Typed λ -calculus: Substitution and Equations

P. B. Levy adapted for G53POP by T.Altenkirch

Universities of Birmingham and Nottingham

1 Renaming and Substitution

Suppose we have a term $\Gamma \vdash M : B$, and we want to turn it into a term in context Δ , by replacing the identifiers. For example, we're given the term

 $x: int, y: bool, z: int \vdash z+case y of \{true \rightarrow x+z \mid false \rightarrow x+1\}: int$

and we want to change it to something in the context u : bool, x : int, y : bool.

1.1 Replacing Identifiers With Identifiers

One way is to replace identifiers in Γ with *identifiers* in Δ . A *renaming* from Γ to Δ (beware the direction here) is a function θ taking each identifier $\mathbf{x} : A$ in Γ to an identifier $\theta(\mathbf{x}) : A$ in Δ .

For example, using the above Γ and $\Delta,$ one renaming from Γ to Δ is

$$\begin{array}{l} x \mapsto x \\ y \mapsto u \\ z \mapsto x \end{array}$$

We write $\theta^* M$ for the result of changing all the free identifiers in M according to θ . In the above example, we obtain

 $\texttt{u}:\texttt{bool},\texttt{x}:\texttt{int},\texttt{y}:\texttt{bool}\vdash\texttt{x}+\texttt{case}\,\texttt{u}\,\texttt{of}\,\{\texttt{true}\rightarrow\texttt{x}+\texttt{x}\,|\,\texttt{false}\rightarrow\texttt{x}+1\}:\texttt{int}$

Exercise 1. Apply to the term

$$\mathbf{x} : \mathtt{int} \to \mathtt{int}, \mathbf{y} : \mathtt{int} \vdash \mathtt{let} \ \mathbf{w} = 5 \ \mathtt{in} \ (\mathbf{x} \ \mathbf{y}) + (\mathbf{x} \ \mathbf{w}) : \mathtt{int}$$

the renaming

$$\begin{array}{c} \mathbf{x} \mapsto \mathbf{y} \\ \mathbf{y} \mapsto \mathbf{w} \end{array}$$

to obtain a term in context

 $\texttt{w}:\texttt{int},\texttt{y}:\texttt{int}\to\texttt{int},\texttt{z}:\texttt{int}$

1.2 Replacing Identifiers With Terms

The second example is called *substitution*, where we replace each identifier in Γ with a *term* in context Δ . A *substitution* from Γ to Δ is a function k taking each identifier $\mathbf{x} : A$ in Γ to a term $\Delta \vdash k(\mathbf{x}) : A$.

For example, using the above Γ and Δ , a substitution from Γ to Δ is

$$\begin{array}{l} \mathbf{x} \mapsto 3 + \mathbf{x} \\ \mathbf{y} \mapsto \mathbf{u} \\ \mathbf{z} \mapsto \mathsf{case} \; \mathbf{y} \; \mathsf{of} \; \{ \mathtt{true} \to \; \mathbf{x} + 2 \; | \; \mathtt{false} \to \; \mathbf{x} \} \end{array}$$

We write k^*M for the result of replacing all the free identifiers in M according to k (avoiding capture, of course). In the above example, we obtain

 $\begin{array}{l} \texttt{u:bool},\texttt{x:int},\texttt{y:bool} \vdash \\ \texttt{case y of } \{\texttt{true} \rightarrow \texttt{x}+2 \mid \texttt{false} \rightarrow \texttt{x}\} + \\ \texttt{case u of } \{\texttt{true} \rightarrow (3+\texttt{x}) + \texttt{case y of } \{\texttt{true} \rightarrow \texttt{x}+2 \mid \texttt{false} \rightarrow \texttt{x}\} \\ \quad \mid \texttt{false} \rightarrow (3+\texttt{x})+1\} : \texttt{int} \end{array}$

Exercise 2. Apply to the term

$$\mathtt{x}: \mathtt{int} \to \mathtt{int}, \mathtt{y}: \mathtt{int} \vdash \mathtt{let} \ \mathtt{w} = 5 \ \mathtt{in} \ (\mathtt{x} \ \mathtt{y}) + (\mathtt{x} \ \mathtt{w}): \mathtt{int}$$

the substitution

$$\begin{array}{c} \mathbf{x} \mapsto \mathbf{y} \\ \mathbf{y} \mapsto \mathbf{w} + 1 \end{array}$$

to obtain a term in context

 $\texttt{w}:\texttt{int},\texttt{y}:\texttt{int}\to\texttt{int},\texttt{z}:\texttt{int}$

1.3 Substitution Uses Renaming

It is clear that renaming is a special case of substitution. So why is it important to consider both? The reason appears when we wish to define k^*M by induction on M. Some of the inductive clauses are easy:

$$\begin{aligned} k^*3 &= 3\\ k^*(M+N) &= k^*M + k^*N\\ k^*\mathbf{x} &= k(\mathbf{x}) \end{aligned}$$

But what about substituting into a let expression? Let's first remember the typing rule for let :

$$\frac{\Gamma \vdash M : A \quad \Gamma, \mathbf{x} : A \vdash N : B}{\Gamma \vdash \mathsf{let} \ \mathbf{x} = M \text{ in } N : B}$$

(I'm going to assume that \mathbf{x} doesn't appear in Γ or Δ . Otherwise, you can α -convert it to something else.)

We want to define

$$k^*(\texttt{let } \mathbf{x} = M \texttt{ in } N) = \texttt{let } \mathbf{x} \texttt{ in } k^*M \texttt{ in } (k, \mathbf{x} : A)^*N$$

where the substitution $\Gamma, \mathbf{x} : A \xrightarrow{k,\mathbf{x}:A} \Delta, \mathbf{x} : A$ is ... what? Remember that it has to map each identifier in $\Gamma, \mathbf{x} : A$ to a term (of the same type) in context $\Delta, \mathbf{x} : A$. Clearly it maps \mathbf{x} to \mathbf{x} . And it maps $(\mathbf{y} : B) \in \Gamma$ to $k(\mathbf{y})$ —which is in context Δ —renamed along the renaming from Δ to $\Delta, \mathbf{x} : A$.

So we have to define renaming before we can define $k, \mathbf{x} : A$, and we have to define $k, \mathbf{x} : A$ before we can define substitution.

How do we define renaming inductively? Again, some of the inductive clauses are easy:

$$\begin{aligned} \theta^* 3 &= 3\\ \theta^* (M+N) &= \theta^* M + \theta^* N\\ \theta^* \mathbf{x} &= \theta(\mathbf{x}) \end{aligned}$$

For let, we want to define

$$\theta^*(\texttt{let}\;M\;\texttt{be}\;\texttt{x}\;\texttt{in}\;N)=\texttt{let}\;\texttt{x}=\theta^*M\;\texttt{in}\;(\theta,\texttt{x}:A)^*N$$

where the renaming morphism $\Gamma, \mathbf{x} : A \xrightarrow{\theta, \mathbf{x}: A} \Delta, \mathbf{x} : A$ maps \mathbf{x} to \mathbf{x} , and otherwise is the same as θ .

In summary, the definition of substitution goes in 4 stages:

- define $\theta, \mathbf{x} : A$
- define renaming by induction
- define $k, \mathbf{x} : A$
- define substitution by induction.

A consequence of this is that if you want to prove a theorem about substitution, you'll first have to prove it for renaming.

Proposition 1. 1. Contexts and substitutions form a category composition is defined by substitution. This means

$$\begin{aligned} k; & \mathrm{id} = k \\ & \mathrm{id}; k = k \\ (k; l); & m = k; (l; m) \end{aligned}$$

Renamings form a subcategory, i.e. every renaming is a substitution and renamings have the same set of laws.

2. $(k;l)^*M$ is the same as k^*l^*M , and id^*M is the same as M.

2 Evaluation Through β -reduction

Intuitively, a β -reduction means simplification. I'll write $M \rightsquigarrow N$ to mean that M can be simplified to N. For example, there are β -reduction rules for all the arithmetic operations:

$$\begin{array}{l} \underline{m} + \underline{n} \rightsquigarrow \underline{m+n} \\ \underline{m} \times \underline{n} \rightsquigarrow \underline{m \times n} \\ \underline{m} > \underline{n} \rightsquigarrow \texttt{true if } m > n \\ \underline{m} > \underline{n} \rightsquigarrow \texttt{false if } m \leqslant n \end{array}$$

There is a β -reduction rule for local definitions:

let
$$\mathbf{x} = M$$
 in $N \rightsquigarrow N[M/\mathbf{x}]$

But the most interesting are the β -reductions for all the types. The rough idea is: if you use an introduction rule and then, immediately, use an elimination rule, then they can be simplified.

For the boolean type, the β -reduction rule is

case true of {true
$$\rightarrow N \mid \text{false} \rightarrow N'$$
} $\rightsquigarrow N$
case false of {true $\rightarrow N \mid \text{false} \rightarrow N'$ } $\rightsquigarrow N'$

For the type $A \times B$, if we use projections the β -reduction rule is

fst
$$(M, M') \rightsquigarrow M$$

snd $(M, M') \rightsquigarrow M'$

If we use pattern-matching, the β -reduction rule is

case
$$(M, M')$$
 of $(\mathbf{x}, \mathbf{y}) \to N \rightsquigarrow N[M/\mathbf{x}, M'/\mathbf{y}]$

For the type A + B, the β -reduction rule is

case (#left, M) of {(#left, x) in N, (#right, y) in N'} $\rightarrow N[M/x]$ case (#right, M) of {(#left, x) in N, (#right, y) in N'} $\rightarrow N'[M/y]$

For the type $A \to B$, the β -reduction rule is

$$(\lambda \mathbf{x}.M)N \rightsquigarrow M[N/\mathbf{x}]$$

A term which is the left-hand-side of a β -reduction is called a β -redex.

You can simplify any term M by picking a subterm that's a β -redex, and reduce it. Do this again and again until you get a β -normal term, i.e. one that doesn't contain any β -redex. It can be shown that this process has to terminate (the strong normalization theorem).

Proposition 2. A closed term M that is β -normal must have an introduction rule at the root. (Remember that we consider \underline{n} to be an introduction rule, but not $+\times >$.) Hence, if M has type int, then it must be \underline{n} for some $n \in \mathbb{Z}$.

6 P. B. Levy adapted for G53POP by T.Altenkirch

We prove the first part by induction on M.

Exercise 3. All the sums that we did can be turned into expressions and evaluated using β -reduction. Try:

1. let $\mathbf{x} = (5, (2, \text{true}))$ in fst $\mathbf{x} + \text{fst}$ (case \mathbf{x} of $(\mathbf{y}, \mathbf{z}) \to \mathbf{z}$) 2.

case (case (3 < 7) of {true \rightarrow (#right, 8 + 1) | false \rightarrow (#left, 2)}) of {(#left, u) \rightarrow u + 8 | (#right, u) \rightarrow u + 3}

3. $(\lambda f: int \rightarrow int.\lambda x: int.f(fx)(\lambda x: int.x + 3)2)$

3 η -expansion

The η -expansion laws express the idea that

- everything of type bool is true or false
- everything of type $A \times B$ is a pair (x, y)
- everything of type A + B is a pair (#left, x) or a pair (#right, x)
- everything of type $A \rightarrow B$ is a function.

They are given by first applying an elimination, then an introduction (the opposite of β -reduction).

Let's begin with the type bool. If we have a term $\Gamma, \mathbf{z} : \mathsf{bool} \vdash N : B$, it can be η -expanded to

case z of {true $\rightarrow N[\text{true}/\text{z}] \mid \text{false} \rightarrow N[\text{false}/\text{z}]}$

The reason this ought to be true is that, whatever we define the identifiers in Γ to be, z will be either true or false. Either way, both sides should be the same.

What about $A \times B$? If we're using projections, then any $\Gamma \vdash M$: $A \times B$ can be η -expanded to (fst M, snd M).

And if we're using pattern-match, suppose $\Gamma, \mathbf{z} : A \times B \vdash N : C$. Then N can be expanded into

case z of
$$(x, y)N[(x, y)/z]$$

(I'm supposing the x and y we use here don't appear in $\Gamma, z : A \times B$.)

For A + B, it's similar. Suppose $\Gamma, \mathbf{z} : A + B \vdash N : C$. Then N can be expanded into

 $\texttt{case z of } \{(\#\text{left}, \texttt{x}) \to N[(\#\text{left}, \texttt{x})/\texttt{z}] \mid (\#\text{right}, \texttt{y}) \to N[(\#\text{right}, \texttt{y})/\texttt{z}] \}$

(Again, I'm supposing the x and y don't appear in $\Gamma, z : A + B$.)

And finally, $A \to B$. Any term $\Gamma \vdash M : A \to B$ can be expanded as $\lambda \mathbf{x}.(Mx)$.

(Again, I'm supposing the x doesn't appear in Γ .)

Exercise 4. Take the term

 $\texttt{f}:(\texttt{int}+\texttt{bool}) \rightarrow (\texttt{int}+\texttt{bool}) \vdash \texttt{f}:(\texttt{int}+\texttt{bool}) \rightarrow (\texttt{int}+\texttt{bool})$

Apply an η -expansion for \rightarrow , then for +, then for bool.

4 Equality

 λ -calculus isn't just a set of terms; it comes with an equational theory. If $\Gamma \vdash M : B$ and $\Gamma \vdash N : B$, we write $\Gamma \vdash M = N : B$ to express the intuitive idea that, no matter what we define the identifiers in Γ to be, M and N have the same "meaning" (even though they're different expressions).

First of all we need rules to say that this is an equivalence relation:

$$\frac{\Gamma \vdash M : B}{\Gamma \vdash M = M : B} \qquad \qquad \frac{\Gamma \vdash M = N : B}{\Gamma \vdash N = M : B}$$
$$\frac{\Gamma \vdash M = N : B}{\Gamma \vdash N = P : B}$$
$$\Gamma \vdash M = P : B$$

Secondly, we need rules to say that this is *compatible*—preserved by every construct:

$$\frac{\Gamma \vdash M = M' : A \quad \Gamma, \mathbf{x} : A \vdash N = N' : B}{\Gamma \vdash \mathsf{let} \ \mathbf{x} = M \text{ in } N = \mathsf{let} \ \mathbf{x} = M' \text{ in } N' : B}$$

and so forth. A compatible equivalence relation is often called a *congruence*.

8 P. B. Levy adapted for G53POP by T.Altenkirch

Thirdly, each of the β -reductions that we've seen is an axiom of this theory.

$$\begin{split} & \Gamma \vdash N: B \quad \Gamma \vdash N': B \\ \hline \Gamma \vdash \texttt{case true of } \{\texttt{true} \to N \mid \texttt{false} \to N'\} = N: B \\ & \frac{\Gamma, \texttt{x}: A \vdash M: B \quad \Gamma \vdash N: A}{\Gamma \vdash (\lambda\texttt{x}.M)N = M[N/\texttt{x}]: B} \end{split}$$

Fourthly, each of the η -expansions is an axiom of the theory, e.g.

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash M = \lambda \mathbf{x} . (M \mathbf{x}) : A \to B}$$

But in the case of the η -expansions involving pattern-matching, we need to generalize them slightly. The reason is that we want to prove

Proposition 3. If $\Gamma \vdash M = N : B$ and $\Gamma \xrightarrow{k} \Delta$ is a substitution, then $\Delta \vdash k^*M = k^*N : B$

Consequently, the η -law for bool looks like this:

$$\label{eq:gamma-star} \begin{split} & \Gamma \vdash M : \texttt{bool} \quad \Gamma, \texttt{z} : \texttt{bool} \vdash N : C \\ \hline & \Gamma \vdash N[M/\texttt{z}] = \\ & \texttt{case } M \texttt{ of } \{\texttt{true} \to N[\texttt{true}/\texttt{z}] \mid \texttt{false} \to N[\texttt{false}/\texttt{z}] \} \\ & : C \end{split}$$

and similarly for the other pattern-matching laws. We can then prove Prop. 3, first for renamings, then for substitution.

5 Exercises

1. Suppose that $\Gamma \vdash M$: bool and $\Gamma \vdash N_0, N_1, N_2, N_3 : C$. Show that

```
\begin{split} \Gamma \vdash \mathsf{case} \ M \ \mathsf{of} \ \{ \\ & \mathsf{true} \to \ \mathsf{case} \ M \ \mathsf{of} \ \{ \mathsf{true}.N_0 \mid \mathsf{false}.N_1 \}, \\ & \mid \mathsf{false} \to \ \mathsf{case} \ M \ \mathsf{of} \ \{ \mathsf{true} \to N_2 \mid \mathsf{false} \to N_3 \} \\ \} \\ &= \mathsf{case} \ M \ \mathsf{of} \ \{ \mathsf{true} \to N_0 \mid \mathsf{false} \to N_3 \} : C \end{split}
```

- 2. Show that (#left, -) is injective, i.e. if $\Gamma \vdash M, M' : A$ and $\Gamma \vdash (\#\text{left}, M) = (\#\text{left}, M') : A + B$ then $\Gamma \vdash M = M' : A$.
- 3. Write down the η -law for the 0 type.
- 4. Given a term $\Gamma, \mathbf{x} : A \vdash M : 0$, show that it is an "isomorphism" in the sense that there is a term $\Gamma, \mathbf{y} : 0 \vdash N : A$ satisfying

$$\Gamma, \mathbf{y} : \mathbf{0} \vdash M[N/\mathbf{x}] = \mathbf{y} : \mathbf{0}$$

$$\Gamma, \mathbf{x} : A \vdash N[M/\mathbf{x}] = \mathbf{x} : A$$

5. Give β and η laws for $\alpha(A, B, C, D, E)$ and for $\beta(A, B, C, D, E, F, G)$. (See yesterday's exercises for a description of these types.)