
Pointers and References Arrays and Strings Heap and Memory Management

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 11: Pointers and References

http://cs.nott.ac.uk/~txa/g51csa/

Pointers and References Arrays and Strings Heap and Memory Management

What does the following C program print?

void swap(int x,int y) {

int z;

z = x;

x = y;

y = z;

}

int main() {

int a,b;

a = 2;

b = 3;

swap(a,b);

printf("a=%d, b=%d\n",a,b);

}

Pointers and References Arrays and Strings Heap and Memory Management

References in C

We can declare pointer types in C, e.g.

int *x;

means that x holds a pointer to an integer.

To dereference a pointer we also use *, e.g. *x has type
int.

The operator & returns a pointer to a variable.

E.g. if we have declared

int y

then & y has type int *, pointer to an integer.

Pointers and References Arrays and Strings Heap and Memory Management

What does the following C program print?

void swap(int *x,int *y) {

int z;

z = *x;

*x = *y;

*y = z;

}

int main() {

int a,b;

a = 2;

b = 3;

swap(&a,&b);

printf("a=%d, b=%d\n",a,b);

}

Pointers and References Arrays and Strings Heap and Memory Management

What about Java?

Java hasn’t got pointer types.

Basic datatypes are always passed by value.

Objects, arrays and strings are passed as references.

Java avoids pointer bugs, which are common and hard to
deteect.

Pointers and References Arrays and Strings Heap and Memory Management

What does the following Java program
print?

class Int {
int n;
Int(int m) { n = m; } }

public class Swap {
static void swap(Int x, Int y) {

int z;
z = x.n;
x.n = y.n;
y.n = z; }

public static void main(String args[]) {
Int a = new Int(1);
Int b = new Int(2);
swap(a,b);
System.out.println("a="+a.n+" b="+b.n); }

}

Pointers and References Arrays and Strings Heap and Memory Management

swap in MIPS

.data
aa: .word 1
bb: .word 2

.text

.globl main
main: la $a0, aa

la $a1, bb
jal swap # swap(&a,&b);
... # print a,b

swap: # x=$a0, y=$a1, z=$t0
lw $t0,($a0) # z = *x;
lw $t1,($a1)
sw $t1,($a0) # *x = *y;
sw $t0,($a1) # *y = z;
jr $ra

Pointers and References Arrays and Strings Heap and Memory Management

Arrays

One of the most basic data structures in CS

Usually a block of consecutive elements in memory

All same size (s bytes); same offset from one to the next
The i th element is at offset i × s bytes from beginning
Looking up an element of the array is termed ‘indexing’

Characterised by constant-time indexing

No more faster to look up xs[0] than xs[42]
Contrast this with a linked-list1 (not in this course)

We can implement arrays using pointer arithmetic

e.g. Assembly equivalent of an int[] in Java/C would
be. . .

a consecutive block of word-sized signed integers
represented by its starting address and length

1like lists in Haskell

Pointers and References Arrays and Strings Heap and Memory Management

Using (Integer) Arrays: C

int as[8] = { 3, 1, 4, 1, 5, 9, 2, 6 };

int array_max(int xs[], int length) {

int i,m;

m = INT_MIN;

for(i=0; i<length; i++) {

if(m < xs[i])

m = xs[i];

}

return m;

}

int main() {

printf("max = %d\n",array_max(as,8));

}

Pointers and References Arrays and Strings Heap and Memory Management

Using (Integer) Arrays: Assembly, Part 1

array_max: # $a0: array address, $a1: array length

li $v0, 0x80000000 # MIN_VALUE

li $t0, 0 # i = 0

j am_cond

am_loop:

sll $t1, $t0, 2 # 4 * i

add $t1, $a0, $t1 # xs + 4*i bytes

lw $t1, ($t1) # lookup xs[i]

addi $t0, $t0, 1 # i++

bge $v0, $t1, am_cond # if(m < xs[i])

move $v0, $t1 # m = xs[i]

am_cond:

blt $t0, $a1, am_loop # i < length?

jr $ra

Pointers and References Arrays and Strings Heap and Memory Management

Using (Integer) Arrays: Assembly, Part 2

.data
as: .word 3, 1, 4, 1, 5, 9, 2, 6

.text

.globl main
main: addi $sp, $sp, -4

sw $ra, 0($sp)
la $a0, as # $a0 = address of as
li $a1, 8 # $a1 = as.length
jal array_max # array_max(as, as.length)
move $a0, $v0
li $v0, 1 # print_int
syscall
lw $ra, 0($sp)
addi $sp, $sp, 4
jr $ra

Pointers and References Arrays and Strings Heap and Memory Management

Strings

Java strings are opaque objects of class String

Assembly strings are arrays of ASCII characters, or bytes

End marked with a NUL, rather than storing its length

You’ve already used them before

with the .asciiz directive
and the print string syscall

What else can we do with strings?

Pointers and References Arrays and Strings Heap and Memory Management

String length in C

int strlen(char *s) {

int l;

l = 0;

while(*s != 0) {

s++;

l++;

}

return l;

}

int main() {

printf("%d\n",strlen("hello"));

}

Pointers and References Arrays and Strings Heap and Memory Management

String Length in Assembler

strlen: # s=$a0,l=$v0

li $v0, 0 # l = 0 ;

j strlen_cond

strlen_loop:

addi $v0, $v0, 1 # l++

strlen_cond:

lbu $t0, ($a0)

addi $a0, $a0, 1 # s++

bne $t0, $zero, strlen_loop # while(*s != ’\0’)

jr $ra

Pointers and References Arrays and Strings Heap and Memory Management

String Length in Assembler

.data

hello: .asciiz "hello"

.text

.globl main

main: la $a0,hello

jal strlen

move $a0,$v0

li $v0, 1 # print_int

syscall

li $v0,10

syscall # exit

Pointers and References Arrays and Strings Heap and Memory Management

strcat, 1st attempt

char* strcat(char *s, char *t) {

char *r;

r = s;

while(*s != ’\0’) s++;

do {

*s = *t;

s++;

t++;

} while(*t != ’\0’);

return r;

}

int main() {

printf("%s\n",strcat("hello ","world"));

}

Pointers and References Arrays and Strings Heap and Memory Management

Oops!

sean:code txa$ strcat1

Bus error

Pointers and References Arrays and Strings Heap and Memory Management

Dynamic Data

So far we’ve only dealt with static data

Contents may change, but size and location doesn’t
Same sense as the static keyword in Java

In Java, "hello" + "world" contatenates two strings

But neither of the original strings are modified
Instead a new string is created on the heap

The heap is a much larger pool of memory than the stack

In C we can allocate data using malloc
Unused data can be returned by using mfree

Storage allocated on the heap persist across procedures

Caller can’t access stack storage

Pointers and References Arrays and Strings Heap and Memory Management

strcat, 2nd attempt

char* strcat(char *s, char *t) {
char *r,*u;
r = (char *) malloc(strlen(s)+strlen(t)+1);
u = r;
while(*s != ’\0’) {
*u = *s;
s++;
u++;

}
do {
*u = *t;
u++;
t++;

} while(*t != ’\0’);
return r;

}

Pointers and References Arrays and Strings Heap and Memory Management

Horrors of Memory Leaks

int main() {

char *s;

while(1) {

s = malloc(1000);

*s=’x’;

printf(".");

}

}

Pointers and References Arrays and Strings Heap and Memory Management

Horrors of Memory Leaks

Program uses up all memory and will eventually crash.

Small leaks hard to discover: may run for a long time

Pointers and References Arrays and Strings Heap and Memory Management

Java version

public class Foo {

public static void main(String[] args) {

while(true) {

int[] as = new char[1000];

as[0] = ’x’;

}}}

Pointers and References Arrays and Strings Heap and Memory Management

Automatic Garbage Collection

Java has automatic garbage collection

Inaccessible objects are periodically freed by JVM
SPIM doesn’t/can’t have automatic garbage collection

Can you write a Java program which runs out of memory?

	Pointers and References
	What does the following C program print?
	What does the following Java program print?
	swap in MIPS

	Arrays and Strings
	Arrays
	Using (Integer) Arrays: C
	Using (Integer) Arrays: Assembly, Part 1
	Using (Integer) Arrays: Assembly, Part 2
	Strings
	String Length in Assembler
	String Length in Assembler

	Heap and Memory Management
	Dynamic Data
	Horrors of Memory Leaks
	Horrors of Memory Leaks

