# Mathematics for Computer Scientists 2 (G52MC2) L05 : Bool and Predicate Logic

**Thorsten Altenkirch** 

School of Computer Science University of Nottingham

October 15, 2009

# **Introducing Booleans**



Boole (1815-1864)

In Coq we define:

```
Inductive bool : Set :=
| true : bool
| false : bool.
```

Inductive is similar to Haskell's data:

```
data Bool = True | False
```

# **Operations on Booleans**

| negb            | : | $bool \rightarrow bool$                  |
|-----------------|---|------------------------------------------|
| negb <i>x</i>   | = | if <i>x</i> then false else true         |
| andb            | : | $bool \rightarrow bool \rightarrow bool$ |
| andb <i>x y</i> | = | if x then y else false                   |
| orb             | : | $bool \rightarrow bool \rightarrow bool$ |
| orb x y         | = | if x then true, else y                   |

| operation | infix |
|-----------|-------|
| andb      | & &   |
| orb       |       |

and b' x y = if y then x else false or b' x y = if y then true else x

• Do andb' (orb') define the same function as andb (orb)?

# Predicate logic

- Predicate logic extents propositional logic.
- We consider predicate logic over the Booleans for now.
- Predicate logic consists of:

Sets E.g. bool : Set.

Terms e.g. true, false : bool and if-then-else.

Predicates and Relations e.g. equality

Given t, u : A where A :Set we obtain

*t* = *u* : **Prop** 

#### Quantifiers

| Name                   | Math               | Coq          | English |  |  |
|------------------------|--------------------|--------------|---------|--|--|
| Universal quantifier   | $\forall x : A, P$ | forall x:A,P | for all |  |  |
| Existential quantifier | $\exists x : A, P$ | exists x:A,P | exists  |  |  |
| where A : Set.         |                    |              |         |  |  |

We can define new functions, predicates and relations using Definition, see 104.v for examples.

#### Syntax

- Quantifiers like  $\forall x : A, P$  and  $\exists x : A, P$  bind the variable x.
- The *scope* of the variable is only *P*.
- Variables can be *shadowed*, i.e. in the expression
   ∀x : A, ∀x : B, P any occurence of x in P refers to x : B.
- Quantifiers bind weaker than any other connective

$$\forall x : A, P \rightarrow Q$$

is read as

$$\forall x: A, (P \to Q)$$



- intro: To prove  $\forall x : D, P$  we assume x : D and prove P.
- apply: To show P[x := d] for d : D it is enough, if we know  $\forall x : D, P$ .
- By P[x := d] we mean that all *free* occurences of the variable *x* are replaced by the term *d*.

$$\frac{\Gamma \vdash d : D \quad \Gamma \vdash P[x := d]}{\Gamma \vdash \exists x : D, P} \text{ exists } d$$
$$\frac{H : \exists x : D, P \in \Gamma}{\Gamma \vdash \forall x : D, P \to R} \text{ elim } H$$

- exists: To prove  $\exists x : D, P$  it is enough to exhibit a term d : D (the witness) and show P[x := d].
- elim: To show R when we know  $\exists x : D, P$  it is enough to show that P implies R for any x : D.

$$\frac{\Gamma \vdash d: D}{\Gamma \vdash d = d} \text{ reflexivity}$$

$$\frac{H: d = e \in \Gamma}{\Gamma \vdash P[x := e]}$$
  
$$\frac{\Gamma \vdash P[x := d]}{\Gamma \vdash P[x := d]}$$
 rewrite H

- reflexivity: For any d : D we have d = d.
- rewrite: To show P[x := d], if we know d = e it is enough to show P[x := e].
- There is also rewrite<- which applies the equation in the other direction.

| Prop | $\wedge$ | V | -    | $\rightarrow$ |
|------|----------|---|------|---------------|
| bool | &&       |   | negb | ???           |

We can show:

 $\forall b \ c : bool, b = true \land c = true \leftrightarrow b\&\&c = true$ 

and the same for || and negb. See 103.v.

- $\rightarrow$  completeness
- $\leftarrow$  soundness

• We can also *reflect* = (see ex03.v), there is a function eqb : bool → bool → bool, s.t.

 $\forall b \ c : bool, b = c \leftrightarrow eqb \ b \ c = true$ 

 We can even reflect quantifiers (see I03.v), there is a function allb : (bool → bool) → bool, s.t.

 $\forall f : bool \rightarrow bool, (\forall b : bool, fb = true) \iff forallb f = true$ 

This also works for  $\exists$ .

- As a consequence we can define a translation: given a *P* : **Prop** where *P* only uses bool then we have a translation *P*\* : bool.
- Hence, predicate logic over bool is **decidable**.

- To destruct an assumption H : P A Q, use destruct H as [HP HQ], which replaces the assumption H by HP : P and HQ : Q.
- To expand a definition d use unfold d, or simpl which expands and simplifies everything.
- If you have an assumption H:A → False and you want to prove any goal, you can just say contradict H.
- If you have an assumption like H:true = false, you can use discriminate H to prove anything.

| connective                                               | Introduction      | Elimination        |
|----------------------------------------------------------|-------------------|--------------------|
| $P \rightarrow Q$                                        | intro(s)          | apply <b>Hyp</b>   |
| $P \wedge Q$                                             | split             | elim <i>Hyp</i>    |
| True                                                     | split             |                    |
| $P \lor Q$                                               | left,right        | case <b>Hyp</b>    |
| False                                                    |                   | case <b>Hyp</b>    |
| forall $x : A, P$                                        | intro(s)          | apply <b>Hyp</b>   |
| exists $\boldsymbol{x} : \boldsymbol{A}, \boldsymbol{P}$ | exists <b>wit</b> | elim <i>Hyp</i>    |
| a = b                                                    | reflexivity       | rewrite <b>Hyp</b> |