
Mathematics for Computer Scientists 2
(G52MC2)

L12 : Lists

Thorsten Altenkirch

School of Computer Science
University of Nottingham

November 19, 2009

Thorsten Altenkirch g52mc2 L12



Introducing Lists

Given A : Set we write list A : Set for the set of finite
sequences over A.
Lists are widely used in functional programming languages
like Lisp, Scheme, CAML, Haskell and F#.
In Coq we define lists as an inductive type (like N):
Inductive list (A : Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

Thorsten Altenkirch g52mc2 L12



Introducing Lists

E.g. the sequence of natural numbers 1, 2, 3 becomes:

cons 1 (cons 2 (cons 3 nil)) : list N

We abbreviate cons a l as a :: l . Hence the previous
example becomes:

1 :: 2 :: 3 :: nil : list N

Note that the roles of : and :: are reverse in Haskell.
Functional programming languages also use an even more
compact notation:

[1, 2, 3] : list N

Thorsten Altenkirch g52mc2 L12



Structural recursion

As for N we can define functions by structural recursion
over lists.
An example is append (written ++) :

++ : list A → list A → list A
nil ++m = m

(a :: l) ++m = a :: (l ++m)

Which function on the natural numbers resembles ++?
In Coq we use Fixpoint, see l12.v

Thorsten Altenkirch g52mc2 L12



List induction

Like induction for natural numbers, there is induction for
lists.
Given a predicate over lists P : list A → Prop, we can show
that it holds for all lists (∀l : list A, P l) by showing:

base It holds for nil
P nil

step It is preserved by cons:

∀a : A∀m : list A, P m → P (a :: m)

To summarize

(P nil)

→ (∀a : A∀m : list A, P m → P (a :: m))

→ ∀l : list A, P l

In Coq we use the induction tactic (as for N).

Thorsten Altenkirch g52mc2 L12



Lists are a monoid

Using list induction we can show that lists form a monoid:

nil ++m = m
l ++nil = l

l ++(m ++n) = (l ++m) ++n

However, this is not a commutative monoid:

[1, 2] ++[3] = [1, 2, 3] 6= [3] ++[1, 2] = [3, 1, 2]

Actually (list A, nil, ++) is the free monoid over A, because:

list A contains all the elements of A (as singleton lists [a]).
It doesn’t satsify any additional equations
(hence it is unconstrained, i.e. free).

Thorsten Altenkirch g52mc2 L12



Reverse

We introduce an operation rev : list A on lists which
reverses a list. E.g.

rev [1, 2, 3] = [3, 2, 1]

rev uses an auxilliary operation

snoc : list A → A → list A

which appends an element at the end of a list.
snoc = cons backwards.
Both operations can be defined by structural recursion over
lists:

snoc nil a = a
snoc (b :: l) a = b :: (snoc l a)

rev nil = nil

rev (a :: l) = snoc (rev l) a

Thorsten Altenkirch g52mc2 L12



Reversing twice

Clearly reversing twice gets us back to the initial list, e.g.

rev (rev [1, 2, 3])

= rev [3, 2, 1]

= [1, 2, 3]

In predicate logic:

∀l : list A, rev (rev l) = l

We need to show a lemma about snoc:

∀l : list A,∀a : A, rev (snoc l a) = a :: rev l

Both can be established using list induction, see l12.v.

Thorsten Altenkirch g52mc2 L12


