
Typed λ-calculus: From Pure To

Effectful

P. B. Levy
adapted for G53POP by T.Altenkirch

Universities of Birmingham and Nottingham

1 Denotational Semantics

Now we relate our syntax to the “real” world of sets and functions.
The first step: to each type A, we associate a set [[A]]. This is by

induction on A.

[[int]] = Z
[[bool]] = B

[[A+B]] = [[A]] + [[B]]

[[0]] = 0

[[A×B]] = [[A]]× [[B]]

[[1]] = 1

[[A→ B]] = [[A]]→ [[B]]

Recall that a context Γ is a list of distinct identifiers with types
e.g. x : A, y : B.

A syntactic environment for Γ provides, for each identifier x : A
in Γ, a closed term of type A. (If you like, it’s a substitution from Γ
to the empty context.)

A semantic environment for Γ provides, for each identifier x : A
in Γ, an element of [[A]].

For example
x : int→ int, y : bool

is a context.

x 7→ λx.(x + 1)

y 7→ true

2 P. B. Levy adapted for G53POP by T.Altenkirch

is a syntactic environment.

x 7→ λx.(x+ 1)

y 7→ true

is a semantic environment.

We define [[Γ]] to be the set of semantic environments for Γ. (This
is after defining the semantics of types.)

Now suppose we have a term Γ ` M : B. The denotation of
M provides, for each semantic environment ρ ∈ [[Γ]], an element
[[M]]ρ ∈ [[B]]. So we can say

[[Γ]]
[[M]] // [[B]]

This denotation is defined by induction on the proof of Γ ` M : B.
For example,

[[case M of {(#left, x) → N | (#right, y) → N ′}]]ρ
=

case [[M]]ρ of {(#left, x)→ [[N]](ρ, x 7→ x) | (#right, y)→ [[N ′]](ρ, y 7→ y)}

Next, given a substitution Γ
k // ∆ , we obtain a function [[∆]]

[[k]] // [[Γ]]

(note the change of direction). It maps ρ ∈ [[∆]] to the semantic en-
vironment for Γ that takes each identifier x : A in Γ to [[k(x)]]ρ.

We use this to formulate a substitution lemma. For ρ ∈ [[Γ]],

[[k∗M]]ρ = [[M]]([[k]]ρ)

As always, this must be proved in two stages, first for renaming and
then for general substitution.

Armed with the substitution lemma, it is easy to prove the sound-
ness of all our equations.

Now, let’s write [Γ ` B] to mean the set of βη-equivalence classes
of terms Γ ` M : B. And let’s write [[Γ ` B]] to mean the set of
functions from [[Γ]] to [[B]]. Our denotational semantics provides a
function from [Γ ` B] to [[Γ ` B]].

Typed λ-calculus: From Pure To Effectful 3

2 Reversible Rules

Each type (except int) has a reversible rule that indicates its deep
structure. For example for bool we have

Γ ` B Γ ` B
===========
Γ, bool ` B

That means that we have a bijection from [Γ ` B] × [Γ ` B] to
[Γ, x : bool ` B]. And, moreover, that we have a bijection from
[[Γ ` B]]× [[Γ ` B]] to [[Γ, x : bool ` B]].

For the sum type, we have

Γ, A ` C Γ, B ` C
================

Γ, A+B ` C

For the function type, we have

Γ, A ` B
=========
Γ ` A→ B

For the product type, we have two reversible rules, just as there
are two versions of the elimination rules. The one that fits projections
is

Γ ` A Γ ` B
===========

Γ ` A×B
The one that fits pattern-matching is

Γ, A,B ` C
===========
Γ, A×B ` C

Generally, we see that product type with pattern-matching is very
similar to a sum type, whereas product type with projection is similar
to a function type. To see how this can be, imagine (M,N) as a
function that maps #left to M and #right to N . Thus fst M is
M applied to #left, whereas snd M is M applied to #right. In the
rest of this course, the difference between projection and pattern-
matching becomes significant, and so we will omit product types.
However, if you’re following the exercises on α and β, you should be
able to see how to do both kinds of product.

4 P. B. Levy adapted for G53POP by T.Altenkirch

3 Something Imperative

So far we have seen simply typed λ-calculus, as an equational the-
ory. This is a purely functional language. But, sometimes, allegedly
functional languages allow programmers to throw in something im-
perative.

1. In ML you can command the computer to print a character before
evaluating a term.

Γ `M : B
c ∈ A

Γ ` print c. M : B

Here A is the set of characters that can be printed.
2. You can cause the computer to halt with an error message

e ∈ E
Γ ` error e : B

Here E is the set of error messages.
3. In both Haskell and ML, we can write a program that diverges

i.e. fails to terminate.

Γ ` diverge : B

Indeed, it is an annoying consequence of computability theory
that any language in which you can program every total computable
function from Z to Z must also have programs that diverge.

Proposition 1. Let f : Z×Z ⇀ Z be a computable partial function.
(Think: f is an interpreter for the programming language. The first argument encodes

a program of type int → int, and f(m,n) applies the program that m encodes to n.)

Suppose that, for every total computable function g : Z −→ Z, there
exists m such that ∀n ∈ Z. f(m,n) = g(n). Then f is not total.

It must be admitted that terms like

print "hello". λx : int.3

λx : bool.case x as {true. 3, false. error CRASH}

Typed λ-calculus: From Pure To Effectful 5

seem very strange in the way that they mix functional idioms with
imperative features (sometimes called computational effects). It’s not
apparent that they have any meaning whatsoever.

And the situation is even worse than this. Let’s say we have two
terms Γ `M,N : B. Then in the βη theory we have

Γ `M = M [error CRASH/z] z : 0 fresh for Γ

= case (error CRASH) as {} by the η-law for 0

= N [diverge/z] by the η-law for 0

= N : B

So our equational theory tells us that any two terms are equal. Even
true and false. That theory goes straight into the bin.

4 Operational Semantics

4.1 Introduction

We can give meaning to this kind of hybrid functional/imperative
language by giving a way of executing/evaluating terms. This is
called an operational semantics.

Really, our task is to give a way of evaluating closed terms of
type int to a value n. To do this, we need to evaluate closed terms
of other types. So, for every type, we need a set of terminal terms,
where we stop evaluating.

For bool, the terminal terms are the values true and false.
For function type, we’ll say that the terminal terms are λ-abstractions.

It seems silly to evaluate under λx when we don’t know what x is.
Having made these decisions, several questions remain.

– To evaluate let x = M in N , do we
1. evaluate M to a terminal term T , and then evaluate N [T/x]
2. or just substitute M , unevaluated, for x?

– To evaluateMN , we certainly have to evaluateM to a λ-abstraction
λx.P . But what about N? Do we
1. evaluate N to a terminal term T (perhaps before evaluating
M , perhaps after)?

2. substitute N , unevaluated for x?

6 P. B. Levy adapted for G53POP by T.Altenkirch

– To evaluate (#left,M), do we
1. evaluate M—so (#left, T) is terminal only if T is
2. stop straight away—so (#left,M) is always terminal?

This seems to open up a huge space of different languages, all
with the same syntax. However, there is really a single, fundamental
question underlying all the ones above. Do we bind an identifier to

1. a terminal term
2. a wholly unevaluated term?

The first answer is known as call-by-value and the second answer is
known as call-by-name. To put it another way,

– in call-by-value, a syntactic environment consists of terminal terms
– in call-by-name, a syntactic environment consists of unevaluated

terms.

It’s clear that this decision determines the answer to the first two
questions. In fact, though it is not so obvious, it determines the
answer to the third question too.

To see this, suppose we want to evaluate

case M of {(#left, x) → N | (#right, y) → N ′}

Clearly the first stage is to evaluateM . So we evaluateM to (#left, P),
and we then know we want to evaluate N with a suitable binding
for x. In call-by-value, we must evaluate P , and then bind x to the
result, so (#left, P) is not terminal. But in call-by-name, we bind x

to P unevaluated, so (#left, P) must be terminal.
Thus, in call-by-value, the closed terms that are terminal are

given by

T ::= n | true | false | (#left, T) | (#right, T) | λx.M

whereas in call-by-name, the closed terms that are terminal are given
by

T ::= n | true | false | (#left,M) | (#right,M) | λx.M

i.e. anything whose root is an introduction rule.

Typed λ-calculus: From Pure To Effectful 7

4.2 First-Order Interpreters

Here is a little interpreter to evaluate terms in call-by-value (using
left-to-right order). It is a recursive first-order program. To evaluate

– n, return n.
– true, return true.
– false, return false.
– λx.M , return λx.M .
– (#left,M), evaluate M . If it returns T , return (#left, T).
– (#right,M), evaluate M . If it returns T , return (#right, T).
– M +N , evaluate M . If it returns m, evaluate N . If that returns
n, return m+ n.

– let x = M in N , evaluate M . If it returns T , evaluate N [T/x].
– case M of {true→ N | false→ N ′}, evaluate M . If it returns

true, evaluate N , but if it returns false, evaluate N ′.
– caseM of {(#left, x)→ N | (#right, x)→ N ′}, evaluate M . If it

returns (#left, T), evaluate N [T/x], but if it returns (#right, T),
evaluate N ′[T/x].

– MN , evaluate M . If it returns λx.P , evaluate N . If that returns
T , evaluate P [T/x].

– print c. M , print c and then evaluate M .
– error e, halt with error message e.
– diverge, diverge.

Note that we only ever substitute terminal terms.
Now here is an interpreter for call-by-name. To evaluate

– n, return n.
– true, return true.
– false, return false.
– λx.M , return λx.M .
– (#left,M), return (#left,M).
– (#right,M), return (#right,M).
– M +N , evaluate M . If it returns m, evaluate N . If that returns
n, return m+ n.

– let x = M in N , evaluate N [M/x].
– case M of {true→ N | false→ N ′}, evaluate M . If it returns

true, evaluate N , but if it returns false, evaluate N ′.

8 P. B. Levy adapted for G53POP by T.Altenkirch

– caseM of {(#left, x)→ N | (#right, x)→ N ′}, evaluate M . If it
returns (#left, P), evaluate N [P/x], but if it returns (#right, P),
evaluate N ′[P/x].

– MN , evaluate M . If it returns λx.P , evaluate P [N/x].
– print c. M , print c and then evaluate M .
– error e, halt with error message e.
– diverge, diverge.

Note that we only ever substitute unevaluated terms.

Exercise 1. 1. Evaluate

let error CRASH be x in 5

in CBV and CBN
2. Evaluate

(λx.(x + x))(print "hello". 4)

in CBV and CBN.
3. Evaluate

case (print "hello". (#right, error CRASH)) as
{(#left, x). x + 1, (#right, y). 5}

in CBV and CBN.

4.3 Big-Step Semantics

We’ll leave aside printing now, and just think about errors.
One way of turning the big-step semantics into a mathematical

description is using an evaluation relation. We will write M ⇓ T to
mean that M (a closed term) evaluates to T (a terminal term), and
M e to mean that M halts with error message e.

We define ⇓ and inductively. Here are some of the clauses:

λx.M ⇓ λx.M error e e

M ⇓ λx.P N ⇓ T P [T/x] ⇓ T ′

MN ⇓ T ′
M e

MN e

M ⇓ λx.P N e

MN e

M ⇓ λx.P N T P [T/x] e

MN e

Typed λ-calculus: From Pure To Effectful 9

Evaluation always terminates:

Proposition 2. Let `M : B be a closed term. Then either

– M ⇓ T for unique terminal T : B, and there does not exist e such
that M e, or

– M e for unique error e ∈ E, and there does not exist T such
that M ⇓ T .

This can be proved using a method due to Tait.

Similarly, we can inductively define ⇓ and for CBN, and Prop. 2
holds for these predicates.

5 Observational Equivalence

With the pure λ-calculus, we knew what the intended meaning was,
so we could easily write down equations between terms. But we do
not have, at this stage, a denotational semantics for the calculus with
errors or printing. So what does it mean for two terms to be “the
same”?

Well, if M and N are closed terms of type int, it’s pretty clear.
They’re the same when they either evaluate to the same number or
raise the same error. With printing, they must also print the same
string.

But what about other terms? Here’s a way of answering this
question. Let’s say that a program context C[·] is a closed term of type
int, with a “hole”. If we have two terms Γ `M,N : B, and we plug
them into the hole of a program context, and they behave differently,
then we definitely need to consider M and N to be different. On the
other hand, if they behave the same when plugged into any program
context (assuming the hole itself is typed Γ ` [·] : B), then we
could regard as the same. In this situation, we say that they are
observationally equivalent, and we write Γ ` M ' N : B. This is
really the coarsest reasonable equivalence relation we could consider.

Let’s look at some examples of this. I should tell you first that
in both CBV and CBN there’s a result called the context lemma
that tells us that if two terms behave the same in every syntactic
environment, then they behave the same in every program context.

10 P. B. Levy adapted for G53POP by T.Altenkirch

Let’s start with the equivalence

(λx.M)N 'M [N/x]

This, the β-law for→, holds in CBN but not in CBV. As an example,
put N to be error CRASH, and put M to be 3.

Next, consider the equivalence

z : bool ` 3 ' case z as {true.3, false.3} : int

This is an instance of the η-law for bool. It holds in CBV because a
syntactic environment must consist of terminal terms, so z must be
either true or false. But it fails in CBN because we can apply the
program context let (error CRASH) be z in [·].

Remark 1. This program context is different from let (error CRASH) be y in [·].
So, by contrast with terms, we can’t α-convert a program context.

Next, consider the equivalence

` λx : int.error e ' error e : int→ int

This seems unlikely: the LHS terminates whereas the RHS raises an
error. It fails in CBV: take the program context let [·] be y in 3. In
CBN it holds, but it is rather subtle. The reason is that there is no
way of causing the hole’s contents to be evaluated except to apply it
to something. And when we apply it, it raises an error.

A very similar example is this one

` λx : int.print c. M ' print c. λx : int.M : int→ int

Again, this fails in CBV but holds in CBN.

6 Exercises

1. Find a context to show that

z : bool `
case z as {true.case z as {true.3, false.3}, false.3}
' case z as {true.3, false.3} : int

fails in CBN with printing (no errors or divergence). Using the
context lemma, explain why this equivalence is valid in CBV.

Typed λ-calculus: From Pure To Effectful 11

2. Give reversible rules for α(A,B,C,D,E) and for β(A,B,C,D,E, F,G).
(See first handout, Section 8, for a description of these types.)

3. Extend each set of terminal terms and each definitional inter-
preter to incorporate α(A,B,C,D,E) and β(A,B,C,D,E, F,G).

