Round Down Always toward -∞
 Towards Zero Round down if positive, up if negative
 Round to Even Rounds to nearest even value: in a tie, pick the closest 'even' number: e.g. 1.5 rounds to 2.0, but 4.5 rounds to 4.0
- MIPS and Java uses round to even by default

The University of Nottinaham

Exercise: Rounding

- Round off the last two digits from the following
 - Interpret the numbers as 6-bit sign and magnitude

Number	$ $ To $+\infty$	To $-\infty$	To Zero	To Even
+0001.01	+0010	+0001	+0001	+0001
-0001. <mark>11</mark>	-0001	-0010	-0001	-0010
+0101. <mark>10</mark>	+0110	+0101	+0101	+0110
+0100. <mark>10</mark>	+0101	+0100	+0100	+0100
-0011. <mark>10</mark>	-0011	-0100	-0011	-0100

- Give 2.2 to two bits after the binary point: 10.01_2
- Round 1.375 and 1.125 to two places: 1.102 and 1.002