
Typed λ-calculus:Denotational

Semantics of Call-By-Value

P. B. Levy
adapted for G53POP by T.Altenkirch

Universities of Birmingham and Nottingham

1 Substitution in CBV

For the pure calculus, we gave a substitution lemma expressing
[[M [N/x]]] in terms of [[M]] and [[N]]. But that will not be possible
in CBV, as the following example demonstrates. We define terms
x : bool `M,M ′ : bool and ` N : bool by

M
def
= true

M ′ def
= case x of {true → true | false → true}

N
def
= error CRASH

But in any CBV semantics we will have

[[M]] = [[M ′]] because M =η bool M
′

[[M [N/x]]] 6= [[M ′[N/x]]]

However, what we will be able to describe semantically is the
substitution of a restricted class of terms, called values.

V ::= x | n | true | false | (#left, V) | (#right, V) | λx.M

A value, in any syntactic environment, is terminal. And a closed term
is a value iff it is terminal. In the study of call-by-value, we define

a substitution Γ
k // ∆ to be a function mapping each identifier

x : A in Γ to a value ∆ ` V : A. If W is a value, then k∗W is a
value, for any substitution k.

2 Denotational Semantics for CBV

Let us think about how to give a denotational semantics for call-by-
value λ-calculus with errors. Let E be the set of errors.

2 P. B. Levy adapted for G53POP by T.Altenkirch

2.1 First Attempt

Let’s say that a type denotes a set, and that a closed term of type A
denotes an element of [[A]]. Then bool would denote B +E, because
a closed term of type bool either returns true or false, or raises
an error. Likewise int should denote Z + E.

Next, we have to define [[Γ]], for a context Γ, and this should
be the set of semantic environments. In particular, the context x :
bool, y : int should denote B × Z. But there does not seem to be
any way of obtaining that set from the sets [[bool]] and [[int]] as we
have defined them. So we need to do something different.

2.2 Second Attempt

Let’s instead make [[A]] the set of denotations of closed values, i.e.
terminal terms, rather than denotations of closed terms. We then
want bool to denote B, and we’ll complete the semantics of types
below.

We define [[Γ]] to be the set of functions mapping each identifier
x : A in Γ to an element of [[A]].

A closed term of type A either returns a closed value or raises
an error. So it should denote an element of [[A]] +E. More generally,
a term Γ ` M : B should denote, for each semantic environment
ρ ∈ [[Γ]], an element of [[B]] + E. Hence

[[Γ]]
[[M]] // [[B]] + E

Now let’s go through the various types.

– int denotes Z.
– A closed value of type A+B is (#left, V) or (#right, V), where
V is a closed value, so

[[A+B]] = [[A]] + [[B]]

– A closed value of type A→ B is a λ-abstraction λx.M . This can
be applied to a closed value V of type A, and gives a closed term
M [V/x] of type B. So

[[A→ B]] = [[A]]→ [[B]] + E

We can easily write out the semantics of terms now.

Typed λ-calculus:Denotational Semantics of Call-By-Value 3

2.3 Substitution Lemma

As it stands, a value Γ ` V : A denotes a function from [[Γ]] to [[A]]⊥.
But, for the substitution lemma, we also want V to denote a function

[[Γ]]
[[V]]val // [[A]]

This is defined by induction on V . The two denotations of V are
related as follows.

Proposition 1. Suppose Γ ` V : A is a value, and ρ is a semantic
environment for Γ. Then

[[V]]ρ = (#up, [[V]]valρ)

Given a substitution Γ
k // ∆ , we obtain a function [[∆]]

[[k]] // [[Γ]] .

It maps ρ ∈ [[∆]] to the semantic environment for Γ that takes each
identifier x : A in Γ+ to [[k(x)]]valρ.

Now we can formulate two substitution lemmas: one for substi-
tution into terms, and one for substitution into values.

Proposition 2. Let Γ
k // ∆ be a substitution, and let ρ be a se-

mantic environment for ∆.

1. For any term Γ `M : B, we have [[k∗M]]ρ = [[M]]([[k]]ρ).
2. For any value Γ ` V : B, we have [[k∗V]]valρ = [[V]]val([[k]]ρ).

2.4 Computational Adequacy

It is all very well to define a denotational semantics, but it’s no
good if it doesn’t agree with the way the language was defined (the
operational semantics).

Proposition 3. Let M be a closed term.

1. If M ⇓ V , then [[M]] = inl [[V]]val.
2. If M e, then [[M]] = inr e.

We prove this by induction on ⇓ and .

