
Typed λ-calculus: Substitution and

Equations

P. B. Levy
adapted for G53POP by T.Altenkirch

Universities of Birmingham and Nottingham

1 Renaming and Substitution

Suppose we have a term Γ ` M : B, and we want to turn it into a
term in context ∆, by replacing the identifiers. For example, we’re
given the term

x : int, y : bool, z : int ` z+case y of {true→ x+z | false→ x+1} : int

and we want to change it to something in the context u : bool, x :
int, y : bool.

1.1 Replacing Identifiers With Identifiers

One way is to replace identifiers in Γ with identifiers in ∆. A renam-
ing from Γ to ∆ (beware the direction here) is a function θ taking
each identifier x : A in Γ to an identifier θ(x) : A in ∆.

For example, using the above Γ and ∆, one renaming from Γ to
∆ is

x 7→ x

y 7→ u

z 7→ x

We write θ∗M for the result of changing all the free identifiers in M
according to θ. In the above example, we obtain

u : bool, x : int, y : bool ` x+case u of {true→ x+x | false→ x+1} : int

2 P. B. Levy adapted for G53POP by T.Altenkirch

Exercise 1. Apply to the term

x : int→ int, y : int ` let w = 5 in (x y) + (x w) : int

the renaming

x 7→ y

y 7→ w

to obtain a term in context

w : int, y : int→ int, z : int

1.2 Replacing Identifiers With Terms

The second example is called substitution, where we replace each
identifier in Γ with a term in context ∆. A substitution from Γ to ∆
is a function k taking each identifier x : A in Γ to a term ∆ ` k(x) : A.

For example, using the above Γ and ∆, a substitution from Γ to
∆ is

x 7→ 3 + x

y 7→ u

z 7→ case y of {true → x + 2 | false → x}

We write k∗M for the result of replacing all the free identifiers in M
according to k (avoiding capture, of course). In the above example,
we obtain

u : bool, x : int, y : bool `
case y of {true → x + 2 | false → x}+
case u of {true → (3 + x) + case y of {true → x + 2 | false → x}

| false → (3 + x) + 1} : int

Exercise 2. Apply to the term

x : int→ int, y : int ` let w = 5 in (x y) + (x w) : int

the substitution

x 7→ y

y 7→ w + 1

to obtain a term in context

w : int, y : int→ int, z : int

Typed λ-calculus: Substitution and Equations 3

1.3 Substitution Uses Renaming

It is clear that renaming is a special case of substitution. So why is
it important to consider both? The reason appears when we wish to
define k∗M by induction on M . Some of the inductive clauses are
easy:

k∗3 = 3

k∗(M +N) = k∗M + k∗N

k∗x = k(x)

But what about substituting into a let expression? Let’s first re-
member the typing rule for let :

Γ `M : A Γ, x : A ` N : B

Γ ` let x = M in N : B

(I’m going to assume that x doesn’t appear in Γ or ∆. Otherwise,
you can α-convert it to something else.)

We want to define

k∗(let x = M in N) = let x in k∗M in (k, x : A)∗N

where the substitution Γ, x : A
k,x:A // ∆, x : A is . . . what? Remember

that it has to map each identifier in Γ, x : A to a term (of the same
type) in context ∆, x : A. Clearly it maps x to x. And it maps
(y : B) ∈ Γ to k(y)—which is in context ∆—renamed along the
renaming from ∆ to ∆, x : A.

So we have to define renaming before we can define k, x : A, and
we have to define k, x : A before we can define substitution.

How do we define renaming inductively? Again, some of the in-
ductive clauses are easy:

θ∗3 = 3

θ∗(M +N) = θ∗M + θ∗N

θ∗x = θ(x)

For let , we want to define

θ∗(let M be x in N) = let x = θ∗M in (θ, x : A)∗N

4 P. B. Levy adapted for G53POP by T.Altenkirch

where the renaming morphism Γ, x : A
θ,x:A // ∆, x : A maps x to x,

and otherwise is the same as θ.
In summary, the definition of substitution goes in 4 stages:

– define θ, x : A
– define renaming by induction
– define k, x : A
– define substitution by induction.

A consequence of this is that if you want to prove a theorem about
substitution, you’ll first have to prove it for renaming.

Proposition 1. 1. Contexts and substitutions form a category—
composition is defined by subsitution. This means

k; id = k

id; k = k

(k; l);m = k; (l;m)

Renamings form a subcategory, i.e. every renaming is a substitu-
tion and renamings have the same set of laws.

2. (k; l)∗M is the same as k∗l∗M , and id∗M is the same as M .

2 Evaluation Through β-reduction

Intuitively, a β-reduction means simplification. I’ll write M N
to mean that M can be simplified to N . For example, there are
β-reduction rules for all the arithmetic operations:

m+ n m+ n

m× n m× n
m > n true if m > n

m > n false if m 6 n

There is a β-reduction rule for local definitions:

let x = M in N N [M/x]

Typed λ-calculus: Substitution and Equations 5

But the most interesting are the β-reductions for all the types.
The rough idea is: if you use an introduction rule and then, imme-
diately, use an elimination rule, then they can be simplified.

For the boolean type, the β-reduction rule is

case true of {true → N | false → N ′} N

case false of {true → N | false → N ′} N ′

For the type A×B, if we use projections the β-reduction rule is

fst (M,M ′) M

snd (M,M ′) M ′

If we use pattern-matching, the β-reduction rule is

case (M,M ′) of (x, y) → N N [M/x,M ′/y]

For the type A+B, the β-reduction rule is

case (#left,M) of {(#left, x) in N, (#right, y) in N ′} N [M/x]

case (#right,M) of {(#left, x) in N, (#right, y) in N ′} N ′[M/y]

For the type A→ B, the β-reduction rule is

(λx.M)N M [N/x]

A term which is the left-hand-side of a β-reduction is called a
β-redex.

You can simplify any term M by picking a subterm that’s a
β-redex, and reduce it. Do this again and again until you get a β-
normal term, i.e. one that doesn’t contain any β-redex. It can be
shown that this process has to terminate (the strong normalization
theorem).

Proposition 2. A closed term M that is β-normal must have an
introduction rule at the root. (Remember that we consider n to be an
introduction rule, but not +× >.) Hence, if M has type int, then it
must be n for some n ∈ Z.

6 P. B. Levy adapted for G53POP by T.Altenkirch

We prove the first part by induction on M .

Exercise 3. All the sums that we did can be turned into expressions
and evaluated using β-reduction. Try:

1. let x = (5, (2, true)) in fst x + fst (case x of (y, z) → z)
2.

case (case (3 < 7) of {true → (#right, 8 + 1) | false → (#left, 2)}) of
{(#left, u) → u + 8 | (#right, u) → u + 3}

3. (λf : int → int.λx : int.f(fx)(λx : int.x + 3)2

3 η-expansion

The η-expansion laws express the idea that

– everything of type bool is true or false
– everything of type A×B is a pair (x, y)
– everything of type A+B is a pair (#left, x) or a pair (#right, x)
– everything of type A→ B is a function.

They are given by first applying an elimination, then an introduction
(the opposite of β-reduction).

Let’s begin with the type bool. If we have a term Γ, z : bool `
N : B, it can be η-expanded to

case z of {true → N [true/z] | false → N [false/z]}

The reason this ought to be true is that, whatever we define the
identifiers in Γ to be, z will be either true or false. Either way,
both sides should be the same.

What about A×B? If we’re using projections, then any Γ `M :
A×B can be η-expanded to (fst M, snd M).

And if we’re using pattern-match, suppose Γ, z : A×B ` N : C.
Then N can be expanded into

case z of (x, y)N [(x, y)/z]

(I’m supposing the x and y we use here don’t appear in Γ, z : A×B.)

Typed λ-calculus: Substitution and Equations 7

For A + B, it’s similar. Suppose Γ, z : A + B ` N : C. Then N
can be expanded into

case z of {(#left, x)→N [(#left, x)/z] | (#right, y)→N [(#right, y)/z]}

(Again, I’m supposing the x and y don’t appear in Γ, z : A+B.)
And finally, A→ B. Any term Γ `M : A→ B can be expanded

as λx.(Mx).
(Again, I’m supposing the x doesn’t appear in Γ.)

Exercise 4. Take the term

f : (int+ bool)→ (int+ bool) ` f : (int+ bool)→ (int+ bool)

Apply an η-expansion for →, then for +, then for bool.

4 Equality

λ-calculus isn’t just a set of terms; it comes with an equational the-
ory. If Γ `M : B and Γ ` N : B, we write Γ `M = N : B to express
the intuitive idea that, no matter what we define the identifiers in
Γ to be, M and N have the same “meaning” (even though they’re
different expressions).

First of all we need rules to say that this is an equivalence rela-
tion:

Γ `M : B

Γ `M = M : B

Γ `M = N : B

Γ ` N = M : B

Γ `M = N : B Γ ` N = P : B

Γ `M = P : B

Secondly, we need rules to say that this is compatible—preserved by
every construct:

Γ `M = M ′ : A Γ, x : A ` N = N ′ : B

Γ ` let x = M in N = let x = M ′ in N ′ : B

and so forth. A compatible equivalence relation is often called a
congruence.

8 P. B. Levy adapted for G53POP by T.Altenkirch

Thirdly, each of the β-reductions that we’ve seen is an axiom of
this theory.

Γ ` N : B Γ ` N ′ : B

Γ ` case true of {true → N | false → N ′} = N : B

Γ, x : A `M : B Γ ` N : A

Γ ` (λx.M)N = M [N/x] : B

Fourthly, each of the η-expansions is an axiom of the theory, e.g.

Γ `M : A→ B

Γ `M = λx.(Mx) : A→ B

But in the case of the η-expansions involving pattern-matching, we
need to generalize them slightly. The reason is that we want to prove

Proposition 3. If Γ `M = N : B and Γ
k // ∆ is a substitution,

then ∆ ` k∗M = k∗N : B

Consequently, the η-law for bool looks like this:

Γ `M : bool Γ, z : bool ` N : C

Γ ` N [M/z] =
case M of {true → N [true/z] | false → N [false/z]}
: C

and similarly for the other pattern-matching laws. We can then prove
Prop. 3, first for renamings, then for substitution.

5 Exercises

1. Suppose that Γ ` M : bool and Γ ` N0, N1, N2, N3 : C. Show
that

Γ ` case M of {
true → case M of {true.N0 | false.N1},
| false → case M of {true → N2 | false → N3}

}
= case M of {true → N0 | false → N3} : C

Typed λ-calculus: Substitution and Equations 9

2. Show that (#left,−) is injective, i.e. if Γ ` M,M ′ : A and Γ `
(#left,M) = (#left,M ′) : A+B then Γ `M = M ′ : A.

3. Write down the η-law for the 0 type.
4. Given a term Γ, x : A `M : 0, show that it is an “isomorphism”

in the sense that there is a term Γ, y : 0 ` N : A satisfying

Γ, y : 0 `M [N/x] = y : 0

Γ, x : A ` N [M/x] = x : A

5. Give β and η laws for α(A,B,C,D,E) and for β(A,B,C,D,E, F,G).
(See yesterday’s exercises for a description of these types.)

