Mathematics for Computer Scientists 2 (G52MC2)
 L05 : Bool and Predicate Logic

Thorsten Altenkirch
School of Computer Science
University of Nottingham

October 15, 2009

Introducing Booleans

In Coq we define:
Inductive bool : Set :=
| true : bool
| false : bool.
Inductive is similar to Haskell's data:
data Bool = True | False

Operations on Booleans

$$
\begin{aligned}
& \text { negb }: \text { bool } \rightarrow \text { bool } \\
& \text { negb } x=\text { if } x \text { then false else true } \\
& \text { andb }: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \text { andb } x y=\text { if } x \text { then } y \text { else false } \\
& \text { orb }: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool } \\
& \text { orb } x y=\text { if } x \text { then true, else } y \\
& \begin{array}{|c|c|}
\hline \text { operation } & \text { infix } \\
\hline \text { andb } & \& \& \\
\hline \text { orb } & \mid 1 \\
\hline
\end{array} \\
& \begin{aligned}
\text { andb }^{\prime} x y & =\text { if } y \text { then } x \text { else false } \\
\text { orb }^{\prime} x y & =\text { if } y \text { then true else } x
\end{aligned}
\end{aligned}
$$

- Do andb' (orb') define the same function as andb (orb)?

Predicate logic

- Predicate logic extents propositional logic.
- We consider predicate logic over the Booleans for now.
- Predicate logic consists of:

Sets E.g. bool : Set.
Terms e.g. true, false : bool and if-then-else.
Predicates and Relations e.g. equality
Given t, u : A where A : Set we obtain $t=u$: Prop
Quantifiers

Name	Math	Coq	English
Universal quantifier	$\forall x: A, P$	forall $\mathrm{x}: \mathrm{A}, \mathrm{P}$	for all
Existential quantifier	$\exists x: A, P$	exists $\mathrm{x}: \mathrm{A}, \mathrm{P}$	exists

We can define new functions, predicates and relations using Definition, see $104 . v$ for examples.

- Quantifiers like $\forall x: A, P$ and $\exists x: A, P$ bind the variable x.
- The scope of the variable is only P.
- Variables can be shadowed, i.e. in the expression $\forall x: A, \forall x: B, P$ any occurence of x in P refers to $x: B$.
- Quantifiers bind weaker than any other connective

$$
\forall x: A, P \rightarrow Q
$$

is read as

$$
\forall x: A,(P \rightarrow Q)
$$

$$
\begin{gathered}
\Gamma, x: D \vdash P \quad x \text { does not occur free in } \Gamma . \\
\hline \vdash \vdash \forall x: D, P \\
\frac{\Gamma \vdash \forall x: D, P \in \Gamma}{\Gamma \vdash P[x:=d]} \operatorname{apply} \mathrm{H}
\end{gathered}
$$

- intro: To prove $\forall x: D, P$ we assume $x: D$ and prove P.
- apply: To show $P[x:=d]$ for $d: D$ it is enough, if we know $\forall x: D, P$.
- By $P[x:=d]$ we mean that all free occurences of the variable x are replaced by the term d.

$$
\begin{gathered}
\frac{\Gamma \vdash d: D \quad \Gamma \vdash P[x:=d]}{\Gamma \vdash \exists x: D, P} \text { exists d } \\
H: \exists x: D, P \in \Gamma \\
\frac{\Gamma \vdash \forall x: D, P \rightarrow R}{\Gamma \vdash R} \text { elim } \mathrm{H}
\end{gathered}
$$

- exists: To prove $\exists x: D, P$ it is enough to exhibit a term $d: D$ (the witness) and show $P[x:=d]$.
- elim: To show R when we know $\exists x: D, P$ it is enough to show that P implies R for any $x: D$.

$$
\begin{aligned}
& \frac{\Gamma \vdash d: D}{\Gamma \vdash d=d} \text { reflexivity } \\
& H: d=e \in \Gamma \\
& \frac{\Gamma \vdash P[x:=e]}{\Gamma \vdash P[x:=d]} \text { rewrite } \mathrm{H}
\end{aligned}
$$

- reflexivity: For any d : D we have $d=d$.
- rewrite: To show $P[x:=d]$, if we know $d=e$ it is enough to show $P[x:=e]$.
- There is also rewrite<- which applies the equation in the other direction.

Prop	\wedge	\vee	\neg	\rightarrow	
bool	$\& \&$	$\\|$	negb	$? ? ?$	

We can show:
$\forall b c:$ bool,$b=$ true $\wedge c=$ true $\leftrightarrow b \& \& c=$ true and the same for $\|$ and negb. See 103.v.
\rightarrow completeness
\leftarrow soundness

- We can also reflect = (see ex03.v), there is a function eqb : bool \rightarrow bool \rightarrow bool, s.t.

$$
\forall b c: \text { bool, } b=c \leftrightarrow \text { eqb } b c=\text { true }
$$

- We can even reflect quantifiers (see I03.v), there is a function allb : (bool \rightarrow bool $) \rightarrow$ bool, s.t.
$\forall f:$ bool \rightarrow bool, $(\forall b:$ bool, $f b=$ true $) \Longleftrightarrow$ forallb $f=$ true
This also works for \exists.
- As a consequence we can define a translation: given a P : Prop where P only uses bool then we have a translation P^{*} : bool.
- Hence, predicate logic over bool is decidable.

Coq tricks

- To destruct an assumption H : P \wedge Q, use destruct H as [HP HQ], which replaces the assumption H by HP : P and HQ : Q .
- To expand a definition d use unfold d, or simpl which expands and simplifies everything.
- If you have an assumption H:A \rightarrow False and you want to prove any goal, you can just say contradict H.
- If you have an assumption like H :true = false, you can use discriminate H to prove anything.

Summary

connective	Introduction	Elimination
$P \rightarrow Q$	intro(s)	apply $H y p$
$P \wedge Q$	split	elim Hyp
True	split	
$P \vee Q$	left,right	case Hyp
False		case Hyp
forall $x: A, P$	intro(s)	apply $H y p$
exists $x: A, P$	existswit	elim Hyp
$a=b$	reflexivity	rewrite Hyp

