Categories for the Lazy Functional Programmer

Thorsten Altenkirch

School of Computer Science University of Nottingham

May 15, 2009

Intro

Intro

Saunders MacLane (1909 - 2005)

Samuel Eilenberg (1913 - 1998)

- Originally: tool for algebraic topology.
- Relevance for Computer Science (Lambek's obs)
 E.g. Cartesian Closed Cats ~ Simply Typed λ-calculus
- Categorical concepts in Haskell: Functor, Monad, ...
- Is Category Theory Abstract Nonsense ?
- Is Category Theory an alternative to Set Theory?

Intro

Books

MacLane

Pierce

Intro

Overview

- 1 Intro
- 2 Categories
- Functors and natural transformations
- Adjunctions
- 5 Products and coproducts
- 6 Exponentials
- 7 Limits and Colimits
- Initial algebras and terminal coalgebras
 - Monads and Comonads

	Categories What is a category?	
The category Set		
Objects: Sets	Set = Set	
Morphisms : Functions, given $A, B \in \mathbf{Set} $		
	$\textbf{Set}(A,B) = A \to B$	
Identity: Given $A \in Set$	$\operatorname{id}_{\mathcal{A}} \in \operatorname{Set}(\mathcal{A}, \mathcal{A})$ $\operatorname{id}_{\mathcal{A}} = \lambda a.a$	
Composition: Given $f \in \mathbf{Set}(B, C), g \in \mathbf{Set}(A, B)$:		
	$f \circ g \in \operatorname{Set}(A, C)$	
Laws:	$f \circ g = \lambda a.f(g a)$	
	$f \circ id = f$ $id \circ f = f$	
	$1 \circ I = I$ $(f \circ g) \circ h = f \circ (g \circ h)$	
	$(1 \circ g) \circ n = 1 \circ (g \circ n)$	11 15 0000 5 175

Exercise 1

Derive the laws for **Set** using only the equations of the simply typed λ -calculus, i.e.

$$\beta \quad (\lambda x.t)u = t[x := u]$$

$$\eta \quad \lambda x.t x = t \text{ if } x \notin FV t$$

$$\xi \quad \frac{t = u}{\lambda x.t = \lambda x.u}$$

Definition: **C** is a category A (large) set of objects:

 $|\bm{C}|\in \text{Set}_1$

Morphisms: For every $A, B \in |\mathbf{C}|$ a homset

 $C(A, B) \in Set$

Identity: For any $A \in \mathbf{C}$: id_A $\in \mathbf{C}(A, A)$

Composition: For $f \in C(B, C), g \in C(A, B)$:

 $f\circ g\in {f C}(A,C)$

Laws:

$$f \circ id = f$$

$$id \circ f = f$$

$$(f \circ g) \circ h = f \circ (g \circ h)$$

Size matters

 I assume as given a predicative hierarchy of set-theoretic universes:

```
Set = Set_0 \in Set_1 \in Set_2 \in \ldots
```

which is cummulative

$$\operatorname{Set}_0 \subseteq \operatorname{Set}_1 \subseteq \operatorname{Set}_2 \subseteq \ldots$$

- To accomodate categories like Set we allow that the objects are a large set (|C| ∈ Set₁) but require the homsets to be proper sets C(A, B) ∈ Set = Set₀.
- A category is *small*, if the objects are a set $|\mathbf{C}| \in Set$
- We can repeat this definition at higher levels, a category at level *n* has as objects |C| ∈ Set_{n+1} and homsets C(A, B) ∈ Set_n

Dual category

Given a category \mathbf{C} there is a dual category \mathbf{C}^{op} with

Objects
$$|\mathbf{C}^{op}| = |\mathbf{C}|$$

Homsets
$$\mathbf{C}^{\mathrm{op}}(A, B) = \mathbf{C}(B, A)$$

and composition defined backwards.

Notation

For $n \in \mathbb{N}$ we define

$$\bar{n} = \{i < n\}$$

Question

How many elements are in **Set**($\overline{2}$, $\overline{3}$) and in **SET**^{op}($\overline{2}$, $\overline{3}$)?

Isos

Isomorphism

An isomorphism between $A, B \in |\mathbf{C}|$ is given by two morphisms $f \in \mathbf{C}(A, B)$ and $f^{-1} \in \mathbf{C}(B, A)$ such that $f \circ f^{-1} = \mathrm{id}, f^{-1} \circ f = \mathrm{id}$:

We say that A and B are isomorphic $A \simeq B$.

- Isomorphic sets are the same upto a renaming of elements.
- Concepts in category theory are usually defined up to isomorphism.

Isos

Exercise 2

Which of the following isomorphisms hold in Set:

$$\begin{array}{rcl} \bar{2}+\bar{2} &\simeq & \bar{4} \\ \bar{2}\times\bar{2} &\simeq & \bar{4} \\ \bar{2}\to\bar{2} &\simeq & \bar{4} \\ \mathbb{N}+\mathbb{N} &\simeq & \mathbb{N} \\ \mathbb{N}\times\mathbb{N} &\simeq & \mathbb{N} \\ \mathbb{N}\to\mathbb{N} &\simeq & \mathbb{N} \end{array}$$

 $A \times B$ is cartesian product

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

A + B is disjoint union

$$A + B = \{ \operatorname{inl} a \mid a \in A \} \cup \{ \operatorname{inr} b \mid b \in B \}$$

Monomorphism

 $f \in \mathbf{C}(B, C)$ is a monomorphism (short *mono*), if for all $g, h \in \mathbf{C}(A, B)$

$$\frac{f \circ g = f \circ h}{g = h}$$

- In Set monos are precisely the injective functions.
- We draw monos as $A \rightarrow B$

Epimorphism $f \in \mathbf{C}(A, B)$ is a epimorphism (short *epi*), if for all $g, h \in \mathbf{C}(B, C)$ $g \circ f = h \circ f$

$$g = h$$

- In Set epis are precisely the surjective functions.
- We draw epis as *A*——*B*

Exercise 3

Show that every iso is both mono and epi.

• Assuming classical (non-constructive) logic, all bijections in **Set** are isos.

Exercise 4

Show that in **Set** every morphism $f \in A \rightarrow B$ can be written as a composition of an epi and a mono:

Monoids and preorders

Monoids

Definition: Monoid

A monoid (M, e, *) is given by $M \in \text{Set}$, $e \in M$ and $(*) \in M \to M \to M$ such that:

$$\begin{array}{rcl} x \ast e &=& x \\ e \ast x &=& x \\ (x \ast y) \ast z &=& x \ast (y \ast z) \end{array}$$

Example

 $(\mathbb{N}, 0, +)$ is a (commutative) monoid.

Question

Give an example of a non-commutative monoid.

Thorsten Altenkirch (Nottingham)

• Monoids correspond to categories with one object.

```
Monoid as a category

Every monoid (M, e, *) gives rise to a category M

Objects: |\mathbf{M}| = \{()\}

Morphisms \mathbf{M}((), ()) = M

e is the identity, * is composition.
```

Preorder

(A, \sqsubseteq) with $A \in \text{Set}$ and $(\sqsubseteq) \in A \to A \to \text{Prop}$ is a preorder if R is reflexive $\forall a \in A.a \sqsubseteq a$ transitive $\forall a, b, c \in A.a \sqsubseteq b \to b \sqsubseteq c \to a \sqsubseteq c$

Example

 (\mathbb{N}, \leq) is a preorder.

• (\mathbb{N}, \leq) is a partial order, because it also satisfies

m = n

Question

Give an example of a preorder, which is not a partial order.

Thorsten Altenkirch (Nottingham)

 Preorders correspond to categories where the homsets have at most one element.

```
A preorder as a category

A preorder (A, \sqsubseteq) can be viewed as a category A:

Objects |\mathbf{A}| = A

Homsets \mathbf{A}(a, b) = \begin{cases} \{()\} & \text{if } a \sqsubseteq b \\ \{\} & \text{otherwise} \end{cases}
```

Monoids and preorders are degenerate categories.

Categories of sets with structure

The category of Monoids: Mon

Objects: Monoids (*M*, *e*, *)

Morphisms Mon((M, e, *), (M', e', *')) is given by $f \in M \to M'$ such that f e = e' and f(x * y) = (f x) *' (f y).

Example

The embedding $i \in Mon((\mathbb{N}, 0, +), (\mathbb{Z}, 0, +))$ with i n = n

Exercise 5

Show that *i* is a mono and an epi but not an iso in **Mon**.

Exercise 6

Define the category **Pre** of preorders and monotone functions.

Finite Sets

FinSet

Objects: Finite Sets

Morphisms: Functions

• FinSet is a full subcategory of Set.

FinSetSkel

Objects: ℕ

Morphisms: **FinSetSkel**(m, n) = $\bar{m} \rightarrow \bar{n}$

- FinSetSkel is skeletal, any isomorphic objects are equal.
- FinSet and FinSetSkel are equivalent (in the appropriate sense).

Computational Effects

Error

```
Given a set of Errors E \in Set
```

Objects: Sets

Morphisms: **Error** $(A, B) = A \rightarrow B + E$

State

```
Given a set of states: S \in Set
```

Objects: Sets

Morphisms: State(A, B) = $A \times S \rightarrow B \times S$

Exercise 7

Define identity and composition for both categories.

λ -terms

Lam

Objects: Finite sets of variables Morphisms: Lam $(X, Y) = Y \rightarrow \text{Lam } X$ where Lam X is the set of λ -terms whose free variables are in X.

Exercise 8

- Define identity and composition.
- **2** Extend the definition to typed λ -calculus.

Product categories

Given categories C, D we define $C \times D$: Objects: $C \times D$ Morphisms: $C \times D((A, B), (C, D)) = C(A, C) \times D(B, D)$ We abbreviate $C^2 = C \times C$

Slice categories

Given a category **C** and an object $A \in |\mathbf{C}|$ we define \mathbf{C}/A as:

Objects:
$$|\mathbf{C}/\mathbf{A}| = \Sigma B \in |\mathbf{C}|.\mathbf{C}(B, A)$$

Morphisms: C/A((B, f), (C, g)):

Computable sets

ω -Set

Objects: A Set *A* and a relation $\Vdash_A \subseteq \mathbb{N} \times A$ such that $\forall a \in A . \exists i \in \mathbb{N} . i \Vdash_A a$.

Morphisms:

$$\omega - \mathsf{Set}((A, \Vdash_A), (B, \Vdash_B))$$

= { $f \in A \to B \mid \exists i \in \mathbb{N}. \forall j, a.j \Vdash_A a$
 $\to \exists k. \{i\} j \downarrow k \land k \Vdash_B f a$ }

where $\{i\}j \downarrow k$ means the *i*th Turing machine applied to input *j* terminates and returns *k*.

Partial computations

ω -CPO

Objects: $(A, \sqsubseteq_A, \bigsqcup_A)$ such that (A, \sqsubseteq_A) is a partial order, and

$$\bigsqcup_{A} \in \{f \in \mathbb{N} \to A \mid \forall i.fi \sqsubseteq_{A} f(i+1)\} \to A$$

is the least upper bound of a chain, i.e. $\forall i.f \ i \sqsubseteq \bigsqcup_A f$ and $(\forall i.f \ i \sqsubseteq a) \rightarrow \bigsqcup_A f \sqsubseteq a$.

Morphisms: $\omega - \text{CPO}((A, \sqsubseteq_A, \bigsqcup_A), (B, \sqsubseteq_B, \bigsqcup_B))$ is given by functions $f \in A \to B$ which are: monotone $\frac{a \sqsubseteq_A b}{f a \sqsubseteq f b}$

continuous $f(\bigsqcup_A h) = \bigsqcup_B (f \circ h)$

Functors

Definition: Functor

Given categories **C**, **D** a functor $F \in \mathbf{C} \to \mathbf{D}$ is given by a map on objects $F \in |\mathbf{C}| \to |\mathbf{D}|$ maps on morphisms Given $f \in \mathbf{C}(A, B)$, $F f \in \mathbf{D}(F A, F B)$ such that $F \operatorname{id}_{A} = \operatorname{id}_{FA}$

 $F(f \circ g) = (Ff) \circ (Fg)$

• A functor $F \in \mathbf{C} \to \mathbf{C}$ is called an *endofunctor*.

Example

List : Set \rightarrow Set, the list functor on morphisms is given by map

$$map f [] = []$$
$$map f (a : as) = f a : map f as$$

We just write List f = map f.

Functors

Exercise 9

Show that List satisfies the functor laws.

Question

We consider endofunctors on Set, given maps on objects:

• Is
$$F_1 X = X \rightarrow \mathbb{N}$$
 a functor?

3 Is
$$F_2 X = X \rightarrow X$$
 a functor?

3 Is
$$F_3 X = (X \to \mathbb{N}) \to \mathbb{N}$$
 a functor?

- All type expressions with only positive occurences of a set variable give rise to (covariant) functors in Set \rightarrow Set.
- All type expressions with only negative occurences of a set variable give rise to (contravariant) functors in **Set**^{op} \rightarrow **Set**.

Exercise 10

Is there a type-expression which is not positive but still gives rise to a covariant endofunctor on Set?

Thorsten Altenkirch (Nottingham)

Definition: natural transformation

Given functors $F, G \in \mathbf{C} \to \mathbf{D}$ a natural transformation $\alpha : F \to G$ is given by a family of maps

 $\alpha \in \Pi_{A \in |\mathbf{C}|} \mathbf{D}(FA, GA)$

such that for any $f \in \mathbf{C}(A, B) \xrightarrow{\alpha_A} GA$

Exercise 11

- Show that reverse $\in \Pi X \in \text{Set.List } X \to \text{List } X$ is a natural transformation.
- ② Give a family of maps with the same type, which is not natural.

Functor categories

Given categories **C**, **D** the functor category $\mathbf{C} \rightarrow \mathbf{D}$ is given by:

Objects: Functors $F \in \mathbf{C} \to \mathbf{D}$

Morphisms Given $F, G \in \mathbf{C} \to \mathbf{D}$, a morphism is a natural transformation $\alpha \in F \rightarrow G$

If C is small, the functor category

 $PShC = C^{op} \rightarrow Set$

is called the category of presheaves over **C**.

Exercise 12

Spell out the details of the objects and morphisms of **PSh** (\mathbb{N}, \leq).

We define a functor *Y*, the Yoneda embedding:

 $Y \in \mathbf{C} \to \mathbf{PSh}\,\mathbf{C}$ $Y\,\mathbf{A} = \lambda X.\mathbf{C}(X, \mathbf{A})$

Exercise 13 Show that *Y* is a functor.

The Yoneda Lemma

Given $F \in \mathbf{PSh} \mathbf{C}$ the following are naturally isomorphic in $A \in |\mathbf{C}|$

 $\textbf{PSh}\,\textbf{C}(\textbf{Y}\textbf{A},\textbf{F})\simeq \textbf{F}\,\textbf{A}$

Exercise 14

Prove the Yoneda Lemma.

Thorsten Altenkirch (Nottingham)

The category of categories

CAT

The category of categories is given by:

Objects: Categories

Morphisms: Functors

- This is a category on level 1, $|CAT| \in Set_2$.
- CAT is a 2-category because its homsets are categories themselves (+ Godemont rules).

Free Monoids

• The forgetful functor:

 $U \in \mathbf{Mon} \to \mathbf{Set}$ U(M, e, *) = M

- Can we go the other way?
- The free functor:

 $F \in \mathbf{Set} o \mathbf{Mon}$ $F A = (\operatorname{List} A, [], (++))$

• How to specify that F is free?

We construct two natural families of maps:

$$\mathsf{Mon}(FA, (M, e, *)) \xrightarrow[\phi^{-1}]{} \mathsf{Set}(A, U(M, e, *))$$

$$\phi \in (\text{List } A \to M) \to A \to M$$

$$\phi f a = f [a]$$

$$\phi^{-1} \in (A \to M) \to (\text{List } A \to M)$$

$$\phi^{-1} g [] = e$$

$$\phi^{-1} g (a :: as) = (g a) * (\phi^{-1} g as)$$

Exercise 15

Show:

•
$$\phi \circ \phi^{-1} = id$$

• $\phi^{-1} \circ \phi = id$

Thorsten Altenkirch (Nottingham)

Definition: Adjunction

Given functors:

we say that *F* is left adjoint to $U (F \dashv U)$ or *U* is right adjoint to *F* if there is a natural isomorphism (in $A \in |\mathbf{D}|, B \in |\mathbf{C}|$)

$$\mathbf{D}(FA,B) \xrightarrow[\phi]{\phi^{-1}} \mathbf{C}(A,UB)$$

A semilattice (with zero) is a monoid (M, e, *) such that: commutative , if for all $x, y \in M$:

$$X * Y = Y * X$$

idempotent , if for all $x \in M$:

$$X * X = X$$

We define SLat as the category of semilattices with zero.

Morphisms and forgetful functors are defined as for Mon

Exercise 16

Construct the free functor $F \in \mathbf{Set} \to \mathbf{SLat}$ and show that F is left adjoint to $U \in SLat \rightarrow Set$.

Products in Set

 $\pi_0(a,b) = a$ $\pi_1(a, b) = b$ < f, g > c = (f c, f c)

Laws:

$$\pi_0 \circ < f, g >= f$$

$$\pi_1 \circ < f, g >= g$$

$$\pi_0 \circ h = f \quad \pi_1 \circ h = g$$

$$h = < f, g >$$

Products

Given objects $A, B \in |\mathbf{C}|$ we say that $A \times B$ is their product if the morphisms π_0, π_1 exists and for every f, g there is a morphism < f, g > so that the following diagram commutes:

Moreover, the morphism < f, g > is the unique morphism which makes this diagram commute, i.e.

$$\frac{\pi_0 \circ h = f \quad \pi_1 \circ h = g}{h = \langle f, g \rangle}$$

Exercise 17

Show that products in **C** give rise to a functor $(\times) \in \mathbf{C}^2 \to \mathbf{C}$.

Exercise 18

Show that the following equation holds

$$< f, g > \circ h = < f \circ h, g \circ h >$$

Exercise 19

Show that the following isomorphism exist in all categories with products:

 $A \times B \simeq B \times A$

and that the assignment is natural in A, B.

Coproducts in Set

$$A + B = \{ \text{inl } a \mid a \in A \} \cup \{ \text{inr } b \mid b \in B \}$$
$$[f, g] (\text{inl } a) = f a$$
$$[f, g] (\text{inr } b) = g b$$

Laws:

$$[f, g] \circ \operatorname{inl} = f$$

$$[f, g] \circ \operatorname{inr} = g$$

$$h \circ \operatorname{inl} = f \quad h \circ \operatorname{inr} = g$$

$$h = [f, g]$$

Coproducts

Given objects $A, B \in |\mathbf{C}|$ we say that A + B is their coproduct if the morphisms inl, inr exists and for every f, g there is a morphism [f, g] so that the following diagram commutes:

Moreover, the morphism [f, g] is the unique morphism which makes this diagram commute, i.e.

$$\frac{h \circ \text{inl} = f \quad h \circ \text{inr} = g}{h = [f, g]}$$

Products and coproducts Adjunction

- Products and coproducts are dual concepts: Products in |C| are coproducts in |C^{op}| and vice versa.
- Products and coproducts are left and right adjoints of the diagonal functor:

 $\Delta \in \mathbf{C} \to \mathbf{C}^{2}$ $\Delta A = (A, A)$ (+) $\Delta \to \mathbf{C}^{2}$ $\Delta \to \mathbf{C}^{2}$ $\Delta \to \mathbf{C}^{2}$ (\times)

Terminal objects

 $1 \in |\mathbf{C}|$ is a terminal object, if for any object $A \in \mathbf{C}$ there is exactly one arrow $!_A$:

Initial objects

 $0 \in |\mathbf{C}|$ is an initial object, if for any object $A \in \mathbf{C}$ there is exactly one arrow $?_A$:

$$0-\frac{1}{?_A} > A$$

Question

What are initial and terminal objects in Set?

Exercise 20

Show that any two terminal objects are isomorphic.

Thorsten Altenkirch (Nottingham)

Global elements

In Set we have that

 $\textbf{Set}(1, \textbf{\textit{A}}) \simeq \textbf{\textit{A}}$

- Hence the elements of **C**(1, *A*) are called the **global elements** of *A*.
- A category **C** is *well pointed*, if for $f, g \in \mathbf{C}(A, B)$ we have

$$\frac{\forall a \in \mathbf{C}(1, A). f \circ a = g \circ a}{f = g}$$

Set is well pointed.

Exercise 21

Consider **PSh** (\mathbb{N}, \leq) again. What is the terminal object and what are global elements? Show that **PSh** (\mathbb{N}, \leq) is not well pointed.

Exercise 22

Construct the following isomorphism in Set:

$$A \times (B + C) \simeq A \times B + A \times C$$

Exercise 23

Show that **CMon** (the category of commutative monoids) has products and coproducts.

Exercise 24

Give a counterexample for the isomorphism:

$$A \times (B + C) \simeq A \times B + A \times C$$

in **CMon**.

Exponentials in Set

• In Set we have the curry/uncurry isomorphism:

$$A \times B \rightarrow C \simeq A \rightarrow (B \rightarrow C)$$

• Indeed this is an adjunction $F \dashv G$ for

 $F, G \in \mathbf{Set} \to \mathbf{Set}$ $F X = X \times B$ $G X = B \to X$

 $\operatorname{Set}(FA, C) \simeq \operatorname{Set}(A, GC)$

Exponentials

Given a category **C** with products. We say that the object $B \in |\mathbf{C}|$ is exponentiable, if the functor $F X = X \times B$ has a right adjoint $F \dashv G$, which we write as $GX = B \rightarrow X$.

A category with products where all objects are exponentiable is called **cartesian closed**.

• $B \rightarrow C$ is often written as C^B .

Question What are the exponentials in **FinSetSkel**?

Exercise 25

Show that the category of typed λ -terms is cartesian closed.

 Indeed, this is the initial cartesian closed category (or the classifying category).

Exercise 26

Show that in a cartesian closed category with coproducts we have that

$$A \times (B + C) \simeq (A \times B) + (A \times C)$$

Corollary

CMon is not cartesian closed.

Exercise 27

Show that the presheaf categories (PShC) are cartesian closed.

Exercise 28

Is there a cartesian closed category whose dual is also cartesian closed?

Pullbacks

Given arrows $f \in C(A, C)$ and $g \in C(B, C)$, $(f \times_C g, \pi_0, \pi_1)$ is their pullback, if the diagram below commutes and for every (D, p_0, p_1) there is a unique arrow $< p_0, p_1 >$ such that the diagram commutes:

• Pullbacks in Set:

$$f \times_C g = \{(a, b) \in A \times B \mid f a = g b\}$$

Pushouts

Given arrows $f \in \mathbf{C}(A, B)$ and $g \in \mathbf{C}(A, C)$, $(f + {}^{A}g, \operatorname{inl}, \operatorname{inr})$ is their pushout, if the diagram below commutes and for every (D, i_0, i_1) there is a unique arrow $[p_0, p_1]$ such that the diagram commutes:

Exercise 29

What are pushouts in Set?

Limits and colimits

Given a small category of diagrams **D**, a **D**-diagram in **C** is given by a functor $F \in \mathbf{D} \to \mathbf{C}$. A cone of a diagram is given by an object $D \in \mathbf{C}$ and a natural transformation $\alpha \in K_D \to F$ where $K_D X = D$ is a constant functor.

Morphisms between cones (D, α) and (E, β) are given by $f \in D \to E$ such that $\alpha \circ f = \beta$.

The limit of *F* is the terminal object in the category of cones.

Dually, a cocone is given by a natural transformation $\alpha \in F \to K_D$, and a morphism of cocones (D, α) and (E, β) are given by $f \in D \to E$ such that $f \circ \alpha = \beta$.

The colimit of *F* is the initial object in the category of cocones.

Examples

Products are given by limits of

Note that we are leaving out identity arrows.

- Dually, coproducts are given by colimits of the same diagram.
- Pullbacks are limits of

• Pushouts are colimits of the dual diagram:

Equalizers are limits of

Exercise 30

What are equalizers and coequalizers in Set?

Exercise 31

Show that pullbacks can be constructed from equalizers and products.

• Actually, all finite limits can be constructed from equalizers and finite products (i.e. binary products and terminal objects).

• Diagrams of (\mathbb{N}, \leq) are called ω -chains:

$$A0 \xrightarrow[a0]{} A1 \xrightarrow[a1]{} A2 \xrightarrow[a2]{} \dots$$

Note that we are leaving out the composites of arrows.

An ω-chain in Set is given by

 $A \in \mathbb{N} \to \text{Set}$ $a \in \Pi n \in \mathbb{N}.A n \to A(n+1)$

• We write $\operatorname{colim}(A, a)$ for the colimit of an ω -chain.

Exercise 32

What is the colimit of the following chain?

• Dually, Diagrams of (\mathbb{N}, \geq) are called ω -cochains:

$$A0 \stackrel{a0}{\leftarrow} A1 \stackrel{a1}{\leftarrow} A2 \stackrel{a2}{\leftarrow} \dots$$

• An ω -cochain in **Set** is given by

 $A \in \mathbb{N} \to \text{Set}$ $a \in \Pi n \in \mathbb{N}.A(n+1) \to An$

• We write $\lim (A, a)$ for the limit of an ω -cochain.

Exercise 33

Given a set $X \in$ Set. What is the limit of the following chain?

$$An = \bar{n} \to X$$
$$anf = \lambda i.f i$$

• Natural numbers $\mathbb{N} \in Set$ are given by:

$$\begin{array}{rrr} \mathbf{0} & \in & \mathbb{N} \\ & \simeq & \mathbf{1} \to \mathbb{N} \\ \mathbf{S} & \in & \mathbb{N} \to \mathbb{N} \end{array}$$

• We can combine the two constructors in one morphism:

$$[0,S]\in 1+\mathbb{N}\to\mathbb{N}$$

- The functor T X = 1 + X is called the signature functor.
- A pair $(A \in \text{Set}, f \in 1 + A \rightarrow A)$ is a 1+-algebra.

• For any 1+-algebra (*A*, *f*) there is a unique morphism fold (*A*, *f*) such that the following diagram commutes:

with

$$fold (A, f) 0 = f (inl ())$$

$$fold (A, f) (S n) = f (inr (fold (A, f) n))$$

Exercise 34

Define addition $(+) \in \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ using fold.

Thorsten Altenkirch (Nottingham)

T-algebras

Given an endofunctor $\mathcal{T} \in \mathbf{C} \to \mathbf{C}$ the category of \mathcal{T} -algebras is given by

```
Objects T-algebras (A, f) with
```

$$T A \xrightarrow{f} A$$

Morphisms Given *T*-algebras (A, f), (B, g) a T-algebra morphism is a morphism $h \in \mathbf{C}(A, B)$ such that

$$\begin{array}{cccc}
T A & \xrightarrow{f} & A \\
T h & & h \\
T B & \xrightarrow{g} & B
\end{array}$$

commutes.

Thorsten Altenkirch	(Nottingham)
---------------------	--------------

Initial T-algebras

The initial object (if it exists) in the category of *T*-algebras is denoted as $(\mu T, \text{in}_T)$. For every *T*-algebra (A, f) there is a unique morphism fold_T (A, f) such that

$$T (\mu T) \xrightarrow{\text{in}_{T}} \mathbb{N}$$

$$T (\text{fold} (A, f)) \bigvee_{f \in A} \xrightarrow{f} A$$

commutes.

Given A ∈ Set the set of streams over A: A^ω comes with two destructors

$$\begin{array}{rcl} \mathrm{nd} & \in & \mathcal{A}^{\omega} \to \mathcal{A} \\ \mathrm{tl} & \in & \mathcal{A}^{\omega} \to \mathcal{A}^{\omega} \end{array}$$

• We can combine the two destructors in one morphism:

$$<$$
 hd, tl $>\in A^{\omega} \rightarrow A \times A^{\omega}$

• A pair ($X \in \text{Set}, f \in X \rightarrow A \times X$) is a $A \times \text{-coalgebra}$.

For any A×-algebra (X, f) there is a unique morphism unfold (X, f) such that the following diagram commutes:

with

$$\begin{aligned} & \operatorname{hd}(\operatorname{unfold}(X, f) x) &= \pi_0(f x) \\ & \operatorname{tl}(\operatorname{unfold}(X, f) x) &= \operatorname{unfold}(X, f)(\pi_1(f x)) \end{aligned}$$

Exercise 35

Define the function from $\in \mathbb{N} \to \mathbb{N}^{\omega}$, which produces the stream of natural numbers starting with a given number, using unfold.

Thorsten Altenkirch (Nottingham)

MGS 2009

T-coalgebras

Dually, given an endofunctor $\mathcal{T}\in\mathbf{C}\to\mathbf{C}$ the category of $\mathcal{T}\text{-coalgebras}$ is given by

Objects T-coalgebras (A, f) with

$$A \xrightarrow{f} T A$$

Morphisms Given *T*-coalgebras (A, f), (B, g) a T-coalgebra morphism is a morphism $h \in \mathbf{C}(A, B)$ such that

$$\begin{array}{c} A \xrightarrow{f} T A \\ h \downarrow & \downarrow T h \\ B \xrightarrow{g} T B \end{array}$$

commutes.

Thorsten Altenkirch (Nottingha	m)
-----------------------	-----------	----

Terminal *T*-coalgebras

The terminal object (if it exists) in the category of *T*-coalgebras is denoted as $(\nu T, \text{out}_T)$. For every *T*-coalgebra (A, f) there is a unique morphism unfold_{*T*} (A, f) such that

$$A \xrightarrow{f} T A$$
unfold $(A,f) \downarrow \qquad \qquad \downarrow T (unfold (X,f))$

$$\nu T \xrightarrow{}_{out_T} T (\nu T)$$

Lambek's lemma

- Initial algebras and terminal coalgebras are always isomorphisms.
- We construct the inverse of $in_T \in \mathbf{C}(T(\mu T), \mu T)$ as

$$in_{T}^{-1} \in \mathbf{C}(\mu T, T(\mu T))$$

$$in_{T}^{-1} = fold_{T}(T(\mu T), Tin_{T})$$

• Dually, we construct an inverse to out_T.

Exercise 36

Construct explicitely the inverses to the [0, S] and < hd, tl >.

Exercise 37

Prove Lambek's lemma, i.e. show that in_T^{-1} is inverse to in_T .

 A functor *T* is called ω-cocontinous if it preserves colimits of ω-chains, that is

 $T(\operatorname{colim}(A, a)) \simeq \operatorname{colim}(\lambda n. T(A n), \lambda n. T(a n))$

 We can construct the initial *T*-algebra of an ω-cocontinous functor *T* by constructing the colimit of the following chain:

$$0 \xrightarrow{?} T 0 \xrightarrow{T?} T^2 0 \xrightarrow{T^2?} \cdots$$

Exercise 38

Complete the construction, and show that the colimit is indeed an initial T-algebra.

Exercise 39

Dualize the previous slide. What is an ω -continous functor? How can we construct its terminal coalgebra?

Exercise 40

Which of the following endofunctors on Set are ω -cocontinous, and which are ω -continous:

$$\begin{array}{rcl} T_1 X &=& X \times X \\ T_2 X &=& \mathbb{N} \to X \\ T_3 X &=& (X \to \mathbb{N}) \to \mathbb{N} \end{array}$$

• We define the functor of binary trees with labelled leafs:

 $BT \in \mathbf{Set} \rightarrow \mathbf{Set}$ $BT X = \mu Y X + Y \times Y$

We write $L = in \circ inl$ and $N = in \circ inr$ for the constructors.

• The natural transformation η constructs a leaf:

 $\eta_A \in A \to BT A$ $\eta_A = \lambda a.L a$

 We define a natural transformation bind, which replaces each leaf by a tree.

bind_{A,B}
$$\in$$
 (A \rightarrow BT B) \rightarrow BT A \rightarrow BT B
bind_{A,B} f (L a) = f a
bind_{A,B} f (N (I, r)) = N (bind_{A,B} f I, bind_{A,B} f r)

• Haskell's (>>=) can be defined as a >>= f = bind f a.

Monads (Kleisli triple)

A monad on **C** is a triple $(T, \eta, bind)$ with

$$\begin{array}{rccc} T & \in & \mathbf{C} \to \mathbf{C} \\ \eta & \in & \mathbf{C}(A, T A) \\ \text{bind} & \in & \mathbf{C}(A, T B) \to \mathbf{C}(T A, T B) \end{array}$$

such that

$$(bind f) \circ \eta = f$$

$$bind (\eta \circ f) = f$$

$$(bind f) \circ (bind g) = bind ((bind f) \circ g)$$

Exercise 41

Show that the operations on binary trees satisfy the laws of a monad.

Exercise 42

Show that the following functors over **Set** give rise to monads (assuming $E, S \in$ Set):

$$T_{\text{Error}} X = E + X$$

 $T_{\text{State}} X = S \rightarrow (X \times S)$

Monads

Monad

A monad on **C** is a triple (T, η, μ) with

$$egin{array}{rcl} T &\in & {f C}
ightarrow {f C}
ightarrow {f C} \ \eta &\in & I
ightarrow {f T} \ \mu &\in & T^2
ightarrow T \end{array}$$

(where $T^2 = T \circ T$) such that the following diagrams commute.

Exercise 43

Show that the two definitions are equivalent.

Thorsten Altenkirch (Nottingham)

• We define infinite, labelled binary trees:

$$BT^{\infty} \in \mathbf{Set} \to \mathbf{Set}$$

 $BT^{\infty} X = \nu Y.X \times (Y \times Y)$

• The operation ϵ extracts the top label:

 $\epsilon \in BT^{\infty} A \to A$ $\epsilon(a,(l,r)) = a$

o cobind relabels a tree recursively:

cobind
$$\in (BT^{\infty} A \to B) \to (BT^{\infty} A \to BT^{\infty} B)$$

cobind $f t = (f t, \text{cobind } f (\pi_2 t), \text{cobind } f (\pi_3 t))$

Exercise 44

Show that $(BT^{\infty}, \epsilon, \text{cobind})$ is a comonad, i.e. a monad in **Set**^{op}.

Thorsten Altenkirch (Nottingham)

Kleisli category Given a monad $(T, \eta, bind)$ on **C** we define the Kleisli category **C**_T as: Objects: $|\mathbf{C}|$ Morphisms: $\mathbf{C}_T AB = \mathbf{C}(A, TB)$ Identity: $\eta \in \mathbf{C}_T AA$ Composition: Given $f \in \mathbf{C}_T BC$, $g \in \mathbf{C}_T AB$ we define

$$f \circ_T g = (\operatorname{bind} f) \circ g$$

Exercise 45

Verify that that $\mathbf{C}_{\mathcal{T}}$ is indeed a category.

Exercise 46

Explicitely construct the Kleisli-categories of T_{Error} and T_{State}

Given an adjunction $F \dashv U$

we define:

$$\eta \in \mathbf{C}(A, U(FA))$$

$$\eta = \phi (\mathrm{id}_{FA})$$

$$\epsilon \in \mathbf{D}(F, UB)B$$

$$\epsilon = \phi^{-1} (\mathrm{id}_{UB})$$

this gives rise to a monad (T, ϵ, μ) on **C**

$$T = UF$$
$$\mu = U\epsilon F$$

Exercise 47

Spell out the constructed monad in the case where $F \in \mathbf{Set} \to \mathbf{Mon}$ is the free monad functor and $U \in \mathbf{Mon} \to \mathbf{Set}$ the forgetful functor

Exercise 48

Verify the monad laws of the construction of a monad from an adjunction.

Using C_T we can also go the other way: C_T gives rise to an adjunction F_T ⊢ U_T such that T = U_T ∘ F_T:

$$F_T \in \mathbf{C} \to \mathbf{C}_T$$

$$F_T A = A$$

$$F_T f = \eta \circ f$$

$$U_T \in \mathbf{C}_T \to \mathbf{C}$$

$$U_T A = T A$$

$$U_T f = \mu \circ T f$$

Exercise 49

Verify that $F_T \dashv U_T$.

 This is not the only way to factor a monad into an adjunction. Another construction is the Eilenberg-Moore category C⁷, indeed the two are initial and terminal objects in the category of factorisations.

Thorsten Altenkirch (Nottingham)