Mathematics for Computer Scientists 2 (G52MC2)

L11 : The ω-hotel, diagonalisation

Thorsten Altenkirch

School of Computer Science
University of Nottingham
November 17, 2009

The ω-Hotel (1)

- The ω-hotel has infinitely many rooms, numbered $0,1,2, \ldots$
- One night the hotel is completely full ...
- ... another guest arrives.
- Can we accomodate this guest?
- If we are prepared to move existing guests?

The ω-Hotel (1)

solution

Everybody has to move to the next room, i.e. the guest in room number n moves into room $n+1$. Now 0 is free and the new guest can move in.

The ω-Hotel (2)

- Another night the hotel is completely full (again) ...
- ... a full ω-bus arrives
- An ω-bus has infinitely many seats, numbered $0,1,2, \ldots$
- Can we accomodate all these people?

The ω-Hotel (2)

solution

Every existing guest moves into the room with twice the number, i.e. the guest in room number n moves into room number $2 n$.
As a consequence all the odd numbered rooms are free. The people in the bus are instructed to move into the odd rooms, i.e. if you have seat number m you move into room $2 m+1$.

The ω-Hotel (3)

- Another night the hotel is completely empty (relief) ...
- ... when all the ω-busses arrive at once!
- There are infinitely many ω-busses and they are numbered $0,1,2,3, \ldots$
- And they are all completely full.
- Can we accomodate all these people?

The ω-Hotel (3)

solution

We can assign rooms to the people in the busses using the following idea: if your bus number is m and your seat number is n your room number is given by the following table:

$m \backslash n$	0	1	2	3	4	\ldots
0	0	2	5	9	14	\ldots
1	1	4	8	13	\ldots	
2	3	7	12	\ldots		
3	6	11	\ldots			
4	10	\ldots				

However, this seems to require an infinite table. Can we give each guest a formula how to calculate their room number?

Isomorphisms with \mathbb{N}

The examples illustrate the following isomorphisms:
(1) $1+\mathbb{N} \simeq \mathbb{N}$
(2) $\mathbb{N}+\mathbb{N} \simeq \mathbb{N}$
(3) $\mathbb{N} \times \mathbb{N} \simeq \mathbb{N}$

It almost seems that all infinite sets are isomorphic. Is this correct?

Diagonalisation

Assume there are functions:

$$
\begin{align*}
\phi & : \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N}) \\
\psi & :(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \\
\forall h: & \mathbb{N} \rightarrow \mathbb{N}, \phi(\psi h)=h \tag{1}
\end{align*}
$$

Then we can construct a function f by diagonalisation:

$$
\begin{align*}
f & : \mathbb{N} \rightarrow \mathbb{N} \\
f n & =S(\phi n n) \tag{2}
\end{align*}
$$

Now what is $f(\psi f): \mathbb{N}$?

$$
\begin{align*}
f(\psi f) & =S(\phi(\psi f)(\psi f)) \tag{2}\\
& =S(f(\psi f)) \tag{1}
\end{align*}
$$

However, we know that there is no number n which is equal to its successor.

Diagonalisation ...

Conclusion
We cannot embed $\mathbb{N} \rightarrow \mathbb{N}$ into \mathbb{N}, hence there cannot be an isomorphism between the two sets.

Cantor

Georg Cantor (1845-1918)

- Cantor used diagonalisation to show that the continuum (i.e. the real numbers: \mathbb{R}) has a larger cardinality then the natural numbers.
- He developed a theory of cardinal numbers to denote different infinities.
- \aleph_{0} (aleph 0$)$ is the cardinality of the natural numbers.
- \aleph_{1} (aleph 1) is the cardinality of \mathbb{R} and also $\mathbb{N} \rightarrow \mathbb{N}$.
- The Continuums hypothesis (CH) is the assumption that there are no cardinalities between \aleph_{0} and \aleph_{1}.

