Mathematics for Computer Scientists 2 (G52MC2) L03 : More Coq, Classical Logic

Thorsten Altenkirch

School of Computer Science University of Nottingham

October 8, 2009

- Sometimes we want to prove a goal Q via an intermediate goal P.
- In this case we say:

cut P.

- cut then generates two subgoals: $P \rightarrow Q$ and P.
- Proof rule:

$$\frac{\Gamma \vdash \textbf{\textit{P}} \rightarrow \textbf{\textit{Q}} \qquad \Gamma \vdash \textbf{\textit{P}}}{\Gamma \vdash \textbf{\textit{Q}}} \text{ cut } P$$

• See I03.v for an example.

Shorthands for intro

• Instead of repeatedly using intro we can use intros.

```
intro H1.
intro H2.
```

can be abbreviated as:

```
intros H1 H2.
```

This works for any number of hypotheses.

• We can omit the name of the hypothesis. If we say:

```
intro.
```

Coq will choose a name for us.

• This also works for intros.

```
intros.
```

repatedly applies intro — as long as the goal is an implication.

 Warning: Letting Coq generate names makes the proof less readabile and less flexible.

- assumption is an alternative to exact H.
- assumption searches through the hypotheses until it finds one that matches.
- assumption is preferable, if we use names generated by Coq.

Tactics and proof objects

- intro(s), apply, ... are tactics.
- They are scripts that generate **proof objects**.
- E.g. after proving I (I01.v) we can say:

Print I.

and Coq replies with:

- Proof objects are expressions in the Calculus of Inductive Constructions (CIC).
- CIC is a functional programming language like Haskell but with a more sophisticated type system.

- It is better to use tactics to generate proofs.
- We can define new tactics using Coq's tactic definition language (beyond the scope of this course).

- Proving theorems in propositional logic is a very *mechanic* activity.
- We can use automatic tactics, e.g. auto:

```
Lemma C : (P \rightarrow Q \rightarrow R) \rightarrow (Q \rightarrow P \rightarrow R).
auto.
Qed.
```

• Warning: You are not supposed to use automatic tactics in coursework or exam, unless you explicitly told so.

- auto first does intros.
- Then auto tries to apply any matching hypothesis.
- auto then recursively repeats the two steps until it has completed the proof.
- To ensure termination, auto only repeats a fixed number of times.
- The default is 5, we can change this, e.g.

```
auto 10.
```

but this may be quite slow!

Limitations of auto

- auto doesn't know about ∧,∨ or ¬, e.g. it cannot prove:
 Goal (P1 \/ P1) -> P1.
 auto. (* fails *)
- The search depth may be insufficent, e.g. auto cannot prove:

• However auto 6. can solve this goal.

tauto

- tauto is a complete tactic for propositional logic.
- It can solve any goal in propositional logic that is provable!
- tauto uses the fact that propositional logic is decidable.
- tauto can be quite slow. The time grows exponential with the size of the goal.
- auto is more popular, because it is:
 - faster,
 - it also works for predicate logic,
 - it can be taught new tricks (using Hint).

- The proposition *P* ∨ ¬*P* is called the *principle of the excluded middle* (PEM).
- PEM is not accepted in *intuitionistic logic* but is valid in *classical logic*.
- PEM is not provable in Coq, but it can be added as an axiom.

```
Axiom classic : P \setminus / \sim P.
```

Platonism and classical logic

Plato (423 - 348 BC)

- Classical logic is often associated with Platonism.
- In Platonism we believe that there is a perfect world of ideas (or forms).
- Every proposition is true or false with respect to this perfect world.
- Even, if we don't know it!

$A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$, classically

A	B	C	$I = A \land (B \lor C)$	$r = A \land B \lor A \land C$	$I \rightarrow r$
False	False	False	False	False	True
False	False	True	False	False	True
False	True	False	False	False	True
False	True	True	False	False	True
True	False	False	False	False	True
True	False	True	True	True	True
True	True	False	True	True	True
True	True	True	True	True	True

- A proposition is a *classical tautology*, if its truthtable assigns always true.
- The same truth table shows that $A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$

Brouwer (1881-1966)

- The Dutch Mathematician Brouwer developed *Intuitionism* in the first half of the 20th century.
- Intuitionism doesn't require a perfect world of ideas.
- It is based on what humans can accept.
- Instead of truthtables we use the BHK interpretation.
- BHK = Brouwer, Heyting, Kolmogorov.
- Programs are evidence!

- Evidence for $A \land B$ is given by pairs: type And a b = (a,b)
- Evidence for $A \lor B$ is tagged evidence for A or B. data Or a b = Inl a | Inr b
- Evidence for A → B is a program computing evidence for B from evidence for A.

$A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$, constructively

- f :: And a (Or b c) \rightarrow Or (And a b) (And a c)
- f(a, Inl b) = Inl(a, b)
- f(a, Inr c) = Inr (a, c)
- A proposition is an intuionistic tautology, if we can write a (terminating) program of the corresponding type.
- Can you construct a program proving the other direction?

• PEM is justified by a truthtable:

P	$\neg P \parallel P \lor \neg P$	
True	False	True
False	True	True

• However, there is no (terminating) program: pem :: Or a (a -> False)

where False is a datatype with no constructors.

 Indeed, such a program would have to decide any proposition, e.g.

twin prime conjecture

There are infinitely many primes p such that p + 2 is also prime.