Mathematics for Computer Scientists 2 (G52MC2) L11 : The ω-hotel, diagonalisation

Thorsten Altenkirch

School of Computer Science University of Nottingham

November 17, 2009

- The ω-hotel has infinitely many rooms, numbered 0, 1, 2,
- One night the hotel is completely full ...
- ... another guest arrives.
- Can we accomodate this guest?
- If we are prepared to move existing guests?

solution

Everybody has to move to the next room, i.e. the guest in room number *n* moves into room n + 1. Now 0 is free and the new guest can move in.

- Another night the hotel is completely full (again) ...
- ... a full ω -bus arrives
- An ω -bus has infinitely many seats, numbered 0, 1, 2, . . .
- Can we accomodate all these people?

solution

Every existing guest moves into the room with twice the number, i.e. the guest in room number n moves into room number 2n.

As a consequence all the odd numbered rooms are free. The people in the bus are instructed to move into the odd rooms, i.e. if you have seat number m you move into room 2m + 1.

- Another night the hotel is completely empty (relief) ...
- ... when all the ω -busses arrive at once!
- There are infinitely many ω-busses and they are numbered 0, 1, 2, 3,
- And they are all completely full.
- Can we accomodate all these people?

solution

We can assign rooms to the people in the busses using the following idea: if your bus number is m and your seat number is n your room number is given by the following table:

m∖n	0	1	2	3	4	
0	0	2	5	9	14	
1	1	4	8	13		
2	3	7	12			
3	6	11				
4	10					
:						

However, this seems to require an infinite table. Can we give each guest a formula how to calculate their room number?

The examples illustrate the following isomorphisms:

- $\bigcirc 1 + \mathbb{N} \simeq \mathbb{N}$
- $\bigcirc \mathbb{N} + \mathbb{N} \simeq \mathbb{N}$
- $\textcircled{3} \mathbb{N} \times \mathbb{N} \simeq \mathbb{N}$

It almost seems that all infinite sets are isomorphic. Is this correct?

Diagonalisation

Assume there are functions:

$$\begin{array}{ll}
\phi & : & \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \\
\psi & : & (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \\
\forall h : \mathbb{N} \to \mathbb{N}, \phi (\psi h) = h
\end{array}$$
(1)

Then we can construct a function *f* by **diagonalisation**:

 $f : \mathbb{N} \to \mathbb{N}$

$$f n = S(\phi n n) \tag{2}$$

Now what is $f(\psi f) : \mathbb{N}$?

$$f(\psi f) = S(\phi(\psi f)(\psi f)) \quad (2)$$

= S(f(\psi f)) \quad (1)

However, we know that there is no number *n* which is equal to its successor.

Conclusion

We cannot embed $\mathbb{N}\to\mathbb{N}$ into $\mathbb{N},$ hence there cannot be an isomorphism between the two sets.

Georg Cantor (1845 - 1918)

- Cantor used diagonalisation to show that the *continuum* (i.e. the real numbers: ℝ) has a larger *cardinality* then the natural numbers.
- He developed a theory of *cardinal numbers* to denote different infinities.
- \aleph_0 (aleph 0) is the cardinality of the natural numbers.
- \aleph_1 (aleph 1) is the cardinality of \mathbb{R} and also $\mathbb{N} \to \mathbb{N}$.
- The Continuums hypothesis (CH) is the assumption that there are no cardinalities between ℵ₀ and ℵ₁.