Computer Systems Architecture

 http://cs.nott.ac.uk/~txa/g51csa/Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham
Lecture 08: Real Numbers and IEEE 754 Arithmetic

The University of
Nottingham

Representing Real Numbers

- So far we can compute with a subset of numbers:

Unsigned integers $\left[0,2^{32}\right) \subset \mathbb{N}$ Signed integers $\quad\left[-2^{31}, 2^{31}\right) \subset \mathbb{Z}$

- What about numbers such as
- 3.1415926...
- $1 / 3=0.33333333 \ldots$
- 299792458
- How do we represent smaller quantities than 1 ?

Shifting the Point

- Use decimal point to separate integer and fractional parts
- Digits after the point denote $1 / 10^{\text {th }}, 1 / 100^{\text {th }}, \ldots$
- Similarly, we can use the binary point

Bit	$3^{\text {rd }}$	$2^{\text {nd }}$	$1^{\text {st }}$	$0^{\text {th }} .-1^{\text {st }}$	$-2^{\text {nd }}$	$-3^{\text {rd }}$	$-4^{\text {th }}$
Weight	2^{3}	2^{2}	2^{1}	$2^{0} .2^{-1}$	2^{-2}	2^{-3}	2^{-4}

- Left denote integer weights; right for fractional weights
- What is 0.101_{2} in decimal?
- $0.101_{2}=2^{-1}+2^{-3}=0.5+0.125=0.625$
- What is 0.1_{10} in binary?
- $0.1_{10}=0.0001100110011 \ldots 2$
- Digits repeat forever - no exact finite representation!

Fixed Point Arithmetic

- How do we represent non-integer numbers on computers?
- Use binary scaling: e.g. let one increment represent $1 / 16^{\text {th }}$ Hence, $0000.0001_{2}=1 \cong 1 / 16=0.0625$

$$
0001.1000_{2}=24 \cong 24 / 16=1.5
$$

- Fixed position for binary point
- Addition same as integers: $a / c+b / c=(a+b) / c$
- Multiplication mostly unchanged, but must scale after

$$
\frac{a}{c} \times \frac{b}{c}=\frac{(a \times b) / c}{c}
$$

- e.g.

$$
1.5 \times 2.5=3.75
$$

$$
0001.1000_{2} \times 0010.1000_{2}=0011.11000000_{2}
$$

- Thankfully division by 2^{e} is fast!

Overview of Fixed Point

- Integer arithmetic is simple and fast
- Games often used fixed point for performance;
- Digital Signal Processors still do, for accuracy
- No need for a separate floating point coprocessor
- Limited range
- A 32-bit Q24 word can only represent $\left[-2^{7}, 2^{7}-2^{-24}\right]$
- Insufficient range for physical constants, e.g.

Speed of light $\quad c=2.9979246 \times 10^{9} \mathrm{~m} / \mathrm{s}$
Planck's constant $\quad h=6.6260693 \times 10^{-34} \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}$

- Exact representation only for (multiples of) powers of two
- Cannot represent certain numbers exactly, e.g. 0.01 for financial calculations

Scientific Notation

- We use scientific notation for very large/small numbers
- e.g. $2.998 \times 10^{9}, 6.626 \times 10^{-34}$
- General form $\pm m \times b^{e}$ where
- The mantissa contains a decimal point
- The exponent is an integer $e \in \mathbb{Z}$
- The base can be any positive integer $b \in \mathbb{N}^{*}$
- A number is normalised when $1 \leq m<b$
- Normalise a number by adjusting the exponent e
- 10×10^{0} is not normalised; but 1.0×10^{1} is
- In general, which number cannot be normalised?
- Zero can never be normalised
- NaN and $\pm \infty$ also considered denormalised

Floating Point Notation

- Floating point - scientific notation in base 2
- In the past, manufacturers had incompatible hardware
- Different bit layouts, rounding, and representable values
- Programs gave different results on different machines
- IEEE 754: Standard for Binary Floating-Point Arithmetic
- IEEE - Institute of Electrical and Electronic Engineers
- Exact definitions for arithmetic operations
- the same wrong answers, everywhere
- IEEE Single (32-bit) and Double (64-bit) precision
- Gives exact layout of bits, and defines basic arithmetic
- Implemented on coprocessor 1 of the MIPS architecture
- Part of Java language definition

IEEE 754 Floating Point Format

- Computer representations are finite
- IEEE 754 is a sign and magnitude format
- Here, magnitude consists of the exponent and mantissa

Single Precision (32 bits)

| sign | exponent | mantissa |
| :---: | :---: | :---: | :---: |
| 1 bit $\leftarrow 8$ bits \rightarrow | $\leftarrow \quad 23$ bits \rightarrow | |

Double Precision (64 bits)

sign	exponent		mantissa
1 bit $\leftarrow 11$ bits \rightarrow	\leftarrow	52 bits \rightarrow	

IEEE 754 Encoding (Single Precision)

- Sign: 0 for positive, 1 for negative
- Exponent: 8-bit excess-127, between 01_{16} and FE_{16}
- 00_{16} and FF_{16} are reserved - see later
- Mantissa: 23-bit binary fraction
- No need to store leading bit - the hidden bit
- Normalised binary numbers always begin with 1
- c.f. normalised decimal numbers begin with $1 . . .9$
- Reading the fields as unsigned integers,

$$
(-1)^{s} \times 1 . m \times 2^{e-127}
$$

- Special numbers contain 00_{16} or FF_{16} in exponent field
- $\pm \infty, \mathrm{NaN}, 0$ and some very small values

IEEE 754 Special Values

- Largest and smallest normalised 32-bit number?
- Largest: $1.1111 \ldots 2 \times 2^{127} \approx 3.403 \times 10^{38}$
- Smallest: $1.000 \ldots 2 \times 2^{-126} \approx 1.175 \times 10^{-38}$
- We can still represent some values less than 2^{-126}
- Denormalised numbers have 00_{16} in the exponent field
- The hidden bit no longer read as 1
- Conveniently, 00000000_{16} represents (positive) zero

IEEE 754 Single Precision Summary

Exponent	Mantissa	Value	Description
00_{16}	$=0$	0	Zero
00_{16}	$\neq 0$	$\pm 0 . m \times 2^{-126}$	Denormalised
01_{16} to FE_{16}		$\pm 1 . m \times 2^{e-127}$	Normalised
FF_{16}	$=0$	$\pm \infty$	Infinities
FF_{16}	$\neq 0$	NaN	Not a Number

Overflow, Underflow, Infinities and NaN

- Underflow: result < smallest normalised number
- Overflow: result > largest representable number
- Why do we want infinities and NaN ?
- Alternative is to give a wrong value, or raise an exception
- Overflow gives $\pm \infty$ (underflow gives denormalised)
- In long computations, only a few results may be wrong
- Raising exceptions would abort entire process
- Giving a misleading result is just plain dangerous
- Infinities and NaN propagate through calculations, e.g.
- $1+(1 \div 0)=1+\infty=\infty$
- $(0 \div 0)+1=\mathrm{NaN}+1=\mathrm{NaN}$

Examples

- Convert the following to 32-bit IEEE 754 format

$$
\begin{aligned}
& \text { - } 100_{10}=1.1001_{2} \times 2^{6}=\begin{array}{|l|l|l|}
\hline 0 & 1000 & 0101 \\
\hline
\end{array} \\
& \text { - } 0.1_{10} \approx 1.10011_{2} \times 2^{-4}=\begin{array}{|l|l|l|}
\hline 0 & 01111011 & 100110 \ldots \\
\hline
\end{array}
\end{aligned}
$$

- Check your answers using http://www.h-schmidt.net/FloatApplet/IEEE754.html
- Convert to a hypothetical 12-bit format, 4 bits excess- 7 exponent, 7 bits mantissa:
- $3.1416_{10} \approx 1.1001001_{2} \times 2^{1}=$| 0 | 1000 | 1001001 |
| :--- | :--- | :--- |

Floating Point Addition

- Suppose $f_{0}=m_{0} \times 2^{e_{0}}, f_{1}=m_{1} \times 2^{e_{1}}$ and $e_{0} \geq e_{1}$
- Then $f_{0}+f_{1}=\left(m_{0}+m_{1} \times 2^{e_{1}-e_{0}}\right) \times 2^{e_{0}}$
(1) Shift the smaller number right until exponents match
(2) Add/subtract the mantissas, depending on sign
(3) Normalise the sum by adjusting exponent
(4) Check for overflow
(3) Round to available bits
(0) Result may need further normalisation; if so, goto step 3

Floating Point Multiplication

- Suppose $f_{0}=m_{0} \times 2^{e_{0}}$ and $f_{1}=m_{1} \times 2^{e_{1}}$
- Then $f_{0} \times f_{1}=m_{0} \times m_{1} \times 2^{e_{0}+e_{1}}$
(1) Add the exponents (be careful, excess- n encoding!)
(2) Multiply the mantissas, setting the sign of the product
(3) Normalise the product by adjusting exponent
(4) Check for overflow
(3) Round to available bits
(0) Result may need further normalisation; if so, goto step 3

IEEE 754 Rounding

- Hardware needs two extra bits (round, guard) for rounding
- IEEE 754 defines four rounding modes

Round Up Always toward $+\infty$
Round Down Always toward $-\infty$
Towards Zero Round down if positive, up if negative
Round to Even Rounds to nearest even value: in a tie, pick the closest 'even' number: e.g. 1.5 rounds to 2.0 , but 4.5 rounds to 4.0

- MIPS and Java uses round to even by default

Exercise: Rounding

- Round off the last two digits from the following
- Interpret the numbers as 6-bit sign and magnitude

Number	To $+\infty$	To $-\infty$	To Zero	To Even
+0001.01	+0010	+0001	+0001	+0001
-0001.11	-0001	-0010	-0001	-0010
+0101.10	+0110	+0101	+0101	+0110
+0100.10	+0101	+0100	+0100	+0100
-0011.10	-0011	-0100	-0011	-0100

- Give 2.2 to two bits after the binary point: 10.01_{2}
- Round 1.375 and 1.125 to two places: 1.10_{2} and 1.00_{2}

