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Abstract View of MIPS Implementation
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Datapath and Control

Most instructions have common initial operations
Fetch instruction from memory at address PC
Decode and select register(s) for subsequent operation
Use ALU for: address, arithmetic, logic or comparison
Remaining operations differ between instruction classes

Consider datapaths used in following instruction classes
Memory-reference: e.g. lw and sw
Arithmetic/logic: e.g. add, sub and slt
Branching: e.g. beq and j

Multiplexors select between multiple data sources
Another layer of control logic over previous diagram
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Multiplexors and Control Logic
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Functional Units and Their Timings

There are at least five functional units, or stages:
IF – Instruction Fetch – get instruction from memory
ID – Instruction Decode – get source register operands
EX – Execute – ALU operation
MEM – Memory Access – data memory read or write
WB – Write-Back – result to destination register

Some stages take longer to finish than others, e.g.
Type Duration1 Stage

Memory 200ps IF, MEM
ALU 200ps EX

Register 100ps ID, WB

110−12s = 1ps, one picosecond
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Critical Paths and Instruction Timings

Each instruction uses different subset of functional units
Class IF ID EX MEM WB Total
R-Type 200 100 200 100 600
Load 200 100 200 200 100 800
Store 200 100 200 200 700
Cond. Branch 200 100 200 500
Jump 200 200

Hence some instructions could run faster than others

But if every instruction must take exactly one cycle,
All instructions must take worst-case timing
Clock speed will be constrained by slowest instruction
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The Laundry Room Analogy

If it takes 2 hours to wash, dry, fold and store one set of
clothes, how long will it take for 20 sets?
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Total of 2× 20 = 40 hours?
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Total of 0.5× 20 + 3× 0.5 = 11.5 hours
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A Production Line for Instructions

Execute multiple instructions overlapped
Make each stage simple and fast; one cycle per stage
Start next instruction as soon as current stage is free
Same concept as a factory production line

Instruction latency is just as long as before
Maybe even a little longer due to pipelining overheads

But instruction throughput massively increased
Throughput is more important than latency

Ideal case: every instruction with a timing of t can be
divided into s stages. Executing n instructions takes,

Pipelined, at s/tHz: (n + (s − 1))t/s ≈ nt/s
Single-cycle, at 1/tHz: nt
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Pipeline Overheads
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Even though some stages take less time than others. . .

. . . speed is still limited by the slowest component
Here, slowest stage rather than slowest instruction
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Designing ISAs for Pipelining

Pipelining favours uniform timing and few special cases

MIPS architecture was designed with pipelining in mind
Fixed 32-bit instructions simplifies instruction fetch
Few instruction formats, sharing common operand fields
Only lw/sw access memory; ALU calculates address
Aligned memory references for single-cycle access
Slow instructions like mult taken out of pipeline

Write to dedicated registers HI and LO (no WB stage)
Avoids slowing down the EX stage
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Obstacles to Pipelining

Previously assumed no interaction between instructions
Can always issue one instruction every clock cycle

Reality: various hazards prevents smooth pipeline flow

Structural Hazards: hardware cannot support instruction

Data Hazards: ALU needs value not yet in register file

Control Hazards: IF from PC+4 after branch instruction?
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Structural Hazards

Structural Hazard: hardware cannot support instruction

Suppose we want to add a new instruction:
xor dst, src0, n(src1)

Fetch second operand during MEM, two cycles after EX!
Requires an additional MEM (read) stage before EX
Requires ALU to calculate n+src1 as well as XOR
But each instruction only has one cycle in EX stage!

Can’t simultaneously IF and MEM on same memory bus
Switch to a Harvard architecture
Dual-ported memory allows two operations each cycle
Cache memory often separate for instruction and data
Design ISA to avoid structural-hazards!
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Data Hazards

Data Hazards: ALU needs value not yet in register file

Suppose we execute the following dependent instructions:
add $s0, $t0, $t1
sub $t2, $s0, $t3

Result of add not written to $s0 until WB
But sub requires $s0 = $t0+$t1 the very next cycle!

200 400 600 800 1000
Time

add $s0, $t0, $t1 IF MEMID WBEX
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Stall sub in ID for 3 cycles until result written to $s0?
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EX Forwarding

Wasted cycles waiting for previous instruction to complete

Compiler could fill bubbles with independent instructions
Or even the hardware – out-of-order execution
Hard to find useful instructions; happens too often!

Better solution – forward result from EX output
Extra hardware to take result directly from ALU output

200 400 600 800 1000
Time

add $s0, $t0, $t1

sub $t2, $s0, $t3
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MEM Forwarding

What about load instructions?

Consider the following instruction sequence:
lw $s0, 20($t1)
sub $t2, $s0, $t3

Result from lw not available until after MEM stage
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Reordering Instructions

Reorder the following to eliminate pipeline stalls:
lw $s0, 20($t1)
sub $t2, $s0, $t3
sw $s0, 20($t1)
lw $s1, 24($t1)

lw $s0, 20($t1)
lw $s1, 24($t1)
sub $t2, $s0, $t3
sw $s0, 20($t1)

Now try the example on H&P p378
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Branch/Control Hazards

Control Hazards: IF from PC+4 after branch instruction?

Consider the following instruction sequence:
beq $s0, $s1, next

addi $s2, $s2, 1
next: lw $s0, ($s2)

Which instruction do we fetch after beq?
Could stall for 2 cycles until $s0 ≡ $s1 decided after EX
Fetch addi anyway; if wrong, flush/restart the pipeline

Solutions not as effective as forwarding for data hazards
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Branch Prediction

Static Branch Prediction
If target before PC, predict ‘taken’ – likely to be a loop
Otherwise could be if-then control – predict ‘not taken’
Unconditional branches (or ‘jumps’) always ‘taken’

Dynamic Branch Prediction
Keep track of recent branch decisions
If previous branches taken, fetch from branch target
Otherwise predict ‘not taken’; fetch from PC+4

Alternatively, employ delayed branches
Execute the instruction at PC+4 anyway
Instruction following branch called the ‘branch delay slot’
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Reading Material

H&P: §5.1 Introduction to The Processor: Datapath and
Control

H&P: §6.1, An Overview of Pipelining

For more detailed information,
H&P: §6.5, Data Hazards and Forwarding
H&P: §6.6, Branch Hazards
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