
Processor Architecture Pipelining Pipeline Hazards

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 13: Processor Architecture and Pipelining

http://cs.nott.ac.uk/~txa/g51csa/

Processor Architecture Pipelining Pipeline Hazards

Abstract View of MIPS Implementation

PAT05F01.eps

Data

Register #

Register #

Register #

PC Address Instruction

Instruction

memory

Registers ALU Address

Data

Data

memory

AddAdd

4

Processor Architecture Pipelining Pipeline Hazards

Datapath and Control

Most instructions have common initial operations
Fetch instruction from memory at address PC
Decode and select register(s) for subsequent operation
Use ALU for: address, arithmetic, logic or comparison
Remaining operations differ between instruction classes

Consider datapaths used in following instruction classes
Memory-reference: e.g. lw and sw
Arithmetic/logic: e.g. add, sub and slt
Branching: e.g. beq and j

Multiplexors select between multiple data sources
Another layer of control logic over previous diagram

Processor Architecture Pipelining Pipeline Hazards

Multiplexors and Control Logic

PAT05F02.eps

Data

Register #

Register #

Register #

PC Address Instruction

Instruction

memory

Registers ALU Address

Data

Data

memory

AddAdd

4

MemWrite

MemRead

M

u

x

M

u

x

M

u

x

Control

RegWrite

Zero

Branch

ALU operation

Processor Architecture Pipelining Pipeline Hazards

Functional Units and Their Timings

There are at least five functional units, or stages:
IF – Instruction Fetch – get instruction from memory
ID – Instruction Decode – get source register operands
EX – Execute – ALU operation
MEM – Memory Access – data memory read or write
WB – Write-Back – result to destination register

Some stages take longer to finish than others, e.g.
Type Duration1 Stage

Memory 200ps IF, MEM
ALU 200ps EX

Register 100ps ID, WB

110−12s = 1ps, one picosecond

Processor Architecture Pipelining Pipeline Hazards

Critical Paths and Instruction Timings

Each instruction uses different subset of functional units
Class IF ID EX MEM WB Total
R-Type 200 100 200 100 600
Load 200 100 200 200 100 800
Store 200 100 200 200 700
Cond. Branch 200 100 200 500
Jump 200 200

Hence some instructions could run faster than others

But if every instruction must take exactly one cycle,
All instructions must take worst-case timing
Clock speed will be constrained by slowest instruction

Processor Architecture Pipelining Pipeline Hazards

The Laundry Room Analogy

If it takes 2 hours to wash, dry, fold and store one set of
clothes, how long will it take for 20 sets?

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task

order

A

B

C

D

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task

order

A

B

C

D

PAT06F01.eps

Total of 2× 20 = 40 hours?

Processor Architecture Pipelining Pipeline Hazards

The Laundry Room Analogy

If it takes 2 hours to wash, dry, fold and store one set of
clothes, how long will it take for 20 sets?

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task

order

A

B

C

D

Time
6 PM 7 8 9 10 11 12 1 2 AM

Task

order

A

B

C

D

PAT06F01.eps

Total of 0.5× 20 + 3× 0.5 = 11.5 hours

Processor Architecture Pipelining Pipeline Hazards

A Production Line for Instructions

Execute multiple instructions overlapped
Make each stage simple and fast; one cycle per stage
Start next instruction as soon as current stage is free
Same concept as a factory production line

Instruction latency is just as long as before
Maybe even a little longer due to pipelining overheads

But instruction throughput massively increased
Throughput is more important than latency

Ideal case: every instruction with a timing of t can be
divided into s stages. Executing n instructions takes,

Pipelined, at s/tHz: (n + (s − 1))t/s ≈ nt/s
Single-cycle, at 1/tHz: nt

Processor Architecture Pipelining Pipeline Hazards

Pipeline Overheads

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400 1600 1800

Instruction
fetch

Reg ALU
Data

access
Reg

Instruction
fetch

Reg ALU
Data

access
Reg

Instruction
fetch

800 ps

800 ps

800 ps

Program
execution
order
(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time
200 400 600 800 1000 1200 1400

Instruction
fetch

Reg ALU
Data

access
Reg

PAT06F03.eps

Instruction
fetch

Instruction
fetch

Reg ALU
Data

access
Reg

Reg ALU
Data

access
Reg

200 ps

200 ps

200 ps 200 ps 200 ps 200 ps 200 ps

Even though some stages take less time than others. . .

. . . speed is still limited by the slowest component
Here, slowest stage rather than slowest instruction

Processor Architecture Pipelining Pipeline Hazards

Designing ISAs for Pipelining

Pipelining favours uniform timing and few special cases

MIPS architecture was designed with pipelining in mind
Fixed 32-bit instructions simplifies instruction fetch
Few instruction formats, sharing common operand fields
Only lw/sw access memory; ALU calculates address
Aligned memory references for single-cycle access
Slow instructions like mult taken out of pipeline

Write to dedicated registers HI and LO (no WB stage)
Avoids slowing down the EX stage

Processor Architecture Pipelining Pipeline Hazards

Obstacles to Pipelining

Previously assumed no interaction between instructions
Can always issue one instruction every clock cycle

Reality: various hazards prevents smooth pipeline flow

Structural Hazards: hardware cannot support instruction

Data Hazards: ALU needs value not yet in register file

Control Hazards: IF from PC+4 after branch instruction?

Processor Architecture Pipelining Pipeline Hazards

Structural Hazards

Structural Hazard: hardware cannot support instruction

Suppose we want to add a new instruction:
xor dst, src0, n(src1)

Fetch second operand during MEM, two cycles after EX!
Requires an additional MEM (read) stage before EX
Requires ALU to calculate n+src1 as well as XOR
But each instruction only has one cycle in EX stage!

Can’t simultaneously IF and MEM on same memory bus
Switch to a Harvard architecture
Dual-ported memory allows two operations each cycle
Cache memory often separate for instruction and data
Design ISA to avoid structural-hazards!

Processor Architecture Pipelining Pipeline Hazards

Data Hazards

Data Hazards: ALU needs value not yet in register file

Suppose we execute the following dependent instructions:
add $s0, $t0, $t1
sub $t2, $s0, $t3

Result of add not written to $s0 until WB
But sub requires $s0 = $t0+$t1 the very next cycle!

200 400 600 800 1000
Time

add $s0, $t0, $t1 IF MEMID WBEX

PAT06F04.eps

Stall sub in ID for 3 cycles until result written to $s0?

Processor Architecture Pipelining Pipeline Hazards

EX Forwarding

Wasted cycles waiting for previous instruction to complete

Compiler could fill bubbles with independent instructions
Or even the hardware – out-of-order execution
Hard to find useful instructions; happens too often!

Better solution – forward result from EX output
Extra hardware to take result directly from ALU output

200 400 600 800 1000
Time

add $s0, $t0, $t1

sub $t2, $s0, $t3

IF MEMID WBEX

IF MEMID WBEX

PAT06F05.eps

Program
execution
order
(in instructions)

No stalls required

Processor Architecture Pipelining Pipeline Hazards

MEM Forwarding

What about load instructions?

Consider the following instruction sequence:
lw $s0, 20($t1)
sub $t2, $s0, $t3

Result from lw not available until after MEM stage

200 400 600 800 1000 1200 1400
Time

lw $s0, 20($t1)

sub $t2, $s0, $t3

IF MEMID WBEX

IF MEMID WBEX

PAT06F06.eps

Program
execution
order
(in instructions)

bubble bubble bubble bubble bubble

Still requires one bubble to be inserted

Processor Architecture Pipelining Pipeline Hazards

Reordering Instructions

Reorder the following to eliminate pipeline stalls:
lw $s0, 20($t1)
sub $t2, $s0, $t3
sw $s0, 20($t1)
lw $s1, 24($t1)

lw $s0, 20($t1)
lw $s1, 24($t1)
sub $t2, $s0, $t3
sw $s0, 20($t1)

Now try the example on H&P p378

Processor Architecture Pipelining Pipeline Hazards

Branch/Control Hazards

Control Hazards: IF from PC+4 after branch instruction?

Consider the following instruction sequence:
beq $s0, $s1, next

addi $s2, $s2, 1
next: lw $s0, ($s2)

Which instruction do we fetch after beq?
Could stall for 2 cycles until $s0 ≡ $s1 decided after EX
Fetch addi anyway; if wrong, flush/restart the pipeline

Solutions not as effective as forwarding for data hazards

Processor Architecture Pipelining Pipeline Hazards

Branch Prediction

Static Branch Prediction
If target before PC, predict ‘taken’ – likely to be a loop
Otherwise could be if-then control – predict ‘not taken’
Unconditional branches (or ‘jumps’) always ‘taken’

Dynamic Branch Prediction
Keep track of recent branch decisions
If previous branches taken, fetch from branch target
Otherwise predict ‘not taken’; fetch from PC+4

Alternatively, employ delayed branches
Execute the instruction at PC+4 anyway
Instruction following branch called the ‘branch delay slot’

Processor Architecture Pipelining Pipeline Hazards

Reading Material

H&P: §5.1 Introduction to The Processor: Datapath and
Control

H&P: §6.1, An Overview of Pipelining

For more detailed information,
H&P: §6.5, Data Hazards and Forwarding
H&P: §6.6, Branch Hazards

	Processor Architecture
	Abstract View of MIPS Implementation
	Datapath and Control
	Multiplexors and Control Logic
	Functional Units and Their Timings
	Critical Paths and Instruction Timings

	Pipelining
	The Laundry Room Analogy
	A Production Line for Instructions
	Pipeline Overheads
	Designing ISAs for Pipelining

	Pipeline Hazards
	Obstacles to Pipelining
	Structural Hazards
	Data Hazards
	EX Forwarding
	MEM Forwarding
	Reordering Instructions
	Branch/Control Hazards
	Branch Prediction
	Reading Material

