Typed λ -calculus:Denotational Semantics of Call-By-Value

P. B. Levy

adapted for G53POP by T.Altenkirch

Universities of Birmingham and Nottingham

1 Substitution in CBV

For the pure calculus, we gave a substitution lemma expressing $\llbracket M[N/\mathbf{x}] \rrbracket$ in terms of $\llbracket M \rrbracket$ and $\llbracket N \rrbracket$. But that will not be possible in CBV, as the following example demonstrates. We define terms $\mathbf{x} : \mathsf{bool} \vdash M, M' : \mathsf{bool}$ and $\vdash N : \mathsf{bool}$ by

$$\begin{split} M &\stackrel{\text{def}}{=} \texttt{true} \\ M' \stackrel{\text{def}}{=} \texttt{case x of } \{\texttt{true} \to \texttt{true} \mid \texttt{ false} \to \texttt{true} \} \\ N \stackrel{\text{def}}{=} \texttt{error CRASH} \end{split}$$

But in any CBV semantics we will have

 $\llbracket M \rrbracket = \llbracket M' \rrbracket \quad \text{because } M =_{\eta \text{ bool }} M'$ $\llbracket M[N/\mathbf{x}] \rrbracket \neq \llbracket M'[N/\mathbf{x}] \rrbracket$

However, what we *will* be able to describe semantically is the substitution of a restricted class of terms, called *values*.

 $V ::= \mathbf{x} \mid \underline{n} \mid \mathsf{true} \mid \mathsf{false} \mid (\# \mathrm{left}, V) \mid (\# \mathrm{right}, V) \mid \lambda \mathbf{x}.M$

A value, in any syntactic environment, is terminal. And a closed term is a value iff it is terminal. In the study of call-by-value, we define a *substitution* $\Gamma \xrightarrow{k} \Delta$ to be a function mapping each identifier $\mathbf{x} : A$ in Γ to a *value* $\Delta \vdash V : A$. If W is a value, then k^*W is a value, for any substitution k.

2 Denotational Semantics for CBV

Let us think about how to give a denotational semantics for call-byvalue λ -calculus with errors. Let E be the set of errors. 2 P. B. Levy adapted for G53POP by T.Altenkirch

2.1 First Attempt

Let's say that a type denotes a set, and that a closed term of type A denotes an element of $[\![A]\!]$. Then bool would denote $\mathbb{B} + E$, because a closed term of type bool either returns true or false, or raises an error. Likewise int should denote $\mathbb{Z} + E$.

Next, we have to define $[\![\Gamma]\!]$, for a context Γ , and this should be the set of semantic environments. In particular, the context \mathbf{x} : bool, \mathbf{y} : int should denote $\mathbb{B} \times \mathbb{Z}$. But there does not seem to be any way of obtaining that set from the sets $[\![bool]\!]$ and $[\![int]\!]$ as we have defined them. So we need to do something different.

2.2 Second Attempt

Let's instead make $[\![A]\!]$ the set of denotations of closed *values*, i.e. terminal terms, rather than denotations of closed terms. We then want **bool** to denote \mathbb{B} , and we'll complete the semantics of types below.

We define $\llbracket \Gamma \rrbracket$ to be the set of functions mapping each identifier $\mathbf{x} : A$ in Γ to an element of $\llbracket A \rrbracket$.

A closed term of type A either returns a closed value or raises an error. So it should denote an element of $[\![A]\!] + E$. More generally, a term $\Gamma \vdash M : B$ should denote, for each semantic environment $\rho \in [\![\Gamma]\!]$, an element of $[\![B]\!] + E$. Hence

$$[\![\Gamma]\!] \overset{[\![M]\!]}{\longrightarrow} [\![B]\!] + E$$

Now let's go through the various types.

- int denotes \mathbb{Z} .
- A closed value of type A + B is (# left, V) or (# right, V), where V is a closed value, so

$$[A + B] = [A] + [B]$$

- A closed value of type $A \to B$ is a λ -abstraction $\lambda \mathbf{x}.M$. This can be applied to a closed value V of type A, and gives a closed term $M[V/\mathbf{x}]$ of type B. So

$$\llbracket A \to B \rrbracket = \llbracket A \rrbracket \to \llbracket B \rrbracket + E$$

We can easily write out the semantics of terms now.

2.3 Substitution Lemma

As it stands, a value $\Gamma \vdash V : A$ denotes a function from $\llbracket \Gamma \rrbracket$ to $\llbracket A \rrbracket_{\perp}$. But, for the substitution lemma, we *also* want V to denote a function

$$\llbracket \Gamma \rrbracket \xrightarrow{\llbracket V \rrbracket^{\mathrm{val}}} \llbracket A \rrbracket$$

This is defined by induction on V. The two denotations of V are related as follows.

Proposition 1. Suppose $\Gamma \vdash V : A$ is a value, and ρ is a semantic environment for Γ . Then

$$\llbracket V \rrbracket \rho = (\# \mathrm{up}, \llbracket V \rrbracket^{\mathrm{val}} \rho)$$

Given a substitution $\Gamma \xrightarrow{k} \Delta$, we obtain a function $\llbracket \Delta \rrbracket \xrightarrow{\llbracket k \rrbracket} \llbracket \Gamma \rrbracket$. It maps $\rho \in \llbracket \Delta \rrbracket$ to the semantic environment for Γ that takes each identifier $\mathbf{x} : A$ in $\Gamma +$ to $\llbracket k(x) \rrbracket^{\operatorname{val}} \rho$.

Now we can formulate two substitution lemmas: one for substitution into terms, and one for substitution into values.

Proposition 2. Let $\Gamma \xrightarrow{k} \Delta$ be a substitution, and let ρ be a semantic environment for Δ .

1. For any term $\Gamma \vdash M : B$, we have $\llbracket k^*M \rrbracket \rho = \llbracket M \rrbracket (\llbracket k \rrbracket \rho)$. 2. For any value $\Gamma \vdash V : B$, we have $\llbracket k^*V \rrbracket^{\operatorname{val}} \rho = \llbracket V \rrbracket^{\operatorname{val}} (\llbracket k \rrbracket \rho)$.

2.4 Computational Adequacy

It is all very well to define a denotational semantics, but it's no good if it doesn't agree with the way the language was defined (the operational semantics).

Proposition 3. Let M be a closed term.

1. If $M \Downarrow V$, then $\llbracket M \rrbracket = \operatorname{inl} \llbracket V \rrbracket^{\operatorname{val}}$. 2. If $M \not \leq e$, then $\llbracket M \rrbracket = \operatorname{inr} e$.

We prove this by induction on \Downarrow and \oint .