
Computer Aided Formal Reasoning
(G53CFR, G54CFR)

Thorsten Altenkirch

January 25, 2010

Thorsten Altenkirch (FPLab) CFR January 25, 2010 1 / 10



Zermelo-Fraenkel Set Theory

Zermelo (1871-1953) Fraenkel (1891-1965)
Axiomatic Set Theory ≈ 1925
ZFC = Zermelo-Fraenkel with Axiom of Choice
Foundations of modern Mathematics
Additional axioms, e.g. the continuum hypothesis

Thorsten Altenkirch (FPLab) CFR January 25, 2010 2 / 10



Axiom of extensionality ∀x∀y [∀z(z ∈ x ⇔ z ∈ y)⇒ x = y ]

Axiom of regularity ∀x [∃a(a ∈ x)⇒ ∃y(y ∈ x ∧ ¬∃z(z ∈ y ∧ z ∈ x))]

Axiom schema of specification ∀z∀w1 . . .wn∃y∀x [x ∈ y ⇔ (x ∈ z ∧ φ)]

Axiom of pairing ∀x∀y∃z(x ∈ z ∧ y ∈ z)

Axiom of union ∀F ∃A∀Y ∀x(x ∈ Y ∧ Y ∈ F ⇒ x ∈ A)

Axiom schema of replacement . . .
Axiom of infinity . . .
Axiom of power set . . .
Axiom of Choice . . .

Thorsten Altenkirch (FPLab) CFR January 25, 2010 3 / 10



Set Theory for Computer Science?

Set Theory is untyped (everything is a set), while programming
languages are typed (either statically or dynamically).
Basic concepts from computer science (records, functions) are not
primitive in Set Theory.
Basic operations in set theory (e.g. ∩ , ∪) are not directly available
on types.
Set Theory is not constructive, i.e. there is a set theoretic function
solving the Halting Problem.

Question:
Is there an alternative to Set Theory?

Thorsten Altenkirch (FPLab) CFR January 25, 2010 4 / 10



Martin-Löf Type Theory

Per Martin-Löf (1942-)

Martin-Löf introduced Type Theory as a constructive foundation of
Mathematics since 1972.
Type Theory doesn’t rely on predicate logic but uses types to
represent propositions.
Basic operations on types are Π-types (dependent function types)
and Σ-types (dependent records).
Type Theory is a programming language.

Thorsten Altenkirch (FPLab) CFR January 25, 2010 5 / 10



Propositions as types
(The Curry-Howard Isomorphism)

A proposition corresponds to the types of it proofs.
A proposition is true if the corresponding type is non-empty.
Conjunction A ∧ B is repesented by cartesian product (A× B).
Implication A→ B is represented by function types A→ B (looks
the same).
∀ and ∃ correspond to Π (depednent function) and Σ (dependent
records).

Thorsten Altenkirch (FPLab) CFR January 25, 2010 6 / 10



Agda

Ulf Norell

Ulf Norell has implemented Agda, a functional programming
language based on Type Theory in his PhD in 2007.
Agda is inspired by earlier systems such as Epigram, Cayenne
and Coq.
Agda can be used to program and to reason.

Thorsten Altenkirch (FPLab) CFR January 25, 2010 7 / 10



Course contents

1 Agda intro
2 Propositions as types (using Agda)
3 Dependently typed programming (in Agda)

I Refining programs to certifiably correct programs
I Representing data formats
I Typed Domain Specific Libraries

Thorsten Altenkirch (FPLab) CFR January 25, 2010 8 / 10



Practicalities

Two lectures: Tuesday and Thursday morning.
The early student catches the first.
Lab sessions each Friday 10:00, B52 (using Agda)
Regular coursework (in Agda)
Resources: available online
http://www.cs.nott.ac.uk/˜txa/g53cfr/

Thorsten Altenkirch (FPLab) CFR January 25, 2010 9 / 10



Assessment

G53CFR 40% Exercises
60% Online exam

G54CFR 40% Online exam
60% Project

Thorsten Altenkirch (FPLab) CFR January 25, 2010 10 / 10


