Mathematics for Computer Scientists 2 (G52MC2)
 L12 : Lists

Thorsten Altenkirch

School of Computer Science
University of Nottingham

November 19, 2009

Introducing Lists

- Given A : Set we write list A : Set for the set of finite sequences over A.
- Lists are widely used in functional programming languages like Lisp, Scheme, CAML, Haskell and F\#.
- In Coq we define lists as an inductive type (like \mathbb{N}):
Inductive list (A : Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

Introducing Lists

- E.g. the sequence of natural numbers 1,2,3 becomes:

$$
\text { cons } 1(\text { cons } 2(\text { cons } 3 \text { nil })): \operatorname{list} \mathbb{N}
$$

- We abbreviate cons al as a :: l. Hence the previous example becomes:

$$
1:: 2 \text { :: } 3 \text { :: nil : list } \mathbb{N}
$$

- Note that the roles of : and :: are reverse in Haskell.
- Functional programming languages also use an even more compact notation:

$$
[1,2,3]: \text { list } \mathbb{N}
$$

Structural recursion

- As for \mathbb{N} we can define functions by structural recursion over lists.
- An example is append (written ++) :

$$
\begin{aligned}
++ & : \operatorname{list} A \rightarrow \operatorname{list} A \rightarrow \operatorname{list} A \\
n i l++m & =m \\
(a:: I)++m & =a::(I++m)
\end{aligned}
$$

- Which function on the natural numbers resembles + ?
- In Coq we use Fixpoint, see 112 .v

List induction

- Like induction for natural numbers, there is induction for lists.
- Given a predicate over lists P : list $A \rightarrow$ Prop, we can show that it holds for all lists $(\forall I$: list $A, P I)$ by showing:
base It holds for nil

$$
P \text { nil }
$$

step It is preserved by cons:

$$
\forall a: A \forall m: \text { list } A, P m \rightarrow P(a:: m)
$$

- To summarize

$$
\begin{aligned}
& (P \mathrm{nil}) \\
& \rightarrow(\forall a: A \forall m: \operatorname{list} A, P m \rightarrow P(a:: m)) \\
& \rightarrow \forall I: \text { list } A, P I
\end{aligned}
$$

- In Coq we use the induction tactic (as for \mathbb{N}).

Lists are a monoid

- Using list induction we can show that lists form a monoid:

$$
\begin{aligned}
\mathrm{nil}++m & =m \\
I++ \text { nil } & =1 \\
I++(m++n) & =(I++m)++n
\end{aligned}
$$

- However, this is not a commutative monoid:

$$
[1,2]++[3]=[1,2,3] \neq[3]++[1,2]=[3,1,2]
$$

- Actually (list A, nil, ++) is the free monoid over A, because:
- list A contains all the elements of A (as singleton lists [a]).
- It doesn't satsify any additional equations (hence it is unconstrained, i.e. free).
- We introduce an operation rev : list A on lists which reverses a list. E.g.

$$
\operatorname{rev}[1,2,3]=[3,2,1]
$$

- rev uses an auxilliary operation

$$
\text { snoc : list } A \rightarrow A \rightarrow \text { list } A
$$

which appends an element at the end of a list.

- snoc = cons backwards.
- Both operations can be defined by structural recursion over lists:

$$
\begin{aligned}
\operatorname{snoc} n i l a & =a \\
\operatorname{snoc}(b:: /) a & =b::(\operatorname{snoc} / a) \\
\operatorname{rev} n i l & =\text { nil } \\
\operatorname{rev}(a:: l) & =\operatorname{snoc}(\operatorname{rev} /) a
\end{aligned}
$$

Reversing twice

- Clearly reversing twice gets us back to the initial list, e.g.

$$
\begin{aligned}
& \operatorname{rev}(\operatorname{rev}[1,2,3]) \\
& =\operatorname{rev}[3,2,1] \\
& =[1,2,3]
\end{aligned}
$$

- In predicate logic:

$$
\forall I: \operatorname{list} A, \operatorname{rev}(\operatorname{rev} I)=I
$$

- We need to show a lemma about snoc:

$$
\forall I: \operatorname{list} A, \forall a: A, \operatorname{rev}(\operatorname{snoc} / a)=a:: \operatorname{rev} /
$$

- Both can be established using list induction, see 112.v.

