Mathematics for Computer Scientists 2 (G52MC2)
 L10 : Primitive recursion

Thorsten Altenkirch

School of Computer Science
University of Nottingham
November 17, 2009

What is the fastest growing function?

- Given $f, g: \mathbb{N} \rightarrow \mathbb{N}$ we say f grows faster than $g(f \succ g)$, if

$$
\exists n: \mathbb{N}, \forall i: \mathbb{N}, i \geq n \rightarrow f i>g i
$$

- For example:

$$
\begin{aligned}
f_{0} n & =\mathrm{S} n \\
f_{1} n & =n+n \\
f_{2} n & =n n
\end{aligned}
$$

$$
f_{2} \succ f_{1} \succ f_{0}
$$

- Do you know a function which grows faster than f_{2} ?
- Exponentiation $\left(f_{3} \succ f_{2}\right)$:

$$
f_{3} n=n^{n}
$$

- Can we do better?
- Is there a function which grows faster than any function we can define by primitive recursion?
- Given a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and $n, m: \mathbb{N}$ we define it's n-fold repetetion:

$$
f^{n} m=\underbrace{f(f \ldots(f}_{n \text { times }} m) \ldots)
$$

- More formally:

$$
\begin{aligned}
f^{0} m & =m \\
f^{(\mathrm{S} n)} m & =f\left(f^{n} m\right)
\end{aligned}
$$

- Defining addition, multiplication and exponentiation using repetition:

$$
\begin{aligned}
m+n & =\mathrm{S}^{m} n \\
m \times n & =(n+)^{m} 0 \\
& =(\lambda i: \mathbb{N}, n+i)^{m} 0 \\
m^{n} & =(m \times)^{n} 1
\end{aligned}
$$

- Following the same scheme we define superexpontiation:

$$
\text { super } m n=\left(\lambda i: \mathbb{N}, n^{i}\right)^{m} n
$$

- This allows us to define:

$$
f_{4} n=\text { super } n n
$$

which grows faster than exponentiation: $f_{4} \succ f_{3}$.

- Functions definable using repetetion are called primitive recursive.

Ackermann's function

- Ackermann (a student of Hilbert) defined the following function:

$$
\begin{aligned}
\text { ack } & : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\
\operatorname{ack} 0 n & =\mathrm{Sn} \\
\operatorname{ack}(\mathrm{~S} m) n & =(\text { ack } m)^{(S n)} 1
\end{aligned}
$$

- What does ack compute?

$$
\begin{aligned}
\text { ack } 0 n & =n+1 \\
\text { ack } 1 n & =n+2 \\
\text { ack } 2 n & =2 * n+3 \\
\operatorname{ack} 3 n & =2^{(n+3)}-3 \\
\text { ack } 4 n & =\underbrace{2^{2}}_{n+3}{ }^{2}
\end{aligned}
$$

Ackermann's function

- We define $f_{\omega}: \mathbb{N} \rightarrow \mathbb{N}$ as

$$
f_{\omega} n=\operatorname{ack} n n
$$

- How many values of f_{ω} can you calculate?

$$
\begin{aligned}
f_{\omega} 1 & =1 \\
f_{\omega} 1 & =3 \\
f_{\omega} 2 & =7 \\
f_{\omega} 3 & =61 \\
f_{\omega} 4 & =2^{2^{2^{65536}}}-3
\end{aligned}
$$

$$
\ldots
$$

- Theorem: f_{ω} grows faster than any primitive recursive function.

