
Mathematics for Computer Scientists 2
(G52MC2)

L10 : Primitive recursion

Thorsten Altenkirch

School of Computer Science
University of Nottingham

November 17, 2009

Thorsten Altenkirch g52mc2 L10



What is the fastest growing function?

Given f ,g : N→ N we say f grows faster than g (f � g), if

∃n : N,∀i : N, i ≥ n→ f i > g i

For example:

f0 n = S n
f1 n = n + n
f2 n = nn

f2 � f1 � f0
Do you know a function which grows faster than f2 ?
Exponentiation (f3 � f2) :

f3 n = nn

Can we do better?
Is there a function which grows faster than any function we
can define by primitive recursion?

Thorsten Altenkirch g52mc2 L10



Primitive recursion

Given a function f : N→ N and n,m : N we define it’s n-fold
repetetion:

f n m = f (f . . . (f︸ ︷︷ ︸
n times

m) . . . )

More formally:

f 0 m = m
f (S n) m = f (f n m)

Defining addition, multiplication and exponentiation using
repetition:

m + n = Sm n
m × n = (n+)m 0

= (λi : N,n + i)m 0
mn = (m×)n 1

Thorsten Altenkirch g52mc2 L10



Primitive recursion

Following the same scheme we define superexpontiation:

super m n = (λi : N,ni)m n

This allows us to define:

f4 n = super n n

which grows faster than exponentiation: f4 � f3.
Functions definable using repetetion are called primitive
recursive.

Thorsten Altenkirch g52mc2 L10



Ackermann’s function

Ackermann (a student of Hilbert) defined the following
function:

ack : N→ N→ N
ack 0 n = S n

ack (S m) n = (ack m)(S n) 1

What does ack compute?

ack 0 n = n + 1
ack 1 n = n + 2
ack 2 n = 2 ∗ n + 3
ack 3 n = 2(n+3) − 3

ack 4 n = 22..
.2︸ ︷︷ ︸

n+3

−3

Thorsten Altenkirch g52mc2 L10



Ackermann’s function

We define fω : N→ N as

fω n = ack n n

How many values of fω can you calculate?

fω 1 = 1
fω 1 = 3
fω 2 = 7
fω 3 = 61

fω 4 = 22265536

− 3
...

Theorem: fω grows faster than any primitive recursive
function.

Thorsten Altenkirch g52mc2 L10


