Mathematics for Computer Scientists 2 (G52MC2)
 L07: Operations on sets

Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 29, 2009

Enumerations

- We construct finite sets by enumerating a list of names.
- In Coq we use Inductive, e.g.

Inductive square : Set :=
| nought : square
| cross : square
| empty : square.

- We use match to define functions on enumerations and case to reason about them.
- Im Maths we write square $=$ \{nought, cross, empty $\}$
- Note that square, nought, empty are constants, not variables!
- They cannot be bound by quantifiers and different constants are never equal, e.g. nought \neq empty.
- An important example is bool $=\{$ true, false $\}$.

New sets from old ...

Given sets A, B we can construct new sets:
Cartesian product
$A \times B$ is the set of pairs (a, b) with $a: A$ and $b: B$.
Disjoint union
$A+B$ is the set of elements of the form inl a with $a: A$ and $\operatorname{inr} b$ with $b: B$.
Functions
$A \rightarrow B$ is the set of functions from A to B. We can apply a function $f: A \rightarrow B$ to an element $a: A$ obtaining $f a$: B.

Cartesian Product

- $\frac{a: A \quad b: B}{(a, b): A \times B}$
- Example: Cartesian coordinates: $\mathbb{R} \times \mathbb{R}$.
- If A, B are finite sets where A has m elements and B has n elements, then $A \times B$ has $m n$ elements.
- Use match in programs and case (or destruct) in proofs.
- Projections:

$$
\begin{aligned}
\mathrm{fst} & : A \times B \rightarrow A \\
\text { snd } & : A \times B \rightarrow B
\end{aligned}
$$

- Functions like fst and snd work for all sets.

They are polymorphic.

- In Coq we can instantiate the explicitly:

$$
\text { fst bool nat : bool } \times \text { nat } \rightarrow \text { bool }
$$

- To avoid clutter, we use

Set Implicit Arguments.

- Coq tries to infer instantiations, e.g. we can write:

$$
\text { fst (true }, 7 \text {) : bool }
$$

Disjoint union

- Also called coproducts or sums.
- $\frac{a: A}{\operatorname{inl} a: A+B} \quad \frac{b: B}{\operatorname{inr} b: A+B}$
- If A, B are finite sets where A has m elements and B has n elements, then $A+B$ has $m+n$ elements.
- inl, inr are called injections.
- Coq cannot infer one of the arguments, it has to be given explicitely:

inl nat true : sum bool nat

- $A \rightarrow B$ is the set of functions with domain A and range (or codomain) B.
- If A, B are finite sets where A has m elements and B has n elements, then $A \rightarrow B$ has n^{m} elements.
- Application:

$$
\frac{f: A \rightarrow B \quad a: A}{f a: B}
$$

- λ-abstraction:

$$
\frac{t: B \text { given } x: A}{\operatorname{fun}(x: A) \Rightarrow t: A \rightarrow B}
$$

Extensionality

- To show that two functions $f, g: A \rightarrow B$ are equal we need the principle of extensionality:

$$
(\forall a: A, f a=g a) \rightarrow f=g
$$

- The principle of extensionality is not provable in Coq, hence we assume it as an axiom (ext).
- Unlike the principle of the excluded middle, ext is accepted in intuitionistic logic.
- It reflects the idea of a function as a black box.

Order of a function

- The order of a function is determined by its type:

$$
\begin{aligned}
\operatorname{order} \mathbb{N} & =0 \\
\operatorname{order}(A \rightarrow B) & =\max ((\operatorname{order} A)+1)(\operatorname{order} B)
\end{aligned}
$$

- E.g. $f:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ is a 2 nd order function.

Isomorphisms

- To sets A and B are isomorphic $(A \simeq B)$ if there are functions:

$$
\begin{aligned}
f & : A \rightarrow B \\
g & : B \rightarrow A
\end{aligned}
$$

such that

$$
\begin{aligned}
& \forall a: A, g(f a)=a \\
& \forall b: B, f(g b)=b
\end{aligned}
$$

- f, g is called an isomorphism.
- Two finite sets are isomorphic, iff (if and only if) they have the same number of elements.
- Examples of general isomorphisms, for all sets A, B, C :

$$
\begin{aligned}
A \times(B \times C) & \simeq(A \times B) \times C \\
A \times(B+C) & \simeq A \times B+A \times C \\
A \times B \rightarrow C & \simeq A \rightarrow(B \rightarrow C)
\end{aligned}
$$

The Curry-Howard correspondence

- Curry and Howard observed that operations in sets correspond to operations on sets.
- A proposition is true if the corresponding set is inhabited.
- This is an alternative to the classical correspondence of bool and Prop.

Set	Prop	bool	
\times	\wedge	$\& \&$	
+	\vee	$\\|$	
\emptyset	False	false	
\rightarrow	\rightarrow	implb	

What about \cup, \cap and \subseteq ?

- In classical set theory people frequently use the following operations on sets:
\cup union of sets
\cap intersection of sets
\subseteq The subset relation between sets
- These are not operations on sets in the sense of Coq.
- Every element belongs precisely to one set in Coq, hence the \subseteq relation doesn't make sense.
- However, for any set A we can define $\mathcal{P} A=A \rightarrow$ Prop and:

$$
\begin{aligned}
& \subseteq: \mathcal{P} A \rightarrow \mathcal{P} A \rightarrow \text { Prop } \\
& P \subseteq Q=\forall a: A, P a \rightarrow Q a \\
& \cup, \cap: \mathcal{P} A \rightarrow \mathcal{P} A \rightarrow \mathcal{P} A \\
& (P \cup Q) a=P a \vee Q a \\
& (P \cap Q) a=P a \wedge Q a
\end{aligned}
$$

