Typed λ-calculus: Substitution and Equations

P. B. Levy
adapted for G53POP by T.Altenkirch
Universities of Birmingham and Nottingham

1 Renaming and Substitution

Suppose we have a term $\Gamma \vdash M: B$, and we want to turn it into a term in context Δ, by replacing the identifiers. For example, we're given the term
x : int, $\mathrm{y}:$ bool, z : int $\vdash \mathrm{z}+$ case y of $\{$ true $\rightarrow \mathrm{x}+\mathrm{z} \mid$ false $\rightarrow \mathrm{x}+1\}$: int
and we want to change it to something in the context $\mathrm{u}:$ bool, x : int, y : bool.

1.1 Replacing Identifiers With Identifiers

One way is to replace identifiers in Γ with identifiers in Δ. A renaming from Γ to Δ (beware the direction here) is a function θ taking each identifier x : A in Γ to an identifier $\theta(\mathrm{x}): A$ in Δ.

For example, using the above Γ and Δ, one renaming from Γ to Δ is

$$
\begin{aligned}
& \mathrm{x} \mapsto \mathrm{x} \\
& \mathrm{y} \mapsto \mathrm{u} \\
& \mathrm{z} \mapsto \mathrm{x}
\end{aligned}
$$

We write $\theta^{*} M$ for the result of changing all the free identifiers in M according to θ. In the above example, we obtain
$\mathrm{u}:$ bool, x : int, y : bool $\vdash \mathrm{x}+$ case u of $\{$ true $\rightarrow \mathrm{x}+\mathrm{x} \mid$ false $\rightarrow \mathrm{x}+1\}$: int

Exercise 1. Apply to the term

$$
\mathrm{x}: \operatorname{int} \rightarrow \operatorname{int}, \mathrm{y}: \operatorname{int} \vdash \operatorname{let} \mathrm{w}=5 \text { in }(\mathrm{x} y)+(\mathrm{x}): \text { int }
$$

the renaming

$$
\begin{aligned}
& \mathrm{x} \mapsto \mathrm{y} \\
& \mathrm{y} \mapsto \mathrm{w}
\end{aligned}
$$

to obtain a term in context

$$
\text { w : int, } y: \text { int } \rightarrow \text { int, } z: \text { int }
$$

1.2 Replacing Identifiers With Terms

The second example is called substitution, where we replace each identifier in Γ with a term in context Δ. A substitution from Γ to Δ is a function k taking each identifier $\mathrm{x}: A$ in Γ to a term $\Delta \vdash k(\mathrm{x}): A$.

For example, using the above Γ and Δ, a substitution from Γ to Δ is

$$
\begin{aligned}
& \mathrm{x} \mapsto 3+\mathrm{x} \\
& \mathrm{y} \mapsto \mathrm{u} \\
& \mathrm{z} \mapsto \text { case } \mathrm{y} \text { of }\{\text { true } \rightarrow \mathrm{x}+2 \mid \text { false } \rightarrow \mathrm{x}\}
\end{aligned}
$$

We write $k^{*} M$ for the result of replacing all the free identifiers in M according to k (avoiding capture, of course). In the above example, we obtain

$$
\begin{aligned}
& \mathrm{u}: \text { bool, } \mathrm{x}: \text { int, } \mathrm{y}: \text { bool } \vdash \\
& \text { case } \mathrm{y} \text { of }\{\text { true } \rightarrow \mathrm{x}+2 \mid \text { false } \rightarrow \mathrm{x}\}+ \\
& \text { case } \mathrm{u} \text { of }\{\text { true } \rightarrow(3+\mathrm{x})+\text { case } \mathrm{y} \text { of }\{\text { true } \rightarrow \mathrm{x}+2 \mid \text { false } \rightarrow \mathrm{x}\} \\
& \quad \mid \text { false } \rightarrow(3+\mathrm{x})+1\}: \text { int }
\end{aligned}
$$

Exercise 2. Apply to the term

$$
x: \operatorname{int} \rightarrow \text { int, } y: \operatorname{int} \vdash \text { let } w=5 \text { in }(x y)+(x w): \text { int }
$$

the substitution

$$
\begin{array}{r}
\mathrm{x} \mapsto \mathrm{y} \\
\mathrm{y} \mapsto \mathrm{w}+1
\end{array}
$$

to obtain a term in context

$$
\text { w : int, } y: \text { int } \rightarrow \text { int, } z: \text { int }
$$

1.3 Substitution Uses Renaming

It is clear that renaming is a special case of substitution. So why is it important to consider both? The reason appears when we wish to define $k^{*} M$ by induction on M. Some of the inductive clauses are easy:

$$
\begin{aligned}
k^{*} 3 & =3 \\
k^{*}(M+N) & =k^{*} M+k^{*} N \\
k^{*} \mathrm{x} & =k(\mathrm{x})
\end{aligned}
$$

But what about substituting into a let expression? Let's first remember the typing rule for let :

$$
\frac{\Gamma \vdash M: A \quad \Gamma, \mathrm{x}: A \vdash N: B}{\Gamma \vdash \text { let } \mathrm{x}=M \text { in } N: B}
$$

(I'm going to assume that x doesn't appear in Γ or Δ. Otherwise, you can α-convert it to something else.)

We want to define

$$
k^{*}(\text { let } \mathrm{x}=M \text { in } N)=\text { let } \mathrm{x} \text { in } k^{*} M \text { in }(k, \mathrm{x}: A)^{*} N
$$

where the substitution $\Gamma, \mathrm{x}: A \xrightarrow{k, \mathrm{x}: A} \Delta, \mathrm{x}: A$ is \ldots what? Remember that it has to map each identifier in $\Gamma, \mathrm{x}: A$ to a term (of the same type) in context $\Delta, \mathrm{x}: A$. Clearly it maps x to x . And it maps (y : B) $\in \Gamma$ to $k(\mathrm{y})$-which is in context Δ-renamed along the renaming from Δ to $\Delta, \mathrm{x}: A$.

So we have to define renaming before we can define $k, \mathrm{x}: A$, and we have to define $k, \mathrm{x}: A$ before we can define substitution.

How do we define renaming inductively? Again, some of the inductive clauses are easy:

$$
\begin{aligned}
\theta^{*} 3 & =3 \\
\theta^{*}(M+N) & =\theta^{*} M+\theta^{*} N \\
\theta^{*} \mathrm{x} & =\theta(\mathrm{x})
\end{aligned}
$$

For let, we want to define

$$
\theta^{*}(\text { let } M \text { be } \mathrm{x} \text { in } N)=\text { let } \mathrm{x}=\theta^{*} M \text { in }(\theta, \mathrm{x}: A)^{*} N
$$

where the renaming morphism $\Gamma, \mathrm{x}: A \xrightarrow{\theta, \mathrm{x}: A} \Delta, \mathrm{x}: A$ maps x to x, and otherwise is the same as θ.

In summary, the definition of substitution goes in 4 stages:

- define θ, x: A
- define renaming by induction
- define $k, \mathrm{x}: A$
- define substitution by induction.

A consequence of this is that if you want to prove a theorem about substitution, you'll first have to prove it for renaming.

Proposition 1. 1. Contexts and substitutions form a categorycomposition is defined by subsitution. This means

$$
\begin{aligned}
k ; \mathrm{id} & =k \\
\mathrm{id} ; k & =k \\
(k ; l) ; m & =k ;(l ; m)
\end{aligned}
$$

Renamings form a subcategory, i.e. every renaming is a substitution and renamings have the same set of laws.
2. $(k ; l)^{*} M$ is the same as $k^{*} l^{*} M$, and $\mathrm{id}^{*} M$ is the same as M.

2 Evaluation Through $\boldsymbol{\beta}$-reduction

Intuitively, a β-reduction means simplification. I'll write $M \rightsquigarrow N$ to mean that M can be simplified to N. For example, there are β-reduction rules for all the arithmetic operations:

$$
\begin{aligned}
& \underline{m}+\underline{n} \rightsquigarrow \underline{m+n} \\
& \underline{m} \times \underline{n} \rightsquigarrow \underline{m \times n} \\
& \underline{m}>\underline{n} \rightsquigarrow \text { true if } m>n \\
& \underline{m}>\underline{n} \rightsquigarrow \text { false if } m \leqslant n
\end{aligned}
$$

There is a β-reduction rule for local definitions:

$$
\text { let } \mathrm{x}=M \text { in } N \rightsquigarrow N[M / \mathrm{x}]
$$

But the most interesting are the β-reductions for all the types. The rough idea is: if you use an introduction rule and then, immediately, use an elimination rule, then they can be simplified.

For the boolean type, the β-reduction rule is

$$
\begin{gathered}
\text { case true of }\left\{\text { true } \rightarrow N \mid \text { false } \rightarrow N^{\prime}\right\} \rightsquigarrow N \\
\text { case false of }\left\{\text { true } \rightarrow N \mid \text { false } \rightarrow N^{\prime}\right\} \rightsquigarrow N^{\prime}
\end{gathered}
$$

For the type $A \times B$, if we use projections the β-reduction rule is

$$
\begin{aligned}
& \text { fst }\left(M, M^{\prime}\right) \rightsquigarrow M \\
& \text { snd }\left(M, M^{\prime}\right) \rightsquigarrow M^{\prime}
\end{aligned}
$$

If we use pattern-matching, the β-reduction rule is

$$
\text { case }\left(M, M^{\prime}\right) \text { of }(\mathrm{x}, \mathrm{y}) \rightarrow N \rightsquigarrow N\left[M / \mathrm{x}, M^{\prime} / \mathrm{y}\right]
$$

For the type $A+B$, the β-reduction rule is

$$
\begin{gathered}
\text { case }(\# \text { left, } M) \text { of }\left\{(\# \text { left, } \mathrm{x}) \text { in } N,(\# \text { right, } \mathrm{y}) \text { in } N^{\prime}\right\} \rightsquigarrow N[M / \mathrm{x}] \\
\text { case }(\# \mathrm{right}, M) \text { of }\left\{(\# \mathrm{left}, \mathrm{x}) \text { in } N,(\# \text { right, } \mathrm{y}) \text { in } N^{\prime}\right\} \rightsquigarrow N^{\prime}[M / \mathrm{y}]
\end{gathered}
$$

For the type $A \rightarrow B$, the β-reduction rule is

$$
(\lambda \mathrm{x} \cdot M) N \rightsquigarrow M[N / \mathrm{x}]
$$

A term which is the left-hand-side of a β-reduction is called a β-redex.

You can simplify any term M by picking a subterm that's a β-redex, and reduce it. Do this again and again until you get a β normal term, i.e. one that doesn't contain any β-redex. It can be shown that this process has to terminate (the strong normalization theorem).

Proposition 2. A closed term M that is β-normal must have an introduction rule at the root. (Remember that we consider \underline{n} to be an introduction rule, but not $+\times>$.) Hence, if M has type int, then it must be \underline{n} for some $n \in \mathbb{Z}$.

We prove the first part by induction on M.
Exercise 3. All the sums that we did can be turned into expressions and evaluated using β-reduction. Try:

1. let $\mathrm{x}=(5,(2$, true $))$ in fst $\mathrm{x}+\mathrm{fst}($ case x of $(\mathrm{y}, \mathrm{z}) \rightarrow \mathbf{z})$
2.

case (case $(3<7)$ of $\{$ true $\rightarrow(\#$ right, $8+1) \mid$ false $\rightarrow(\#$ left, 2$)$) of $\{(\#$ left, u$) \rightarrow \mathrm{u}+8 \mid(\#$ right, u$) \rightarrow \mathrm{u}+3\}$
3. $(\lambda \mathrm{f}:$ int \rightarrow int. $\lambda \mathrm{x}: \operatorname{int} . \mathrm{f}(\mathrm{fx})(\lambda \mathrm{x}:$ int. $\mathrm{x}+3) 2$

$3 \quad \eta$-expansion

The η-expansion laws express the idea that

- everything of type bool is true or false
- everything of type $A \times B$ is a pair (x, y)
- everything of type $A+B$ is a pair (\#left, x) or a pair (\#right, x)
- everything of type $A \rightarrow B$ is a function.

They are given by first applying an elimination, then an introduction (the opposite of β-reduction).

Let's begin with the type bool. If we have a term $\Gamma, \mathbf{z}:$ bool \vdash $N: B$, it can be η-expanded to

```
case z of {true }->N[\mathrm{ true /z] | false }->N[\mathrm{ false/z]}
```

The reason this ought to be true is that, whatever we define the identifiers in Γ to be, z will be either true or false. Either way, both sides should be the same.

What about $A \times B$? If we're using projections, then any $\Gamma \vdash M$: $A \times B$ can be η-expanded to (fst M, snd M).

And if we're using pattern-match, suppose $\Gamma, \mathrm{z}: A \times B \vdash N: C$. Then N can be expanded into

$$
\text { case } \mathrm{z} \text { of }(\mathrm{x}, \mathrm{y}) N[(\mathrm{x}, \mathrm{y}) / \mathrm{z}]
$$

(I'm supposing the x and y we use here don't appear in $\Gamma, \mathrm{z}: A \times B$.)

For $A+B$, it's similar. Suppose $\Gamma, \mathbf{z}: A+B \vdash N: C$. Then N can be expanded into
case z of $\{(\#$ left, x$) \rightarrow N[(\#$ left, x$) / \mathrm{z}] \mid(\#$ right, y$) \rightarrow N[(\#$ right, y$) / \mathrm{z}]\}$
(Again, I'm supposing the x and y don't appear in $\Gamma, \mathbf{z}: A+B$.)
And finally, $A \rightarrow B$. Any term $\Gamma \vdash M: A \rightarrow B$ can be expanded as $\lambda \mathrm{x} .(M x)$.
(Again, I'm supposing the x doesn't appear in Γ.)
Exercise 4. Take the term
f: $($ int + bool $) \rightarrow($ int + bool $) \vdash f:($ int + bool $) \rightarrow($ int + bool $)$
Apply an η-expansion for \rightarrow, then for + , then for bool.

4 Equality

λ-calculus isn't just a set of terms; it comes with an equational theory. If $\Gamma \vdash M: B$ and $\Gamma \vdash N: B$, we write $\Gamma \vdash M=N: B$ to express the intuitive idea that, no matter what we define the identifiers in Γ to be, M and N have the same "meaning" (even though they're different expressions).

First of all we need rules to say that this is an equivalence relation:

$$
\begin{gathered}
\frac{\Gamma \vdash M: B}{\Gamma \vdash M=M: B} \quad \frac{\Gamma \vdash M=N: B}{\Gamma \vdash N=M: B} \\
\frac{\Gamma \vdash M=N: B \quad \Gamma \vdash N=P: B}{\Gamma \vdash M=P: B}
\end{gathered}
$$

Secondly, we need rules to say that this is compatible - preserved by every construct:

$$
\frac{\Gamma \vdash M=M^{\prime}: A \quad \Gamma, \mathrm{x}: A \vdash N=N^{\prime}: B}{\Gamma \vdash \operatorname{let} \mathrm{x}=M \text { in } N=\text { let } \mathrm{x}=M^{\prime} \text { in } N^{\prime}: B}
$$

and so forth. A compatible equivalence relation is often called a congruence.

Thirdly, each of the β-reductions that we've seen is an axiom of this theory.

$$
\begin{gathered}
\left.\left.\frac{\Gamma \vdash N: B \quad \Gamma \vdash N^{\prime}: B}{\Gamma \vdash \text { case true of }\{\text { true } \rightarrow} N \right\rvert\, \text { false } \rightarrow N^{\prime}\right\}=N: B \\
\frac{\Gamma, \mathrm{x}: A \vdash M: B \quad \Gamma \vdash N: A}{\Gamma \vdash(\lambda \mathrm{x} \cdot M) N=M[N / \mathrm{x}]: B}
\end{gathered}
$$

Fourthly, each of the η-expansions is an axiom of the theory, e.g.

$$
\frac{\Gamma \vdash M: A \rightarrow B}{\Gamma \vdash M=\lambda \mathrm{x} \cdot(M \mathrm{x}): A \rightarrow B}
$$

But in the case of the η-expansions involving pattern-matching, we need to generalize them slightly. The reason is that we want to prove
Proposition 3. If $\Gamma \vdash M=N: B$ and $\Gamma \xrightarrow{k} \Delta$ is a substitution, then $\Delta \vdash k^{*} M=k^{*} N: B$

Consequently, the η-law for bool looks like this:

$$
\Gamma \vdash M: \text { bool } \quad \Gamma, z: \text { bool } \vdash N: C
$$

```
\(\Gamma \vdash N[M / \mathrm{z}]=\)
    case \(M\) of \(\{\) true \(\rightarrow N[\) true \(/ \mathrm{z}] \mid\) false \(\rightarrow N[\) false \(/ \mathrm{z}]\}\)
    : \(C\)
```

and similarly for the other pattern-matching laws. We can then prove Prop. 3, first for renamings, then for substitution.

5 Exercises

1. Suppose that $\Gamma \vdash M$: bool and $\Gamma \vdash N_{0}, N_{1}, N_{2}, N_{3}: C$. Show that
```
\Gamma case M of {
    true }->\mathrm{ case M of {true. N N | false. N N },
    |false }->\mathrm{ case M of {true }->\mp@subsup{N}{2}{}|\mathrm{ false }->\mp@subsup{N}{3}{}
    }
    = case M of {true }->\mp@subsup{N}{0}{}|\mathrm{ false }->\mp@subsup{N}{3}{}}:
```

2. Show that (\#left, -) is injective, i.e. if $\Gamma \vdash M, M^{\prime}: A$ and $\Gamma \vdash$ $(\#$ left,$M)=\left(\#\right.$ left, $\left.M^{\prime}\right): A+B$ then $\Gamma \vdash M=M^{\prime}: A$.
3. Write down the η-law for the 0 type.
4. Given a term $\Gamma, \mathrm{x}: A \vdash M: 0$, show that it is an "isomorphism" in the sense that there is a term $\Gamma, \mathrm{y}: 0 \vdash N: A$ satisfying

$$
\begin{gathered}
\Gamma, \mathrm{y}: 0 \vdash M[N / \mathrm{x}]=\mathrm{y}: 0 \\
\Gamma, \mathrm{x}: A \vdash N[M / \mathrm{x}]=\mathrm{x}: A
\end{gathered}
$$

5. Give β and η laws for $\alpha(A, B, C, D, E)$ and for $\beta(A, B, C, D, E, F, G)$. (See yesterday's exercises for a description of these types.)
