
Introduction to Formal Reasoning (G52IFR)

Thorsten Altenkirch

November 14, 2011

Chapter 1

Introduction

1.1 What is this course about?

• The precise art of formal reasoning.

• Use a proof assistant (COQ) to formalize proofs.

• Propositional logic as the scaffolding of reasoning

• Foundational issues: classical vs intuitionistic logic

• Express yourself precisely using the language of predicate logic

• Finite sets and operations on sets, reasoning by cases.

• Reasoning about natural numbers, proof by induction

• Equational reasoning (Algebra).

• Reasoning about programs and data structures.

1.2 What is Coq ?
• COQ: a Proof Assistant based on the Calculus of Inductive Constructions}

• Developed in France since 1989.

• Growing user community.

• Big proof developments:

– Correctness of a C-compiler
– 4 colour theorem

1

1.3 Why using a proof assistant?
• Avoid holes in paper proofs.

• Aid understanding. What is a proof?

• Formal certification of software and hardware.

1.4 Using COQ
• Download COQ from http://coq.inria.fr/

• Runs under MacOS, Windows, Linux

• coqtop : command line interface

• coqide : graphical user interface

• proof general : emacs interface

• coqtop and coqide installed on the lab machines

1.5 For reference
• Coq Reference manual: http://coq.inria.fr/V8.1pl3/refman/

• Coq Library doc: http://coq.inria.fr/library-eng.html

• Coq’Art, the book by Yves Bertot and Pierre Casteran (2004). (available in the li-
brary!)

1.6 Course organisation
• Course page: http://www.cs.nott.ac.uk/˜txa/g52ifr/

• Coq Labs: every Tuesday (1600 - 1800) in A32, starting next week (11/10).

• Weekly coursework, 1st available next Monday.

• Use online submission system (cw).

• Tutorials: start next week. See assignment on webpage.

• Online class test on coq in December.

• Online Forum: Information about coursework, discuss questions Please subscribe!

2

Chapter 2

Propositional Logic

Section prop.

A proposition is a definitive statement which we may be able to prove. In Coq we write
P : Prop to express that P is a proposition.

We will later introduce ways to construct interesting propositions, but in the moment we
will use propositional variables instead. We declare in Coq:

Variables P Q R : Prop.

This means that the P,Q,R are atomic propositions which may be substituted by any
concrete propositions. In the moment it is helpful to think of them as statements like "The
sun is shining" or "We go to the zoo."

We are going to introduce a number of connectives and logical constants to construct
propositions:

• Implication →, read P → Q as if P then Q.

• Conjunction ∧, read P ∧ Q as P and Q.

• Disjunction ∨, read P ∨ Q as P or Q.

• False, read False as "Pigs can fly".

• True, read True as "It sometimes rains in England."

• Negation ¬, read ¬ P as not P. We define ¬ P as P → False.

• Equivalence, ↔, read P ↔ Q as P is equivalent to Q. We define P ↔ Q as (P → Q)
∧ (Q → P).

As in algebra we use parentheses to group logical expressions. To save parentheses there are
a number of conventions:

• Implication is right associative, i.e. we read P → Q → R as P → (Q → R).

3

• Implication and equivalence bind weaker than conjunction and disjunction. E.g. we
read P ∨ Q → R as (P ∨ Q) → R.

• Conjunction binds stronger than disjunction. E.g. we read P ∧ Q ∨ R as (P ∧ Q) ∨
R.

• Negation binds stronger than all the other connectives, e.g. we read ¬ P ∧ Q as (˜ P)
∧ Q.

This is not a complete specification. If in doubt use parentheses.

We will now discuss how to prove propositions in Coq. If we are proving a statement con-
taining propositional variables then this means that the statement is true for all replacements
of the variables with actual propositions. We say it is a tautology.

2.1 Our first proof

We start with a very simple tautology P → P, i.e. if P then P. To start a proof we write:

Lemma I : P → P.

It is useful to run the source of this document in Coq to see what happens. Coq enters a
proof state and shows what we are going to prove under what assumptions. In the moment
our assumptions are that P,Q,R are propositions and our goal is P → P. To prove an
implication we add the left hand side to the assumptions and continue to prove the right
hand side - this is done using the intro tactic. We also choose a name for the assumption,
let’s call it p.

intro p.

This changes the proof state: we now have to prove P but we also have a new assumption
p : P. We can finish the proof by using this assumption. In Coq this can done by using the
exact tactic.

exact p.

This finishes the proof. We only have to instruct Coq to save the proof under the name
we have indicated in the beginning, in this case I.

Qed.

Qed stands for "Quod erat demonstrandum". This is Latin for "What was to be shown."

2.2 Using assumptions.

Next we will prove another tautology, namely (P → Q) → (Q → R) → P → R. Try to
understand why this is intuitively true for any propositions P,Q and R.

4

To prove this in Coq we need to know how to use an implication which we have assumed.
This can be done using the apply tactic: if we have assumed P → Q and we want to prove
Q then we can use the assumption to reduce (hopefully) the problem to proving P. Clearly,
using this step is only sensible if P is actually easier to prove than Q. Step through the next
proof to see how this works in practice!

Lemma C : (P → Q) → (Q → R) → P → R.

We have to prove an implication, hence we will be using intro. Because → is right
associative the proposition can be written as (P → Q) → ((Q → R) → P → R). Hence we
are going to assume P → Q.

intro pq.

we continue assuming...

intro qr.
intro p.

Now we have three assumptions P → Q, Q → R and P. It remains to prove R. We
cannot use intro any more because our goal is not an implication. Instead we need to use
our assumptions. The only assumption which could help us to prove R is Q → R. We use
the apply tactic.

apply qr.

Apply uses Q → R to reduce the problem to prove R to the problem to prove Q. Which
in turn can be further reduced to proving P using P → Q.

apply pq.

And now it only remains to prove P which is one of our assumptions - hence we can use
exact again. exact p.
Qed.

2.3 Introduction and Elimination

We observe that there are two types of proof steps (tactics):

• introduction: How can we prove a proposition? In the case of an implication this is
intro. To prove P → Q, we assume P and prove Q.

• elimination: How can we use an assumption? In the case of implication this is apply.
If we know P → Q and we want to prove Q it is sufficient to prove P.

Actually apply is a bit more general: if we know P1 → P2 → ... → Pn → Q and we want
to prove Q then it is sufficient to prove P1,P2,...,Pn. Indeed the distinction of introduction
and elimination steps is applicable to all the connectives we are going to encounter. This is
a fundamental symmetry in reasoning.

5

There is also a 3rd kind of steps: structural steps. An example is exact which we can
use when we want to refer to an assumption. We can also use assumption then we don’t
even have to give the name of the assumption.

If we want to combine several intro steps we can use intros. We can also use intros
without parameters in which case Coq does as many intro as possible and invents the names
itself.

2.4 Conjunction

How to prove a conjunction? To prove P ∧ Q we need to prove P and Q. This is achieved
using the split tactic. We look at a simple example.

Lemma pair : P → Q → P ∧ Q.

On the top level we have to prove an implication.

intros p q.

now to prove P ∧ Q we use split.

split.

This creates two subgoals. We do the first

exact p.

And then the 2nd

exact q.
Qed.

How do we use an assumption P ∧ Q. We use destruct to split it into two assumptions.
As an example we prove that P ∧ Q → Q ∧ P.

Lemma andCom : P ∧ Q → Q ∧ P.
intro pq.
destruct pq as [p q].
split.

Now we need to use the assumption P ∧ Q. We destruct it into two assumptions: P and
Q. destruct allows us to name the new assumptions.

exact q.
exact p.
Qed.

Can you see a shorter proof of the same theorem ?

To summarize for conjunction we have:

• introduction: split: to prove P ∧ Q we prove both P and Q.

6

• elimination: destruct: to prove something from P ∧ Q we prove it from assuming
both P and Q.

2.5 The currying theorem

Maybe you have already noticed that a statement like P → Q → R basically means that R
can be proved from assuming both P and Q. Indeed, it is equivalent to P ∧ Q → R. We can
show this formally by using ↔ for the first time.

All the steps we have already explained so I won’t comment. It is a good idea to step
through the proof using Coq.

Lemma curry : (P ∧ Q → R) ↔ (P → Q → R).
unfold iff.
split.
intros H p q.
apply H.
split.
exact p.
exact q.
intros pqr pq.
apply pqr.
destruct pq as [p q].
exact p.
destruct pq as [p q].
exact q.
Qed.

I call this the currying theorem, because this is the logical counterpart of currying in
functional programming: i.e. that a function with several parameters can be reduced to a
function which returns a function. So in Haskell addition has the type Int → Int → Int.

2.6 Disjunction

To prove a disjunction like P ∨ Q we can either prove P or Q. This is done via the tactics
left and right. As an example we prove P → P ∨ Q.

Lemma inl : P → P ∨ Q.
intros p.

Clearly, here we have to use left.

left.
exact p.

7

Qed.

To use a disjunction P ∨ Q to prove something we have to prove it from both P and Q.
The tactic we use is also called destruct but in this case destruct creates two subgoals.
This can be compared to case analysis in functional programming. Indeed we can prove the
following theorem.

Lemma case : P ∨ Q → (P → R) → (Q → R) → R.
intros pq pr qr.
destruct pq as [p | q].

The syntax for destruct for disjunction is different if we want to name the assumption
we have to separate them with |. Indeed each of them will be visible in a different part of
the proof. First we assume P.

apply pr.
exact p.

And then we assume Q

apply qr.
exact q.
Qed.

So again to summarize: For disjunction we have:

• introduction: there are two ways to prove a disjunction P ∨ Q. We use left to prove it
from P and right to prove it from Q.

• elimination: If we have assumed P ∨ Q then we can use destruct to prove our current
goal from assuming P and from assuming Q.

2.7 Distributivity

As an example of how to combine the proof steps for conjunction and disjunction we show
that distributivity holds, i.e. P ∧ (Q \/ R) is logically equivalent to (P ∧ Q) ∨ (P ∧ R).
This is reminiscent of the principle in algebra that x × (y + z) = x × y + x × z.

Lemma andOrDistr : P ∧ (Q ∨ R)
↔ (P ∧ Q) ∨ (P ∧ R).

split.
intro pqr.
destruct pqr as [p qr].
destruct qr as [q | r].
left.
split.
exact p.

8

exact q.
right.
split.
exact p.
exact r.
intro pqpr.
destruct pqpr as [pq | pr].
split.
destruct pq as [p q].
exact p.
left.
destruct pq as [p q].
exact q.
destruct pr as [p r].
split.
exact p.
right.
exact r.
Qed.

As before: to understand the working of this script it is advisable to step through it using
Coq.

2.8 True and False

True is just a conjunction with no arguments as opposed to ∧ which has two. Similarity
False is a disjunction with no arguments. As a consequence we already know the proof rules
for True and False.

We can prove True without any assumptions.

Lemma triv : True.
split.

Here we split but instead of two subgoals we get none.

Qed.

On the other had we can prove anything from False. This is called "ex falso quod libet"
in Latin.

Lemma exFalso : False → P.
intro f.
destruct f.

Here instead of two subgoals we get none.

Qed.

9

In terms of introduction and elimination steps we may summarize:

• True: There is one introduction rule but no elimination.

• False: There is one elimination rule but no introduction.

2.9 Negation

¬ P is defined as P → False. Using this we can establish some basic theorems about negation.
First we show that we cannot have both P and ¬ P, that is we prove ¬ (P ∧ ¬ P).

Lemma incons : ¬ (P ∧ ¬ P).
unfold not.
intro h.
destruct h as [p np].
apply np.
exact p.
Qed.

Another example is to show that P implies ¬ ¬ P.

Lemma p2nnp : P → ¬ ¬ P.
unfold not.
intros p np.
apply np.
exact p.
Qed.

2.10 Classical Reasoning

You may expect that we can also prove the other direction ¬ ¬ P → P and that indeed P
↔ ¬ ¬ P. We can reason that P is either True or False and in both cases ¬ ¬ P will be
the same. However, this reasoning is not possible using the principles we have introduced so
far. The reason is that Coq is based on intuitionistic logic, and the above proposition is not
provable intuitionistically.

However, we can use an additional axiom, which corresponds to the principle that every
proposition is either True or False, this is the Principle of the Excluded Middle P ∨ ¬ P. In
Coq this can be achieved by:

Require Import Coq.Logic.Classical.

This means we are now using Classical Logic instead of Intuitionistic Logic. The only
difference is that we have an axiom classic which proves the principle of the excluded middle
for any proposition. We can use this to prove ¬ ¬ P → P.

10

Lemma nnpp : ˜˜P → P.
intro nnp.

Here we use a particular instance of classic for P.

destruct (classic P) as [p | np].
First case P holds

exact p.

2nd case ¬ P holds. Here we appeal to exFalso.

apply exFalso.

Notice that we have shown exFalso only for P. We should have shown it for any propo-
sition but this would involve quantification over all propositions and we haven’t done this
yet.

apply nnp.
exact np.
Qed.

Unless stated otherwise we will try to prove propositions intuitionsitically, that is without
using classic. An intuitionistic proof provides a positive reason why something is true, while
a classical proof may be quite indirect and not so easily acceptable intuitively. Another
advantage of intuitionistic reasoning is that it is constructive, that is whenever we prove
the existence of a certain object we can also explicitly construct it. This is not true in
intuitionistic logic. Moreover, in intuitionistic logic we can make differences which disappear
when using classical logic. For example we can explicit state when a property is decidable,
i.e. can be computed by a computer program.

2.11 The cut rule

This is a good point to introduce another structural rule: the cut rule. Cutting a proof means
to introduce an intermediate goal, then you prove your current goal from this intermediate
goal, and you prove theintermediate goal. This is particularly useful when you use the
intermediate goal several times.

In Coq this can be achieved by using assert. assert h : H introduces H as a new
subgoal and after you have proven this you can use an assumption h : H to prove your
original goal.

The following (artificial) example demonstrates the use of assert.

Lemma usecut : (P ∧ ¬P) → Q.
intro pnp.

If we had a generic version of exFalso we could use this. Instead we can introduce False
as an intermediate goal. assert (f : False).

which is easy to prove destruct pnp as [p np].
apply np.

11

exact p.
and using False it is easy to prove Q. destruct f.

Qed.

This example also shows that sometimes we have to cut (i.e. use assert) to prove
something.

12

Chapter 3

Predicate Logic

Section pred.
Predicate logic extends propositional logic: we can talk about sets of things, e.g. numbers

and define properties, called predicates and relations. We will soon define some useful sets
and ways to define sets but for the moment, we will use set variables as we have used
propositional variables before.

In Coq we can declare set variables the same way as we have declared propositional
variables:
Variables A B : Set.

Thus we have declared A and B to be variables for sets. For example think of A=the set
of students and B= the set of modules. That is any tautology using set variable remains true
if we substitute the set variables with any conrete set (e.g. natural numbers or booleans,
etc).

Next we also assume some predicate variables, we let P and Q be properties of A (e.g. P
x may mean P is clever and Q x means x is funny).
Variables P Q : A → Prop.

Coq views these predicates as functions from A to Prop. That is if we have an element
of A, e.g. a : A, we can apply P to a by writing P a to express that a has the property P.

We can also have properties relating several elements, possibly of different sets, these are
usually called relations. We introduce a relation R, relating A and B by:
Variable R : A → B → Prop.

E.g. R could be the relation "attends" and we would write "R jim g52ifr" to express that
Jim attends g52ifr.

3.1 Universal quantification

To say all elements of A have the property P, we write ∀ x :A, P x more general we can form
∀ x :A, PP where PP is a proposition possibly containing the variable x. Another example

13

is ∀ x :A,P x → Q x meaning that any element of A that has the property P will also have
the property Q. In our example that would mean that any clever student is also funny.

As an example we show that if all elements of A have the property P and that if whenever
an element of A has the property P has also the property Q then all alements of A have
the property Q. That is if all students are clever, and every clever student is funny, then all
students are funny. In predicate logic we write ∀(x :A,P x)→ ∀(x :A,P x → Q x)→ ∀ x :A,
Q x.

We introduce some new syntactic conventions: the scope of an forall always goes as far
as possible. That is we read ∀ x :A,P x ∧ Q as ∀ x :A, (P x ∧ Q). Given this could we have
saved any parentheses in the example above without changing the meaning?

As before we use introduction and elimination steps. Maybe surprisingly the tactics for
implication and universal quantification are the same. The reason is that in Coq’s internal
language implication and universal quantification are actually the same.
Lemma AllMono : (∀ x :A,P x) → (∀ x :A,P x → Q x) → ∀ x :A, Q x.
intros H1 H2.

To prove ∀ x :A,Q x assume that there is an element a:A and prove Q a We use intro
a to do this.
intro a.

If we know H2 : ∀ x :A,P x → Q x and we want to prove Q a we can use apply H2 to
instantiate the assumption to P a → Q a and at the same time eliminate the implication
so that it is left to prove P a.
apply H2.

Now if we know H1 : ∀ x :A,P x and we want to show P a, we use apply H1 to prove
it. After this the goal is completed.
apply H1.

In the last step we only instantiated the universal quantifier.
Qed.

So to summarize:

• introduction for ∀: To show ∀ x :A,P x we say intro a which introduces an assumption
a:A and it is left to show P where each free occurence of x is replaced by a.

• elimination for ∀: We only describe the simplest case: If we know H : ∀ x :A,P and we
want to show P where x is replaced by a we use apply H to prove P a.

When I say that each free occurence of x in the proposition P is replaced by a, I mean that
occurences of x which are in the scope of another quantifier (these are called bound) are not
affected. E.g. if P is Q x ∧ ∀ x :A,R x x then the only free occurence of x is the one in Q
x. That is we obtain Q a ∧ ∀ x :A,R x x. The occurences of x in ∀ x :A,R x x are bound.

We can also use intros here. That is if the current goal is ∀ x :A,P x → Q x then intros
x P will introduce the assumptions x :A and H :P x.

14

The general case for apply is a bit hard to describe. Basically apply may introduce
several subgoals if the assumption has a prefix of ∀ and →. E.g. if we have assumed H : ∀
x :A∀, y :B,P x → Q y → R x y and our current goal is R a b then apply H will instantiate
x with a and y with b and generate the new goals Q b and R a b.

Next we are going to show that ∀ commutes with ∧. That is we are going to show ∀(
x :A,P x ∧ Q x) ↔ ∀(x :A, P x) ∧ ∀(x :A, Q x) that is "all students are clever and funny"
is equivalent to "all students are clever" and "all students are funny".

Lemma AllAndCom : (∀ x :A,P x ∧ Q x) ↔ (∀ x :A, P x) ∧ (∀ x :A, Q x).
split.

Proving →
intro H.
split.
intro a.
assert (pq : P a ∧ Q a).
apply H.
destruct pq as [p q].
exact p.
intro a.
assert (pq : P a ∧ Q a).
apply H.
destruct pq as [p q].
exact q.

Proving ←
intro H.
destruct H as [p q].
intro a.
split.
apply p.
apply q.
Qed.

This proof is quite lengthy and I even had to use assert. There is a shorter proof, if
we use edestruct instead of destruct. The "e" version of tactics introduce metavariables
(visible as ?x) which are instantiated when we are using them. See the Coq reference manual
for details.

I only do the → direction using edestruct, the other one stays the same.

Lemma AllAndComE : (∀ x :A,P x ∧ Q x) → (∀ x :A, P x) ∧ (∀ x :A, Q x).

Proving →
intro H.
split.
intro a.

15

edestruct H as [p q].
apply p.
intro a.
edestruct H as [p q].
apply q.
Qed.

Question: Does ∀ also commute with ∨? That is does ∀(x :A,P x ∨ Q x) ↔ ∀(x :A, P
x) ∨ ∀(x :A, Q x) hold? If not, how can you show that?

3.2 Existential quantification

To say that there is an element of A having the property P, we write ∃ x :A, P x more
general we can form ∃ x :A, PP where PP is a proposition possibly containing the variable
x. Another example is ∃ x :A,P x ∧ Q x meaning that there is an element of A that has the
property P and the property Q. In our example that would mean that there is a student
who is both clever and funny.

As an example we show that if there is an element of A having the property P and that
if whenever an element of A has the property P has also the property Q then there is an
elements of A having the property Q. That is if there is a clever student, and every clever
student is funny, then there is a funny student. In predicate logic we write (∃ x :A,P x) →
∀(x :A,P x → Q x) → ∃ x :A, Q x.

Btw, we are not changing the 2nd quantifier, it stays ∀. What would happen if we would
replace it by ∃?

The syntactic conventions for ∃ are the same as for ∀: the scope of an ∃ always goes as
far as possible. That is we read ∃ x :A,P x ∧ Q as ∃ x :A, (P x ∧ Q).

The tactics for existential quatification are similar to the ones for conjunction. To prove
an existential statement ∃ x :A,PP we use ∃ a where a : A is our witness. We then have
to prove PP where each free occurence of x is replaced by a. To use an assumption H : ∃
x :A,PP we employ destruct H as [a p] which destructs H into a : A and p : PP’ where
PP’ is PP where all free occurences of x have been replaced by a.

Lemma ExistsMono : (∃ x :A,P x) → (∀ x :A,P x → Q x) → ∃ x :A, Q x.
intros H1 H2.

We first eliminate or assumption.

destruct H1 as [a p].

And now we introduce the existential.

∃ a.
apply H2.

In the last step we instantiated a universal quantifier.

exact p.

16

Qed.

So to summarize:

• introduction for ∃ To show ∃ x :A,P we say ∃ a where a : A is any expression of type
a. It remains to show P where any free occurence of x is replaced by a.

• elimination for ∃ If we know H : ∃ x :A,P we can use destruct H as [a p] which
destructs H intwo two assumptions: a : A and p : P’ where P’ is obtained from P by
replacing all free occurences of x in P by a.

Next we are going to show that ∃ commutes with ∨. That is we are going to show (∃ x :A,P
x ∨ Q x) ↔ (∃ x :A, P x) ∨ (exits x :A, Q x) that is "there is a student who is clever or
funny" is equivalent to "there is a clever student or there is a funny student".

Lemma ExOrCom : (∃ x :A,P x ∨ Q x) ↔ (∃ x :A, P x) ∨ (∃ x :A, Q x).
split.

Proving →
intro H.

It would be too early to use the introduction rules now. We first need to analyze the
assumptions. This is a common situation.

destruct H as [a pq].
destruct pq as [p | q].

First case P a.

left.
∃ a.
exact p.

Second case Q a.

right.
∃ a.
exact q.

Proving ←
intro H.
destruct H as [p | q].

First case ∃ x :A,P x

destruct p as [a p].
∃ a.
left.
exact p.

Second case ∃ x :A,Q x

17

destruct q as [a q].
∃ a.
right.
exact q.
Qed.

3.3 Another Currying Theorem

There is also a currying theorem in predicate logic which exploits the relation between →
and ∀ on the one hand and ∧ and exists on the other. That is we can show that ∀ x :A,P x
→ S is equivalent to (∃ x :A,P x) → S. Intuitively, think of S to be "the lecturer is happy".
Then the left hand side can be translated as "If there is any student who is clever, then the
lecturer is happy" and the right hand side as "If there exists a student who is clever, then
the lecturer is happy". The relation to the propositional currying theorem can be seen, when
we replace ∀ by → and ∃ by ∧.

To prove this tautology we assume an additional proposition.

Variable S : Prop.

Lemma Curry : (∀ x :A,P x → S) ↔ ((∃ x :A,P x) → S).
split.

proving →
intro H.
intro p.
destruct p as [a p].

With our limited knowledge of Coq’s tactic language we need to instantiate H using
assert. There are better ways to do this... We will see later.

assert (H’ : P a → S).
apply H.
apply H’.
exact p.

proving ←.

intro H.
intros a p.
apply H.
∃ a.
exact p.
Qed.

As before the explicit instantiation using assert can be avoided by using the "e" version
of a tactic. In this case it is eapply. Again, I refer to the Coq reference manual for details.
I only do one direction, the other one stays the same.

18

Lemma CurryE : (∀ x :A,P x → S) → ((∃ x :A,P x) → S).

proving →
intro H.
intro p.
destruct p as [a p].
eapply H.
apply p.
Qed.

3.4 Equality

Predicate logic comes with one generic relation which is defined for all sets: equality (=).
Given two expressions a,b : A we write a = b : Prop for the proposition that a and b are
equal, that is they describe the same object.

How can we prove an equality? That is what is the introduction rule for equality? We
can prove that every expression is a : A is equal to itself a = a using the tactic reflexivity.
How can we use an assumption H : a = b? That is how can we eliminate equality? If we
want to prove a goal P which contains the expression a we can use rewrite H to rewrite
all those as into bs.

To demonstrate how to use these tactics we show that equality is an equivalence relation
that is, it is:

• reflexive (∀ a:A, a = a)

• symmetric (∀ a b:A, a=b → b=a)

• transitive (∀ a b c:A, a=b → b=c → a=c.

Lemma eq refl : ∀ a:A, a = a.
intro a.

Here we just invoke the reflexivity tactic.

reflexivity.
Qed.

Lemma eq sym : ∀ a b:A, a=b → b=a.
intros a b H.

Here we use rewrite to reduce the goal.

rewrite H.
reflexivity.
Qed.

Lemma eq trans : ∀ a b c:A, a=b → b=c → a=c.

19

intros a b c ab bc.
rewrite ab.
exact bc.
Qed.

Do you know any other equivalence relations?

3.5 Classical Predicate Logic

The principle of the excluded middle classic P : P ∨ ¬P has many important applications
in predicate logic. As an example we show that ∃ x :A,P x is equivalent to ¬ ∀ x :A, ¬ P x.

Instead of using classic directly we use the derivable principle NNPP : ¬ ¬ P → P which
is also defined in Coq.Logic.Classical.

Require Import Coq.Logic.Classical.

Lemma ex from forall : (∃ x :A, P x) ↔ ¬ ∀ x :A, ¬ P x.
split.

proving →
intro ex.
intro H.
destruct ex as [a p].
assert (npa : ¬ (P a)).
apply H.
apply npa.
exact p.

proving ←
intro H.
apply NNPP.

Instead of proving ∃ x :A,P x which is hard, we show ˜˜ ∃ x :A,P x which is easier. intro
nex.
apply H.
intros a p.
apply nex.
∃ a.
exact p.
Qed.

20

Chapter 4

Bool

Section Bool.

4.1 Defining bool and operations

We define bool : Set as a finite set with two elements: true : bool and false : bool. In set
theoretic notation we would write bool = { true , false }.

The function negb : bool → bool (boolean negation) can be defined by pattern matching
using the match construct.

Definition negb (b:bool) : bool :=
match b with
| true ⇒ false
| false ⇒ true
end.

This should be familiar from g51fun - in Haskell match is called case. Indeed Haskell
offers a more convenient syntax for top-level pattern.

We can evaluate the function using the slightly lengthy phrase Eval compute in (...):

Eval compute in (negb true).

The evaluator replaces
negb true
with
match true with | true ⇒ false | false ⇒ true end.
which in turn evaluates to
false

Eval compute in negb (negb true).

We know already that negb true evaluates to false hence negb (negb true) evaluates to
negb false which in turn evaluates to true.

21

Other boolean functions can be defined just as easily:

Definition andb(b c:bool) : bool :=
if b then c else false.

Definition orb (b c : bool) : bool :=
if b then true else c.

The Coq prelude also defines the infix operators && and || for andb and orb respectively,
with && having higher precedence than ||. Note however, that you cannot use ! (for negb)
since this is used for other purposes in Coq.

4.2 Reasoning about Bool

We can now use predicate logic to show properties of boolean functions. As a first example
we show that the function negb is idempotent, that is
∀ b :bool, negb (negb b) = b
To prove this, the only additional thing we have to know is that we can analyze a boolean

variable b : bool using destruct b which creates a case for b = true and one for b = false.

Lemma negb idem : ∀ b :bool, negb (negb b) = b.
intro b.
destruct b.

Case for b = true Our goal is negb (negb true) = true. As we have already seen negb
(negb true) evaluates to true. Hence this goal can be proven using reflexivity. Indeed,
we can make this visible by using simpl.

simpl.
reflexivity.

Case for b = false This case is exactly the same as before.

simpl.
reflexivity.
Qed.

There is a shorter way to write this proof by using ; instead of , after destruct. We can
also omit the simpl which we only use for cosmetic reasons.

Lemma negb idem’ : ∀ b :bool, negb (negb b) = b.
intro b.
destruct b;
reflexivity.

Qed.

Indeed, proving equalities of boolean functions is very straightforward. All we need is to
analyze all cases and then use refl. For example to prove that andb is commutative, i.e.
∀ x y : bool, andb x y = andb y x

22

(we use the abbrevation: ∀ x y : A,... is the same as ∀ x :A∀, y :A,
Lemma andb comm : ∀ x y : bool, andb x y = andb y x.
intros x y.
destruct x ;
(destruct y ;

reflexivity).
Qed.

We can also prove other properties of bool not directly related to the functions, for
example, we know that every boolean is either true or false. That is
∀ b : bool, b = true ∨ b = false
This is easy to prove:

Lemma true or false : ∀ b : bool,
b = true ∨ b = false.

intro b.
destruct b.

b = true left.
reflexivity.

b = false right.
reflexivity.
Qed.

Next we want to prove something which doesn’t involve any quantifiers, namely
¬ (true = false)
This is not so easy, we need a little trick. We need to embed bool into Prop, mapping

true to True and false to False. This is achieved via the function Istrue:

Definition Istrue (b : bool) : Prop :=
match b with
| true ⇒ True
| false ⇒ False
end.

Lemma diff true false :
¬ (true = false).

intro h.

We now need to use a new tactic to replace False by IsTrue False. This is possible
because IsTrue False evaluates to false. We are using fold which is the inverse to unfold
which we have seen earlier.

fold (Istrue false).

Now we can simply apply the equation h backwards.

rewrite← h.

Now by unfolding we can replace Istrue true by True

23

unfold Istrue.
Which is easy to prove.

split.
Qed.

Actually there is a tactic discriminate which implements this proof and which allows
us to prove directly that any two different constructors (like true and false) are different.
We shall use discriminate in future.

4.3 Reflection

We notice that there is a logical operator ∧ which acts on Prop and a boolean operator andb
(or &&) which acts on bool. How are the two related?

We can use ∧ to specify andb, namely we say that andb x y = true is equivalent to x =
true and y = true. That is we prove:
Lemma and ok : ∀ x y : bool,
andb x y = true ↔ x = true ∧ y = true.

intros x y.
split.
→

destruct x.
x=true

intro h.
split.
reflexivity.
simpl in h.
exact h.

Why did the last step work?
x = false

intro h.
simpl in h.
discriminate h.
←

intro h.
destruct h as [hx hy].
rewrite hx.
exact hy.
Qed.
End Bool.

24

Chapter 5

How to make sets

Section Sets.

Some magic incantations...

Open Scope type scope.
Set Implicit Arguments.
Implicit Arguments inl [A B].
Implicit Arguments inr [A B].

5.1 Finite Sets

As we have defined bool we can define other finite sets just by enumerating the elements.
Im Mathematics (and conventional Set Theory), we just write C = { c1, c2 , .. , cn } for

a finite set.
In Coq we write
Inductive C : Set := | c1 : C | c2 : C ... | cn : C.
As a special example we define the empty set:

Inductive empty set : Set := .

As an example for finite sets, we consider the game of chess. We need to define the
colours, the different type of pieces, and the coordinates.

Inductive Colour : Set :=
| white: Colour
| black : Colour.

Inductive Rank : Set :=
| pawn : Rank
| rook : Rank
| knight : Rank
| bishop : Rank
| queen : Rank

25

| king : Rank.

Inductive XCoord : Set :=
| xa : XCoord
| xb : XCoord
| xc : XCoord
| xd : XCoord
| xe : XCoord
| xf : XCoord
| xg : XCoord
| xh : XCoord.

Inductive YCoord : Set :=
| y1 : YCoord
| y2 : YCoord
| y3 : YCoord
| y4 : YCoord
| y5 : YCoord
| y6 : YCoord
| y7 : YCoord
| y8 : YCoord.

In practice it is not such a good idea to use different sets for the x and y coordinates.
We use this here for illustration and it does reflect the chess notation like e2 - e4 for moving
the pawn in front of the king.

We can define operations on finite sets using the match construct we have already seen for
book. As an example we define the operation oneUp : YCoord → YCoord which increases
the y coordinates by 1. We have to decide what to do when we reach the 8th row. Here we
just get stuck.

Definition oneUp (y : YCoord) : YCoord :=
match y with
| y1 ⇒ y2
| y2 ⇒ y3
| y3 ⇒ y4
| y4 ⇒ y5
| y5 ⇒ y6
| y6 ⇒ y7
| y7 ⇒ y8
| y8 ⇒ y8
end.

26

5.2 Products

Given two sets A B : Set we define a new set A × B : Set which is called the product of A
and B. It is the set of pairs (a,b) where a : A and b : B.

As an example we define the set of chess pieces and coordinates:
Definition Piece : Set := Colour × Rank.
Definition Coord : Set := XCoord × YCoord.

And for illustration construct some elements:
Definition blackKnight : Piece := (black , knight).
Definition e2 : Coord := (xe , y2).

On Products we have some generic operations called projections which extract the com-
ponents of a product.
Definition fst(A B : Set)(p : A × B) : A :=

match p with
| (a , b) ⇒ a
end.

Definition snd(A B : Set)(p : A × B) : B :=
match p with
| (a , b) ⇒ b
end.

Eval compute in fst blackKnight.
Eval compute in snd blackKnight.
Eval compute in (fst blackKnight,snd blackKnight).

A general theorem about products is that if we take apart an element using projections
and then put it back together again we get the same element. In predicate logic this is:
∀ p : A × B, (fst p , snd p) = p
This is called surjective pairing. In the actual statement in Coq we also have to quantify

over the sets involved (which technically gets us into the realm of higher order logic - but
we shall ignore this).
Lemma surjective pairing : ∀ A B : Set,
∀ p : prod A B, (fst p , snd p) = p.

intros A B p.
The actual proof is rather easy. All that we need to know is that we can take apart a

product the same way as we have taken apart conjunctions. destruct p as [a b].
simpl.

Can you simplify this goal in your head? Yes simpl will do the job but why? reflexivity.
Qed.

Question: If |A| and |B| are finite sets with |m| and |n| elements respectively, how many
elements are in |A * B|?

27

5.3 Disjoint union

Given two sets A B : Set we define a new set A + B : Set which is called the disjoint union
of A and B. Elements of A + B are either inl a where a : A or inr b where b : B. Here inl
stands for "inject left" and inr stands for "inject right".

It is important not to confuse + with the union of sets. The disjoint union of bool with
bool has 4 elements because inl true is different from inr true while in the union of bool
with bool there are only 2 elements since there is only one copy of true. Actually, the union
of sets does not exist in Coq.

As an example we use disjoint union to define the set field which can either be a piece or
empty. The second case is represented by a set with just one element called Empty which
has just one element empty.

Inductive Empty : Set :=
| empty : Empty.

Definition Field : Set := Piece + Empty.

some examples

Definition blackKnightHere : Field := inl blackKnight.

Definition emptyField : Field := inr empty.

As an example of a defined operation we define swap which maps elements of A + B to
B + A by mapping inl to inr and vice versa.

Definition swap(A B : Set)(x : A + B) : B + A :=
match x with
| inl a ⇒ inr a
| inr b ⇒ inl b
end.

The same question as for products: If A has m elements and B has n elements, how
many elements are in A + B?

Disjoint unions are sometimes called coproducts because there are in a sense the mirror
image of products. To make this precise we need the language of category theory, which is
beyond this course. However, if you are curious look up Category Theory on wikipedia.

5.4 Function sets

Given two sets A B : Set we define a new set A→ B : Set, the set of functions form A to B.
We have already seen one way to define functions, whenever we have defined an operation
we have actually defined a function. However, as you have already seen in Haskell, we can
define functions directly using lambda abstraction. The syntax is fun x ⇒ b where b is an
expression in B which may refer to x : A.

28

In the case of our chess example we can use functions to define a chess board as a function
form Coord to Field, this function would give us the content of a field for any coordinate.

Definition Board : Set := Coord → Field.

A particular simple example is the empty board:

Definition EmptyBoard : Board := fun x ⇒ emptyField.

I leave it as an exercise to construct the initial board for a chess game.

As another example instead of defining negb as an operation we could also have used
fun:

Definition negb’ : bool → bool
:= fun (b : bool) ⇒ match b with

| true ⇒ false
| false ⇒ true
end.

Using fun is especially useful when we are dealing with higher order functions, i.e. func-
tion which take functions as arguments. As an example let us define the function isConst
which determines wether a given function f : bool → bool is constant.

Open Scope bool scope.

Definition isConst (f : bool → bool) : bool :=
(f true) && (f false) || negb (f true) && negb (f false).

What will Coq answer when asked to evaluate the terms below. In three cases we are
using fun to construct the argument. Could we have done this in the 1st case as well?

Eval compute in isConst negb.
Eval compute in isConst (fun x ⇒ false).
Eval compute in isConst (fun x ⇒ true).
Eval compute in isConst (fun x ⇒ x).

Are there any other cases to consider ?

In general, if A,B are finite sets with m and n elements, how many elements are in A →
B? Actually we need to assume the axiom of extensionality to get the right answer. This
axiom states that any two functions which are equal for all arguments are equal.

Axiom ext : ∀ (A B : Set)(f g : A → B), (∀ x :A,f x = g x) → f = g.

5.5 The Curry Howard Correspondence

There is a close correspondence between sets and propositions. We may translate a propo-
sition by the set of its proofs. The question wether a proposition holds corresponds then to
finding an element which lives in the corresponding set. Indeed, this is what Coq’s proof
objects are based upon. For propositional logic the translation works as follows:

29

• conjunction (∧) is translated as product (×),

• disjunction (∨) is translated as disjoint union (+),

• implication (→) is translated as function set (→).

I leave it to you to figure out what to translate True and False with. As an example we
consider the currying theorm for propositional logic. Applying the translation we obtain:

Definition curry (A B C : Set) : ((A × B → C) → (A → B → C)) :=
fun f ⇒ fun a ⇒ fun b ⇒ f (a , b).

Definition curry’ (A B C : Set) : (A → B → C) → (A × B → C) :=
fun g ⇒ fun p ⇒ g (fst p) (snd p).

Indeed, curry and curry’ do not just witness a logical equivalence but they constitute an
isomorphism. That is if we go back and forth we end up with the lement we started. We
will need the axiom of extensionality. To make this precise we get:

Lemma curryIso1 : ∀ A B C : Set, ∀ f : A × B → C,
f = (curry’ (curry f)).

intros A B C f.
apply ext.
intro p.
destruct p.
reflexivity.
Qed.

Lemma curryIso2 : ∀ A B C : Set, ∀ g : A → B → C,
g = (curry (curry’ g)).

intros A B C g.
apply ext.
intro a.
apply ext.
intro b.
reflexivity.
Qed.

End Sets.

30

Chapter 6

Peano Arithmetic

Section Arith.

6.1 The natural numbers

Guiseppe Peano defined the natural numbers as given by 0 : nat and if n is a natural number
then S n : nat is a natural number called the successor of n. Given this we can construct
all the natural numbers, e.g.

• 1 = S 0

• 2 = S 1 = S (S 0)

• 3 = S 2 = S (S (S 0))

Moreover these are all natural numbers (we say they are defined inductively). Peano went on
to represent the fundamental properties of the natural numbers using axioms. Some of the
axioms express general properties of equality, which we have already seen. But the following
three are specific to the natural numbers. Indeed, they are provable propositions in Coq:

• Axiom 7 : 0 is not the successor of any number. ∀ n:nat, S n 6= 0

• Axiom 8 : If two numbers have the same successor, then they are equal. ∀ m n:nat, S
m = S n → m = n

• Axiom 9 : If any property holds for 0, and is closed under successor, then it holds for
all natural numbers (principle of induction). ∀ P : nat → Prop, P 0 → ∀(m : nat, P
m → P (S m)) → ∀ n : nat, P n

For illustration we are going to prove these principles:

Lemma peano7 : ∀ n:nat, S n 6= 0.

31

intro n.
intro h.

This is basically the same problem as proving true 6= false, we could apply the same
technique here. To avoid repetetion we just use the discriminate tactic.

discriminate h.
Qed.

To prove the next axiom, it is useful to define the inverse to S, the predecessor function
pred. We arbitrarily decide that the predecessor of 0 is 0.

Definition pred (n : nat) : nat :=
match n with
| 0 ⇒ 0
| S n ⇒ n
end.

Lemma peano8 : ∀ m n:nat, S m = S n → m = n.
intros m n h.

By folding with pred we can change the current goal so that we can apply our hypothesis.

fold (pred (S m)).
rewrite h.

And now we just have to unfold. simpl would have done the job too.

unfold pred.
reflexivity.
Qed.

The 8th axiom says that the successor function is injective. Can we prove the other
direction too? ∀ m n:nat, m = n → S m = S n Does this tell us anything new about the
successor function?

The proof of the induction axiom is rather boring. It just uses a tactic which is called
induction...

Lemma peano9 : ∀ P : nat → Prop, P 0
→ (∀ m : nat, P m → P (S m))
→ ∀ n : nat, P n.

intros P h0 hS n.
induction n.
exact h0.
apply hS.
exact IHn.
Qed.

32

6.2 Addition and multiplication

Peano defined the operations addition and multiplication. These are actually examples of
functions defined by primitive recursion a general scheme which can be used to define many
other functions. A function is definable by primitive recursion if we can give a case for 0 and
reduce the computation for the value at S n to the value at n. In Coq we have to use the
keyword fixpoint instead of definition and we have to indicate on which argument we want
to do primitive recursion.

The idea is that we can define addition like this:

• to add 0 to a number is just this number,

• to add one more that n to a number is one more than adding n to the number.

Fixpoint add (m n : nat) {struct m} : nat :=
match m with
| 0 ⇒ n
| S m ⇒ S (add m n)
end.

Eval compute in (add 2 3).

In the Coq library addition is defined using the usual infix notation +.

To define multiplication we use primitive recursion again. This time the idea is the
following.

• multiplying 0 with a number is just 0.

• multiplying one more than n with a number is obtained by adding the number to
multiplying n with the number.

Fixpoint mult (m n : nat) {struct m} : nat :=
match m with
| 0 ⇒ 0
| S m ⇒ add n (mult m n)
end.

Eval compute in (mult 2 3).

In the Coq library addition is defined using the usual infix notation + and × with the usual
rules of precedence. From now on we shall use the library versions which are defined exactly
in the same way as we have defined add and mult

33

6.3 Algebraic properties

Addition and multiplication satisfy a number of important equations:

• 0 is a neutral element for addition 0 + m = m and m + 0 = m

• Addition is associative. m + (n + l) = (m + l) + n

• Addition is commutative. m + n = n + m

• 1 is a neutral element for multiplication 1 × m = m and m × 1 = m

• Multiplication is associative. m × (n × l) = (m × n) × l

• Multiplication is commutative. m × n = n × m

• 0 is a null for multiplication. m × 0 = 0 and 0 × m = 0

• Addition distributes over multiplication. m × (n + l) = m × n + m × l and (m +
n) × l = m × l + n × l

In the language of universal algebra, we say that

• (+,0) is a commutative monoid, because 0 is neutral, + is associative and commutative.

• (*,1) is a commutative monoid, because 1 is neutral, × is associative and commutative.

• (+,0,*,1) is a commutative semiring because (+,0) and (*,1) are commutative monoids
and 0 is a zero for multiplication and addition distributes over multiplication.

We are going to prove that (+,0) is a commutative monoid and leave the remaining properties
as an exercise.

Lemma plus O n : ∀ n:nat, n = 0 + n.
This property is very easy to prove. Can you see why? intro n.

reflexivity.
Qed.

Lemma plus n O : ∀ n:nat, n = n + 0.
intro n.

This one cannot be proven by reflexivity. So we have to use induction.

induction n.

n = 0 This is easy.

simpl.
reflexivity.

We can simplify S n + 0 using the definition of +

34

simpl.
rewrite← IHn.
reflexivity.
Qed.

Lemma plus assoc : ∀ (l m n:nat),l + (m + n) = (l + m) + n.
intros l m n.

There seems to be quite a choice what to do induction over: l,m,n but only one of them
works. Why?

induction l.
simpl.
reflexivity.
simpl.
rewrite IHl.
reflexivity.
Qed.

To prove commutativity we first prove a lemma we know already that 0 + m = m = m
+ 0 but what about S m + n = S (m + n) = m + S n ?

Lemma plus n Sm : ∀ n m : nat, S (m + n) = m + S n.
intros.
induction m.
simpl.
reflexivity.
simpl.
rewrite IHm.
reflexivity.
Qed.

We are now ready to prove commutativity.

Lemma plus comm : ∀ n m:nat, n + m = m + n.
intros.
induction n.
simpl.
apply plus n O.
simpl.
rewrite IHn.
apply plus n Sm.
Qed.

35

6.4 Ordering the numbers

We define the relation ≤ on natural numbers by saying that m ≤ n holds if there is a number
k such that m = k + n.

Definition leq (m n : nat) : Prop :=
∃ k : nat, n = k + m.

Notation "m <= n" := (leq m n).

We verify some basic properties of ≤:

• ≤ is reflexive. ∀ n:nat, n ≤ n

• ≤ is transitive. ∀ l m n:nat, l ≤ m → m ≤ n → l ≤ n

• ≤ is antisymmetric. ∀ l m : nat, l ≤ m → m ≤ l → m = l

Any relation which is reflexive, transitive and antisymmetric is a partial order. Here the
word partial is used to differentiate ≤ from a total order like <. We verify the first two
properties in Coq, but leave antisymmetry as an exercise.

Lemma le refl : ∀ n:nat,n ≤ n.
intro n.
∃ 0.
reflexivity.
Qed.

Lemma le trans : ∀ (l m n : nat), l ≤ m → m ≤ n → l ≤ n.
intros l m n lm mn.
destruct lm as [k klm].
destruct mn as [j jmn].
∃ (j+k).
rewrite← plus assoc.
rewrite← klm.
rewrite← jmn.
reflexivity.
Qed.

6.5 Decidable properties

We say a predicate is P : A → Prop decidable if we can define a boolean function decP : A
→ bool which agrees with the predicate, i.e. ∀ a:A, P a ↔ decP a = true. This also extends
to relations in the obvious way.

We show below that equality on natural numbers is decidable. Do you know any unde-
cidable predicates? Is equality always decidable?

36

First we define the decision procedure. In the case of equality this is quite obvious: we
inspect both parameters, if they start with different constructors (i.e. 0 vs S) they are
certainly not equal. If they are both 0 they are equal, and if they both start with S then we
recursively compare the arguments.

Fixpoint eqnat (m n : nat) {struct m} : bool :=
match m with
| 0 ⇒ match n with

| 0 ⇒ true
| S n’ ⇒ false
end

| S m’ ⇒ match n with
| 0 ⇒ false
| S n’ ⇒ eqnat m’ n’
end

end.

Now we show both direction seperately. The→ direction just boils down to showing that
eqnat is reflexive. Why?

Lemma eqnat refl : ∀ m : nat, eqnat m m = true.
intro m.
induction m.
reflexivity.
simpl.
exact IHm.
Qed.

The other direction is more interesting and requires a double induction over m and n.

Lemma eqnat compl : ∀ m n : nat, eqnat m n = true → m = n.
intro m.

Here it would have been a mistake to do intros m n. Why? m = 0 induction m.
intro n.
induction n.

n = 0 intro h.
reflexivity.

n = S n’ intro h.
simpl in h.
discriminate h.

m = S m’ intro n.
induction n.

n = 0 intro h.
discriminate h.

n = S n’ intro h.
assert (h’ : m = n).

37

apply IHm.
exact h.
rewrite h’.
reflexivity.
Qed.

Finally, we can prove the theorem that equality for natural numbers is decidable.

Theorem eqnat dec : ∀ m n : nat, m = n ↔ eqnat m n = true.
intros m n.
split.
intro h.
rewrite h.
apply eqnat refl.
apply eqnat compl.
Qed.

End Arith.

38

Chapter 7

Lists

Section Lists.

Lists are the ubiqitous datastructure in functional programming, as you should know from
Haskell. Given a set A we define list A to be the set of finite sequences of elements of A.
E.g. the sequence [1,2,3] is an element of list nat. We can iterate this process and construct
lists of lists, e.g. [[1,2],[3]] is an element of list (list nat). However lists are uniform, that is
all elements need to have the same type so we cannot form a list like [1,true] or [[1,2],3].

We are going to formally introduce lists using an inductive definition which has a lot in
common with the definition of the natural numbers in the previous chapter. And indeed the
theory of lists has a lot in common with the theory of the natural number, so we can call
this list arithmetic.

7.1 Arithmetic for lists

Set Implicit Arguments.
Load Arith.

We define lists inductively. Given a set A a list over A is either the empty list nil or it is
the result of putting an element a in fornt of an already constructed list l, we write cons a
l. nil and cons are constructors of list A, as 0 and S (successor) were constructors of nat.

Inductive list (A : Set) : Set :=
| nil : list A
| cons : A → list A → list A.

Implicit Arguments nil [A].

In functional programming cons is usually written as an infix operation. In Haskell this
is : but since this symbol is used for member ship in Coq, we use :: instead. Hence the
meaning of : and :: in Coq and Haskell are exactly swapped.

Infix "::" := cons (at level 60, right associativity).

As an example we can define the list [2,3]

39

Definition l23 : list nat
:= 2 :: 3 :: nil.
And by consing another 1 in front we obtain [1,2,3].

Definition l123 : list nat
:= 1 :: l23.
We are going to prove some basic theorems about lists following the development for

natural numbers. There we showed that now successor of a natural number is 0 (peano7),
here we show that no cons list is equal to the enmpty list.
Theorem nil cons : ∀ (A:Set)(x :A) (l :list A),
nil 6= x :: l.

intros.
discriminate.
Qed.

The next peano axiom peano8 expressed the injectivity of the successor. We have a
similar statement for lists: if two cons lists are equal then their tail is equal. To prove this
we define tail as we had define predecessor for numbers.
Definition tail (A:Set)(l : list A) : list A :=
match l with
| nil ⇒ nil
| cons a l ⇒ l
end.
The proof follows exactly the one for peano8.

Theorem cons injective :
∀ (A : Set)(a b : A)(l m : list A),
a :: l = b :: m → l = m.

intros A a b l m h.
fold (tail (cons a l)).
rewrite h.
unfold tail.
reflexivity.
Qed.

However, unlike S, cons has another argument, the head of the list. We can also show
that it is injective in this argument, that is if two cons lists are eqaul thenthere head is equal.

There is a slight problem in defining head, we cannot (as in Haskell) define head : list A
→ A, because it could be that A is empty but there is still nil : list A and what should the
head of this list be?

To overcome this issue we define head : A → list A → A where the first argument is a
dummy argument which is returned for the empty list.
Definition head (A : Set)(x : A)(l : list A) : A :=
match l with

40

| nil ⇒ x
| a :: m ⇒ a
end.

Once we have defined head the proof of injectivity is rather straightforward.

Theorem cons injective’ :
∀ (A : Set)(a b : A)(l m : list A),
a :: l = b :: m → a = b.

intros A a b l m h.
fold (head a (a :: l)).
rewrite h.
unfold head.
reflexivity.
Qed.

As for natural numbers we have also an induction principle for lists: if a property is true
for the empty list, and if it holds for a list l then it also holds for cons a l for any a, then it
holds for all lists. In Coq we use the same tactic induction to perform list indiuction.

Theorem ind list : ∀ (A : Set)(P : list A → Prop),
P nil
→ (∀ (a:A)(l : list A), P l → P (a :: l))
→ ∀ l : list A, P l.

intros A P hnil hcons l.
induction l.
exact hnil.
apply hcons.
exact IHl.
Qed.

7.2 Lists form a monoid

Previously, we defined addition and multiplication for numbers. There is a very useful
operation resembling addition for lists: append. We define app by structural recursion over
lists.

The idea is that to append a list to the empty list is just that list, and to append a list
to a cons list has the same head as the list and the tail is obtained by recursively appending
the list to the tail.

Fixpoint app (A : Set)(l m:list A) : list A :=
match l with
| nil ⇒ m
| a :: l’ ⇒ a :: (app l’ m)
end.

41

As in Haskell we use the inifx operation ++ to denote append.

Infix "++" := app (right associativity, at level 60).

As an example we construct the list [2,3,1,2,3] by appending [2,3] and [1,2,3].

Eval compute in (l23 ++ l123).

We show that list A with ++ and nil forms a monoid. Indeed the proofs are basically
the same as for (nat,+,0).

Theorem app nil l : ∀ (A : Set)(l : list A),
nil ++ l = l.

intros A l.
reflexivity.
Qed.

Theorem app l nil : ∀ (A : Set)(l : list A),
l ++ nil = l.

intros A l.
induction l.
reflexivity.
simpl.
rewrite IHl.
reflexivity.
Qed.

Theorem assoc app : ∀ (A : Set)(l m n : list A),
l ++ (m ++ n) = (l ++ m) ++ n.

intros A l m n.
induction l.
reflexivity.
simpl.
rewrite IHl.
reflexivity.
Qed.

7.3 Reverse

While there are many similarities between nat and list A there are important differences.
Commutativity l ++ m = m ++ l does not hold (what would be a counterexample?). Hence
(list A,++,nil) is an example of a non-commutative monoid. Since we commutativity doesn’t
hold it makes sense to reverse a list (while it didn’t make sense to reverse a number).

To define reverse, we first define the operation snoc which adds an element at the end of
a given list. This operation again is defined by primitive recursion.

Fixpoint snoc (A:Set)

42

(l : list A)(a : A) {struct l} : list A
:= match l with
| nil ⇒ a :: nil
| b :: m ⇒ b :: (snoc m a)
end.

There is an alternative way to define snoc just by using ++. Can you see how?

As an example we put 1 at the end of [2,3]

Eval compute in (snoc l23 1).

Using snoc it is easy to define rev by primitive recursion. The reverse of an empty list is
the empty list. To reverse a cons list, reverse its tail and then snoc the head to the end of
the result.

Fixpoint rev
(A:Set)(l : list A) : list A :=
match l with
| nil ⇒ nil
| a :: l’ ⇒ snoc (rev l’) a
end.

This definition of rev is called naive reverse and it is rather inefficient. Can you see why?
How can it be improved?

Some examples.

Eval compute in rev l123.
Eval compute in rev (rev l123).

The 2nd example gives rise to a theorem about rev, namely that to reverse twice is the
identity (rev (rev l) = l).

To prove it we first prove a lemma about rev and snoc. How did we discover this lemma?

Lemma revsnoc : ∀ (A:Set)(l :list A)(a : A),
rev (snoc l a) = a :: (rev l).

intros A l a.

We proceed by induction over l.

induction l.
simpl.
reflexivity.
simpl.
rewrite IHl.
simpl.
reflexivity.
Qed.

And now we can prove the theorem.

43

Theorem revrev :
∀ (A:Set)(l :list A),rev (rev l) = l.

intros A l.
induction l.
simpl.
reflexivity.
simpl.

And now it seems that revsnoc is exactly what we need. Lucky that we proved it already.
rewrite revsnoc.
rewrite IHl.
reflexivity.
Qed.

7.4 Insertion sort

Our next example is sorting: we want to sort a given lists according to an given order. E.g.
the list

4 :: 2 :: 3 :: 1 :: nil
should be sorted into
1 :: 2 :: 3 :: 4 :: nil
We will implement and verify "insertion sort". To keep things simple we will sort lists

of natural numbers wrt to the <= order. First we implement a boolean function which
compares two numbers:
Fixpoint leqb (m n : nat) {struct m} : bool :=
match m with
| 0 ⇒ true
| S m ⇒ match n with

| 0 ⇒ false
| S n ⇒ leqb m n
end

end.
Eval compute in leqb 3 4.
Eval compute in leqb 4 3.
Notation "m <= n" := (leq m n).

We just assume that leq decided ≤. I leave it as an exercise to formally prove this, i.e.
to replace the axioms by lemmas or theorems.
Axiom leq1 : ∀ m n : nat, leqb m n = true → m ≤ n.
Axiom leq2 : ∀ m n : nat, m ≤ n → leqb m n = true.

The main function of insertion sort is the function insert which inserts a new element
into an already sorted list:

44

Fixpoint insert (n:nat)(ms : list nat) {struct ms} : list nat :=
match ms with
| nil ⇒ n::nil
| m::ms’ ⇒ if leqb n m

then n::ms
else m::(insert n ms’)

end.

Eval compute in insert 3 (1::2::4::nil).

Now sort builds a sorted list from any list by inserting each element into the empty list.

Fixpoint sort (ms : list nat) : list nat :=
match ms with
| nil ⇒ nil
| m::ms’ ⇒ insert m (sort ms’)
end.

Eval compute in sort (4::2::3::1::nil).

Fixpoint Sorted (l : list nat) : Prop :=
match l with
| nil ⇒ True
| a :: m ⇒ Sorted m ∧ a ≤ head a m
end.

Here is another assumption about ≤ I am not going to prove but leave as an exercise.

Axiom total : ∀ m n : nat, m ≤ n ∨ n ≤ m.

Our goal is to show that insert preserves sortedness, i.e. Sorted l → Sorted (insert n l).
To prove this we need to lemmas.

The first one is useful in the case when the new element is not smaller than the current
head. In this case we need to know that the head is smaller than the new element so that
we can insert it later.

Lemma leqFalse : ∀ m n : nat, leqb m n = false → n ≤ m.
intros m n h.
destruct (total m n) as [mn | nm].
assert (mnt : leqb m n = true).
apply leq2.
exact mn.
rewrite h in mnt.
discriminate mnt.
exact nm.
Qed.

The other lemma is a little case analysis: the head of the result of insert is either the
inserted element or the previous head.

45

Lemma insertSortCase : ∀ (n a : nat)(l : list nat),
head a (insert n l) = n ∨ head a (insert n l) = head a l.

intros n a l.

While we say induction we are not going to use the induction hypothesis here. So we
could have used destruct on lists here.

induction l.
left.
simpl.
reflexivity.
simpl.
destruct (leqb n a0).
left.
simpl.
reflexivity.
right.
simpl.
reflexivity.
Qed.

We are now able to prove the main lemma on insert.

Lemma insertSorted : ∀ (n : nat)(l : list nat),
Sorted l → Sorted (insert n l).

intros n l.

We prove the implication by induction. Why did we not do another intro?

induction l.

The case for the empty list is easy.

intro h.
simpl.
split.
split.
apply le refl.

Now the cons case

intro h.
simpl.
simpl in h.
destruct h as [sl al].

We now analyze the result of the comparison.

case eq (leqb n a).

First case leqb n a = true, that is the element is put in front.

46

intro na.
simpl.
split.
split.
exact sl.
exact al.

Here we need the correctness of leq wrt ≤.
apply leq1.
exact na.

Second case leqb n a = false so we insert a in the tail Here we need our lemmas.

intro na.
simpl.
split.
apply IHl.
exact sl.

Here we have to reason about the head of insert n l, so we use our lemma.

destruct (insertSortCase n a l) as [H1 | H2].
First case: it is the new element.

rewrite H1.
apply leqFalse.
exact na.

Second case: it is the old head.

rewrite H2.
exact al.
Qed.

using the previous lemma it is easy to prove our main theorem.

Theorem sortSorted : ∀ ms :list nat,Sorted (sort ms).
induction ms.

case ms=nil:

simpl.
split.

case a::ms

simpl.
apply insertSorted.
exact IHms.

Qed.

47

Is this enough? No, we could have implemented a function with the property sort ok by
always returning the empty list. Another important property of a sorting function is that it
returns a permutation of the input. I leave this as an exercise.

End Lists.

48

Chapter 8

Compiling expressions

Section Expr.

We are going to use the standard library for lists.

Require Import Coq.Lists.List.

Set Implicit Arguments.

8.1 Evaluating expressions.

We define a simple language of expressions over natural numbers: only containing numeric
constants and addition. This is already a useful abstraction over the one-dimensional view
of a program as a sequence of symbols, i.e. we don’t care about precedence or balanced
bracktes.

However, this means that at some point we’d have to implement a parser and verify it.

Inductive Expr : Set :=
| Const : nat → Expr
| Plus : Expr → Expr → Expr.

The expression "(3 + 5) + 2" is represented by the following tree:

Definition e1 : Expr := Plus (Plus (Const 3) (Const 5)) (Const 2).

We give a "denotational" semantics to our expressions by recursively assigning a value
(their denotation). This process is called evaluation - hence the function is called eval. It is
defined by structural recursion over the structure of the expression tree.

Fixpoint eval (e:Expr) {struct e} : nat :=
match e with
| Const n ⇒ n
| Plus e1 e2 ⇒ (eval e1) + (eval e2)
end.

Let’s evaluate our example expression:

49

Eval compute in (eval e1).

8.2 A stack machine

We are going to describe how to calculate the value of an expression on a simple stack
machine - thus giving rise to an "operational semantics".

First we specify the operation of our machine, there are only two operations :

Inductive Op : Set :=
| Push : nat → Op

| PlusC : Op.

Definition Code := list Op.
Definition Stack := list nat.

We define recursively how to execute code wrt any given stack. This function proceeds
by linear recursion over the stack and could be easily implemented as a "machine".

Fixpoint runAux (st :Stack)(p:Code) {struct p} : nat := match p with
| nil ⇒ match st with

| nil ⇒ 0
| n :: st’ ⇒ n
end

| op :: p’ ⇒
match op with
| Push n ⇒ runAux (n :: st) p’
| PlusC ⇒ match st with

| nil ⇒ 0
| n :: nil ⇒ 0
| n1 :: n2 :: st’ ⇒

runAux ((n1 + n2) :: st’) p’
end

end
end.

We run a piece of code by starting with the empty stack.

Definition run (p:Code) : nat := runAux nil p.

Definition c1 : Code
:= Push 2 :: Push 3 :: PlusC :: nil.

Eval compute in (run c1).

A simple compiler

We implement a simple compiler which translates an expression into code for the stack
machine.

50

A naive implementation looks like this:

Fixpoint compile naive (e:Expr) {struct e} : list Op :=
match e with
| Const n ⇒ (Push n) :: nil
| Plus e1 e2 ⇒ (compile naive e2)++

(compile naive e1)++
(PlusC ::nil)

Why do we need to do this in this order?
end.

A better alternative both in terms of efficiency and verification is a "continuation based"
compiler. We compile an expression e wrt a continuation p, some code which is going to be
run after it.

Fixpoint compileAux (e:Expr) (p:Code) {struct e} : Code := match e with
| Const n ⇒ Push n :: p
| Plus e1 e2 ⇒ compileAux e2

(compileAux e1 (PlusC :: p))
end.

The top level compiler just uses the empty continuation.

Definition compile (e:Expr) : Code := compileAux e nil.

Test the compiler

Eval compute in compile e1.

And run the compiled code:

Eval compute in run (compile e1).

8.3 Compiler correctness

Compiler correctness means that the operational semantics of the compiled code agrees with
its denotational semantics.

forall e:Expr, run (compile e) = eval e.
However, to prove this we have to show a more general lemma about the auxilliary

functions.

Lemma compileLem : ∀ (e:Expr)(p:Code)(st :Stack),
runAux st (compileAux e p) = runAux ((eval e)::st) p.

induction e.
intros p st.
simpl.
reflexivity.
simpl.

51

intros.
rewrite IHe2.
rewrite IHe1.
simpl.
reflexivity.
Qed.

The main theorem is a simple application of the previous lemma:

Theorem compileOk : ∀ e:Expr,
run (compile e) = eval e.

intro e.
unfold run.
unfold compile.
rewrite compileLem.
simpl.
reflexivity.
Qed.

End Expr.

52

Chapter 9

Coq in Coq

Section Meta.

Require Import Coq.Strings.String.
Require Import Coq.Lists.List.
Require Import Coq.Program.Equality.

Set Implicit Arguments.

This chapter is about using Coq to reason about its own logic. This was the title of a
paper by Bruno Barras who managed to develop the theory of Coq inside Coq.

Obviously, we won’t be able to do this here so we are going to focus on a more modest
goal: we are limiting ourselves to propositional logic and to keep things short we will look
at propositional logic with implication only.

We are going to develop this logic inside coq using natural deduction. This is very close
to the atcual Coq proof objects.

An alternative would be to use combinatory logic. We are going to compare these two
approaches and we will show that they are equivalent.

9.1 Formulas as trees

We are representing logical formulas as trees. Variables are just representined as strings.

Inductive Formula : Set :=
| Var : string → Formula
| Impl : Formula → Formula → Formula.

Notation "x ==> y" := (Impl x y) (at level 30, right associativity).

As examples we are going to use three propositions, all of them are tautologies. Two of
them will show up as the basic combinators of combinatoric logic later.

The identity combinator "I".

Definition I (P : Formula) : Formula := P ==> P.

53

The constant combinator "K".

Definition K (P Q : Formula) : Formula := P ==> Q ==> P.

The (mysterious) combinator "S".

Definition S (P Q R : Formula) : Formula :=
(P ==> Q ==> R)
==> (P ==> Q)
==> P ==> R.

We represent Hypotheses as a list of formula.

Definition Hyps : Set := list Formula.

9.2 Natural deduction

We are ging to represent the proposition that a formula P is provable from a list of assump-
tions Hs as ND Proof Hs P. This is an inductive definition, the constructors are nodes in
the proof tree.

Inductive ND Proof : Hyps → Formula → Prop :=
The first constructor nd ass allows us to use the last hypothesis from our list of hypotheses
(which appears at the head of the list).
| nd ass : ∀ (Hs : Hyps)(P : Formula),

ND Proof (P :: Hs) P
To be able to access earlier hypothesis we use nd weak which allows us to ignore the last
hypothesis (i.e. the head of the list).
| nd weak : ∀ (Hs : Hyps)(P Q : Formula),

ND Proof Hs P → ND Proof (Q :: Hs) P
The next constructor nd intro corresponds to the intro tactic in coq: to prove P ==> Q
we assume P, i.e. we add it to the list of assumptions, and continue to prove Q.
| nd intro : ∀ (Hs : Hyps)(P Q : Formula),

ND Proof (P :: Hs) Q → ND Proof Hs (P ==> Q)
The elimination for application is slightly different from the one in Coq which is hard to
state precisely. The rule nd apply corresponds to modens ponens : if you can prove P ==>
Q and also P then you can also prove Q.
| nd apply : ∀ (Hs : Hyps)(P Q : Formula),

ND Proof Hs (P ==> Q) → ND Proof Hs P → ND Proof Hs Q.

As examples we are going to prove that the examples I,K and S are provable.

The proof for I follows almost exactly the proof of the same tautology in Coq.

Lemma nd I : ∀ (Hs : Hyps)(P : Formula),
ND Proof Hs (I P).

intros Hs P.
unfold I.

54

apply nd intro.
apply nd ass.
Qed.

To prove K we need to use weak.

Lemma nd K : ∀ (Hs : Hyps)(P Q : Formula),
ND Proof Hs (K P Q).

intros Hs P Q.
unfold K.
apply nd intro.
apply nd intro.
apply nd weak.
apply nd ass.
Qed.

The proof of S uses nd apply. It also shows that modens ponens isn’t so suitable to
interactive proof, because we need some hindsight how to apply it.

Lemma nd S : ∀ (Hs : Hyps)(P Q R : Formula),
ND Proof Hs (S P Q R).

intros Hs P Q R.
unfold S.
apply nd intro.
apply nd intro.
apply nd intro.
eapply nd apply. eapply nd apply.
apply nd weak. apply nd weak. apply nd ass.
apply nd ass.
eapply nd apply.
apply nd weak. apply nd ass.
apply nd ass.
Qed.

9.3 Combinatory logic.

Combinatory logic (also sometimes called "Hilbert style logic") is based on the maybe sur-
prising observation that we can replace nd intro by adding K and S as axioms. This leads
to a variable free representation of logic. However, to be able to compare natural deduction
and combinatory logic we will consider combinatory logic with variables here. However, if
the list of hypotheses is empty we will never need variables unlike natural deduction where
the nd intro rule introduces variables.

We define CL Proof Hs P to mean that P is provable from Hs in combinatory logic.

Inductive CL Proof : Hyps → Formula → Prop :=

55

The rules relating to hypothesis are exactly the same as the ones for natural deduction.
| cl ass : ∀ (Hs : Hyps)(P : Formula),

CL Proof (P :: Hs) P
| cl weak : ∀ (Hs : Hyps)(P Q : Formula),

CL Proof Hs P → CL Proof (Q :: Hs) P

We are adding proofs for K and S as axioms.
| cl K : ∀ (Hs : Hyps)(P Q : Formula),

CL Proof Hs (K P Q)
| cl S : ∀ (Hs : Hyps)(P Q R: Formula),

CL Proof Hs (S P Q R)

Modus ponens cl apply is the same rule as for natural deduction.
| cl apply : ∀ (Hs : Hyps)(P Q : Formula),

CL Proof Hs (P ==> Q) → CL Proof Hs P → CL Proof Hs Q.

We can actually prove I from S and K.

Lemma cl I : ∀ (Hs : Hyps)(P : Formula),
CL Proof Hs (I P).

intros Hs P.
unfold I.
eapply cl apply.
eapply cl apply.
apply cl S.
apply cl K.

We need to instantiate one of the meta variables by hand. This is how we do this in Coq
- please check the manual.

instantiate (1:= P ==> P).
apply cl K.
Qed.

Since we did already prove K and S using natural deduction, we can show that every
proof in combinatory logic can be turned into one in natural deduction. We prove this by
induction over the derivation trees.

Basically we are showing that each node in an CL proof tree can be replaced by a ND
tree by replacing the axioms K and S by the corresponding proofs.

Lemma cl2nd : ∀ (Hs : Hyps)(P : Formula),
CL Proof Hs P → ND Proof Hs P.

intros Hs P H.

Since the derivation trees are depndent, i.e. they depend on the choice of hypotheses and
proposition we need to invoke the tactic dependent induction.

56

dependent induction H.

We have now to provide a translation for each case.

ass cl is translated by nd ass.

apply nd ass.

And weak cl by nd weak. Here we have to use the induction hypothesis to recursively
translate the rest of the proof.

apply nd weak.
exact IHCL Proof.

cl K is translated as nd K. Here on axiom is replaced by a small proof tree.

apply nd K.

cl S is translated as nd S.

apply nd S.

cl apply is translated by nd apply. Since there are two subproofs we have to translate
them recursively by using the induction hypotheses.

eapply nd apply.
apply IHCL Proof1.
apply IHCL Proof2.
Qed.

9.4 The deduction theorem

The main ingredient to prove the other direction of the equivalence, i.e. that it is possible to
simulate natural deduction proofs in combinatory logic, is to show that combinatory logic is
closed under the intro rule. This is usually called the deduction theorem.

Lemma cl intro : ∀ (Hs : Hyps)(P Q : Formula),
CL Proof (P :: Hs) Q → CL Proof Hs (P ==> Q).

intros Hs P Q H.

to prove this we need to perform an induction over the proof tree showing CL Proof (P
:: Hs) Q.

dependent induction H.

The case for cl ass can be proven using the identity proof cl I which we have already
derived.

apply cl I.

In the case for cl weak we need to use cl K.

eapply cl apply.
apply cl K.

57

exact H.

The case for cl K can be derived by using cl K once to ignore the argument and a 2nd
time to provide the constant to be actually used.

eapply cl apply.
apply cl K.
apply cl K.

The case for cl S is similar only that we use cl S the 2nd time.

eapply cl apply.
apply cl K.
apply cl S.

The case for cl app is the most interesting one. It finally lifts the mystery about S. It is
actually what we need to translate this case, ie. to shift abstraction over an application.

eapply cl apply.
eapply cl apply.
apply cl S.
apply IHCL Proof1.
reflexivity.
apply IHCL Proof2.
reflexivity.
Qed.

9.5 Equivalence of natural deduction and combinatory
logic.

We have now all the ingredients together to show that natural deduction and combinatory
logic prove exactly the same propositions.

To prove the other direction we only need to appeal to the deduction theorem cl intro
when translating nd intro.

Lemma nd2cl : ∀ (Hs : Hyps)(P : Formula),
ND Proof Hs P → CL Proof Hs P.

intros Hs P H.
dependent induction H.
apply cl ass.
apply cl weak. exact IHND Proof.
apply cl intro. exact IHND Proof.
eapply cl apply.
apply IHND Proof1.
exact IHND Proof2.
Qed.

58

The final theorem

Theorem ndcl : ∀ (Hs : Hyps)(P : Formula),
ND Proof Hs P ↔ CL Proof Hs P.

intros Hs P.
split.
apply nd2cl.
apply cl2nd.
Qed.

59

	Introduction
	What is this course about?
	What is Coq ?
	Why using a proof assistant?
	Using COQ
	For reference
	Course organisation

	Propositional Logic
	Our first proof
	Using assumptions.
	Introduction and Elimination
	Conjunction
	The currying theorem
	Disjunction
	Distributivity
	True and False
	Negation
	Classical Reasoning
	The cut rule

	Predicate Logic
	Universal quantification
	Existential quantification
	Another Currying Theorem
	Equality
	Classical Predicate Logic

	Bool
	Defining bool and operations
	Reasoning about Bool
	Reflection

	How to make sets
	Finite Sets
	Products
	Disjoint union
	Function sets
	The Curry Howard Correspondence

	Peano Arithmetic
	The natural numbers
	Addition and multiplication
	Algebraic properties
	Ordering the numbers
	Decidable properties

	Lists
	Arithmetic for lists
	Lists form a monoid
	Reverse
	Insertion sort

	Compiling expressions
	Evaluating expressions.
	A stack machine
	Compiler correctness

	Coq in Coq
	Formulas as trees
	Natural deduction
	Combinatory logic.
	The deduction theorem
	Equivalence of natural deduction and combinatory logic.

