
Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 12: Interrupts, Exceptions and I/O

http://cs.nott.ac.uk/~txa/g51csa/

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Memory-Mapped Input and Output

How does the CPU communicate with external devices?
Within SPIM: console and keyboard
Hard disk, sound card, mouse &c.

Some MIPS addresses are actually device registers
Certain memory ranges are mapped to external devices
Writing sends data to external device
Can poll device registers to check for events
Later we learn to use interrupts. . .

Other processors use a separate I/O address space
e.g. x86 has special instructions for I/O ports
Most sane processors use MMIO

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Console I/O in SPIM

PATAF0801.eps

1

Interrupt

enable

Ready

1Unused

Receiver control

(0xffff0000)

8

Received byte

Unused

Receiver data

(0xffff0004)

1

Interrupt

enable

Ready

1Unused

Transmitter control

(0xffff0008)

Transmitter data

(0xffff000c)

8

Transmitted byte

Unused

SPIM emulates MMIO

Must select ‘Mapped I/O’
in PCSpim settings

Receiver – keyboard

Transmitter – display

Can still use syscalls

Appendix A.8, pp 38–40

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Keyboard Input

Receiver control (at FFFF000016) consists of 2 bits
Bit 0 is the ‘ready’ bit – unread input from keyboard
Ignore the ‘interrupt enable’ bit for now

Receiver data (at FFFF000416) contains last pressed key
Reading data register resets ‘ready’ bit

li $t0, 0xffff0000
rd poll:

lw $v0, 0($t0)
andi $v0, $v0, 0x01

beq $v0, $zero, rd poll
lw $v0, 4($t0)
last key code in $v0

Read from control register

AND off the ‘ready’ bit

If zero, no keypress
Keep waiting

Else read data register

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Character Display

Transmitter control (at FFFF000816) consists of 2 bits
Bit 0 is the ‘ready’ bit – display accepting new character
Ignore the ‘interrupt enable’ bit for now

Transmitter data (at FFFF000C16) takes ASCII character
Writing data register resets ‘ready’ bit

character in $a0
li $t0, 0xffff0008
wr poll:

lw $v0, 0($t0)
andi $v0, $v0, 0x01

beq $v0, $zero, wr poll
sw $a0, 4($t0)

Read from control register

AND off the ‘ready’ bit

If zero, not ready
Keep waiting

Else send to data register

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Exceptions

Exceptions are caused by program execution:
Integer arithmetic overflow – result outside [−231,+231)
Division by zero
Illegal instruction – machine code doesn’t make sense
Address error – access to unaligned address
Bus error – access to non-existent address
syscall instruction – when we need an OS request
brk (breakpoint) instruction – used by debuggers

Control hands over to operating system code
Different mechanism to Java exceptions

Can be thought of as a synchronous software interrupt. . .

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Interrupts

Interrupts arise from external devices:
Disk read complete (via DMA, say)
Memory error (but only with EEC RAM)
User pressed a key on console
Console ready to display another character
Hardware timer expired

Can be thought of as asynchronous hardware exception
Asynchronous because it can occur any time

Terminology varies on different architectures. . .

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Examples of Exceptions

divide by zero -- breakpoint
div $t0, $t0, $zero

arithmetic overflow
li $t1, 0x7fffffff
addi $t1, $t1, 1

non-existent memory address -- bus error
sw $t2, 124($zero)

non-aligned address -- address error
sw $t2, 125($zero)

invalid instruction
.word 0xdeadbeef

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Exception Handlers

Hardware saves current PC in a special register

CPU jumps to an exception handler, which
Saves the current processor state
Take appropriate internal action for an exception, or
Deal with the external source of the interrupt
Restores the previous processor state
Resumes user program execution, if possible

Exception handler resides in kernel memory, inside the OS
Kernel has extra privileges and protection over user code
However this is not simulated in SPIM. . .

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

MIPS Coprocessor 0 Registers

MIPS uses coprocessor 0 for exception/interrupt handling

SPIM simulates the following coprocessor 0 registers

Name Register Description
BadVAddr $8 offending memory reference
Count $9 current timer; incremented every 10ms
Compare $11 interrupt when Count ≡ Compare
Status $12 controls which interrupts are enabled
Cause $13 exception type, and pending interrupts
EPC $14 PC where exception/interrupt occured

Count and Compare implements a hardware timer
Could implement a pre-emptive multitasking microkernel,
or program threads – exercise for the keen reader

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Interrupt / Exception Status

PATAF0701.eps

15 8 4 1 0

Interrupt

mask

U
s
e
r

m
o
d
e

E
x
c
e
p
ti
o
n

le

v
e
l

In
te

rr
u
p
t

e
n
a
b
le

Interrupt mask which of the 8 interrupts are allowed
User mode not simulated by SPIM; always 1

Exception level automatically set during an exception;
prevents handler itself being interrupted

Interrupt enable global interrupt enable (or disable)

Eight interrupt bits: 6 hardware, 2 software levels
Console receiver: HW level 1; transmitter: HW level 0
Timer: HW level 5

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Interrupt / Exception Cause

PATAF0702.eps

1531 8 6 2

Pending

interrupts

Branch

delay

Exception

code

Pending interrupts is bitfield of the 8 interrupts

Exception code is a 5-bit integer field

Number Name Description
0 Int Hardware interrupt pending
4 AdEL Address error on load (or instruction fetch)
5 AdES Address error on store
6 IBE Bus error on instruction fetch
7 DBE Bus error on data load or store
8 Sys syscall exception (but not on SPIM!)
9 Bp Breakpoint (usually used by debuggers)

12 Ov Arithmetic overflow

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Coprocessor 0 Interface

mfc0 dst, esrc – move from coprocessor 0

dst := esrc

mtc0 dst, esrc – move to coprocessor 0

esrc := dst

Example: Allow all hardware interrupts

mfc0 $t0, $12
ori $t0, $t0, 0xff01
mtc0 $t0, $12

Example: Set a timer interrupt in 420ms

li $t0, 42
mtc0 $t0, $11
mtc0 $zero, $9

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Writing Your Own Interrupt Handler

Handler always at address 8000018016 in kernel memory
Use the .ktext 0x80000180 and .kdata directives

Must save and later restore all registers used
Including $at – use .set noat to supress SPIM’s errors
Except $k0 and $k1 may be used freely
Should not use stack – may point to invalid memory
Can temporarily spill registers to .kdata

Return control to the user program with eret

Jumps to EPC, and resets Exception level in Status

Example: l12-timer.asm on course website

file:l12-timer.asm

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Polling I/O

Previously we described memory-mapped I/O
Polling device registers for activity
e.g. receiver control changes when user presses a key
See l12-echo.asm on course website for a full example
Ensure ‘Mapped I/O’ activated in PCSpim settings

Certain memory ‘locations’ are actually device registers
Reading (or polling) receives, and writing sends data
Each access transfers a 32-bit word to/from the device

Transferring large blocks of data from a device
Wait until ready, reads a word, write to memory. Repeat
Data flow: Device → Processor → Memory
Not computationally hard, yet very processor intensive

file:l12-echo.asm

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Interrupts for I/O and DMA

Instead, can use interrupts – an asynchronous approach

PATAF0801.eps

1

Interrupt

enable

Ready

1Unused

Receiver control

(0xffff0000)

8

Received byte

Unused

Receiver data

(0xffff0004)

1

Interrupt

enable

Ready

1Unused

Transmitter control

(0xffff0008)

Transmitter data

(0xffff000c)

8

Transmitted byte

Unused

Needn’t constantly poll for multiple types of events
Hardware will raise interrupt on an external event

Or even combine both: l12-async.asm

Use Direct Memory Access for larger blocks of data
DMA controller coordinates device ↔ memory
Data flow: Device → Memory
Processor available for other jobs in the meantime

file:l12-async.asm

Memory-Mapped I/O MIPS Coprocessor 0 Input and Output

Reading Material

Exception Handlers
H&P Appendix §A.7 and §A.8
H&P §5.6 is pretty useless. . .

I/O, Interrupts and DMA
H&P §8.1 and §8.5 are detailed and informative
(But probably too much information)

	Memory-Mapped I/O
	Memory-Mapped Input and Output
	Console I/O in SPIM
	Keyboard Input
	Character Display
	Exceptions
	Interrupts
	Examples of Exceptions
	Exception Handlers

	MIPS Coprocessor 0
	MIPS Coprocessor 0 Registers
	Interrupt / Exception Status
	Interrupt / Exception Cause
	Coprocessor 0 Interface
	Writing Your Own Interrupt Handler

	Input and Output
	Polling I/O
	Interrupts for I/O and DMA
	Reading Material

