Categories for the
 Lazy Functional Programmer

Thorsten Altenkirch

School of Computer Science
University of Nottingham

May 15, 2009

Intro

- Originally: tool for algebraic topology.
- Relevance for Computer Science (Lambek's obs)
E.g. Cartesian Closed Cats \approx Simply Typed λ-calculus
- Categorical concepts in Haskell: Functor, Monad, ...
- Is Category Theory Abstract Nonsense ?
- Is Category Theory an alternative to Set Theory?

Books

MacLane

Pierce

Awodey

Overview

(1) Intro
(2) Categories
(3) Functors and natural transformations

4 Adjunctions
(5) Products and coproducts
(6) Exponentials
(7) Limits and Colimits
(8) Initial algebras and terminal coalgebras
(9) Monads and Comonads

The category Set

Objects: Sets

$$
\mid \text { Set } \mid=\text { Set }
$$

Morphisms : Functions, given $A, B \in \mid$ Set \mid

$$
\operatorname{Set}(A, B)=A \rightarrow B
$$

Identity: Given $A \in \operatorname{Set}$

$$
\begin{aligned}
& \operatorname{id}_{A} \in \operatorname{Set}(A, A) \\
& \operatorname{id}_{A}=\lambda a \cdot a
\end{aligned}
$$

Composition: Given $f \in \operatorname{Set}(B, C), g \in \operatorname{Set}(A, B)$:

Laws:

$$
\begin{aligned}
& f \circ g \in \operatorname{Set}(A, C) \\
& f \circ g=\lambda a . f(g a) \\
& f \circ i d=f \\
& \text { id } \circ f=f \\
&(f \circ g) \circ h=f \circ(g \circ h)
\end{aligned}
$$

Exercise 1

Derive the laws for Set using only the equations of the simply typed λ-calculus, i.e.

$$
\begin{aligned}
& \beta(\lambda x . t) u=t[x:=u] \\
& \eta \lambda x . t x=t \text { if } x \notin \mathrm{FV} t \\
& \xi \frac{t=u}{\lambda x . t=\lambda x \cdot u}
\end{aligned}
$$

Definition: C is a category

A (large) set of objects:

$$
|\mathbf{C}| \in \operatorname{Set}_{1}
$$

Morphisms: For every $A, B \in|\mathbf{C}|$ a homset

$$
\mathbf{C}(A, B) \in \operatorname{Set}
$$

Identity: For any $\mathbf{A} \in \mathbf{C}$:

$$
\operatorname{id}_{A} \in \mathbf{C}(A, A)
$$

Composition: For $f \in \mathbf{C}(B, C), g \in \mathbf{C}(A, B)$:
Laws:

$$
f \circ g \in \mathbf{C}(A, C)
$$

$$
\begin{aligned}
f \circ \mathrm{id} & =f \\
\mathrm{id} \circ f & =f \\
(f \circ g) \circ h & =f \circ(g \circ h)
\end{aligned}
$$

Size matters

- I assume as given a predicative hierarchy of set-theoretic universes:

$$
\text { Set }=\operatorname{Set}_{0} \in \operatorname{Set}_{1} \in \operatorname{Set}_{2} \in \ldots
$$

which is cummulative

$$
\operatorname{Set}_{0} \subseteq \operatorname{Set}_{1} \subseteq \operatorname{Set}_{2} \subseteq \ldots
$$

- To accomodate categories like Set we allow that the objects are a large set $\left(|\mathbf{C}| \in\right.$ Set $\left._{1}\right)$ but require the homsets to be proper sets $\mathbf{C}(A, B) \in \operatorname{Set}=\operatorname{Set}_{0}$.
- A category is small, if the objects are a set $|\mathbf{C}| \in$ Set
- We can repeat this definition at higher levels, a category at level n has as objects $|\mathbf{C}| \in \operatorname{Set}_{n+1}$ and homsets $\mathbf{C}(A, B) \in \operatorname{Set}_{n}$

Dual category

Given a category \mathbf{C} there is a dual category $\mathbf{C}^{\text {op }}$ with Objects $\left|\mathbf{C}^{\mathrm{op}}\right|=|\mathbf{C}|$
Homsets $\mathbf{C o p}^{\mathrm{op}}(A, B)=\mathbf{C}(B, A)$
and composition defined backwards.

Notation

For $n \in \mathbb{N}$ we define

$$
\bar{n}=\{i<n\}
$$

Question

How many elements are in $\operatorname{Set}(\overline{2}, \overline{3})$ and in $\mathbf{S E T}^{\mathrm{op}}(\overline{2}, \overline{3})$?

Isomorphism

An isomorphism between $A, B \in|\mathbf{C}|$ is given by two morphisms $f \in \mathbf{C}(A, B)$ and $f^{-1} \in \mathbf{C}(B, A)$ such that $f \circ f^{-1}=\mathrm{id}, f^{-1} \circ f=\mathrm{id}:$

We say that A and B are isomorphic $A \simeq B$.

- Isomorphic sets are the same upto a renaming of elements.
- Concepts in category theory are usually defined up to isomorphism.

Exercise 2

Which of the following isomorphisms hold in Set:

$$
\begin{aligned}
& \overline{2}+\overline{2} \simeq \overline{4} \\
& \overline{2} \times \overline{2} \simeq \overline{4} \\
& \overline{2} \rightarrow \overline{2} \simeq \overline{4} \\
& \mathbb{N}+\mathbb{N} \simeq \mathbb{N} \\
& \mathbb{N} \times \mathbb{N} \simeq \mathbb{N} \\
& \mathbb{N} \rightarrow \mathbb{N} \simeq \mathbb{N}
\end{aligned}
$$

$A \times B$ is cartesian product

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

$A+B$ is disjoint union

$$
A+B=\{\operatorname{inl} a \mid a \in A\} \cup\{\operatorname{inr} b \mid b \in B\}
$$

Monomorphism

$f \in \mathbf{C}(B, C)$ is a monomorphism (short mono), if for all $g, h \in \mathbf{C}(A, B)$

$$
\frac{f \circ g=f \circ h}{g=h}
$$

- In Set monos are precisely the injective functions.
- We draw monos as $A \longrightarrow B$

Epimorphism

$f \in \mathbf{C}(A, B)$ is a epimorphism (short epi), if for all $g, h \in \mathbf{C}(B, C)$

$$
\frac{g \circ f=h \circ f}{g=h}
$$

- In Set epis are precisely the surjective functions.
- We draw epis as $A \longrightarrow B$

Exercise 3

Show that every iso is both mono and epi.

- Assuming classical (non-constructive) logic, all bijections in Set are isos.

Exercise 4

Show that in Set every morphism $f \in A \rightarrow B$ can be written as a composition of an epi and a mono:

Monoids

Definition: Monoid

A monoid $(M, e, *)$ is given by $M \in \operatorname{Set}, e \in M$ and $(*) \in M \rightarrow M \rightarrow M$ such that:

$$
\begin{aligned}
x * e & =x \\
e * x & =x \\
(x * y) * z & =x *(y * z)
\end{aligned}
$$

Example

$(\mathbb{N}, 0,+)$ is a (commutative) monoid.

Question

Give an example of a non-commutative monoid.

- Monoids correspond to categories with one object.

Monoid as a category

Every monoid $(M, e, *)$ gives rise to a category \mathbf{M}
Objects: $|\mathbf{M}|=\{()\}$
Morphisms $\mathbf{M}((),())=M$
e is the identity, $*$ is composition.

Preorder

(A, \sqsubseteq) with $A \in \operatorname{Set}$ and $(\sqsubseteq) \in A \rightarrow A \rightarrow$ Prop is a preorder if R is reflexive $\forall a \in A . a \sqsubseteq a$
transitive $\forall a, b, c \in A . a \sqsubseteq b \rightarrow b \sqsubseteq c \rightarrow a \sqsubseteq c$

Example

(\mathbb{N}, \leq) is a preorder.

- (\mathbb{N}, \leq) is a partial order, because it also satisfies

$$
\frac{m \leq n \quad n \leq m}{m=n}
$$

Question

Give an example of a preorder, which is not a partial order.

- Preorders correspond to categories where the homsets have at most one element.

A preorder as a category
A preorder (A, \sqsubseteq) can be viewed as a category \mathbf{A} :
Objects $|\mathbf{A}|=A$
Homsets $\mathbf{A}(a, b)= \begin{cases}\{()\} & \text { if } a \sqsubseteq b \\ \{ \} & \text { otherwise }\end{cases}$

- Monoids and preorders are degenerate categories.

Categories of sets with structure

The category of Monoids: Mon
Objects: Monoids (M,e,*)
Morphisms $\operatorname{Mon}\left((M, e, *),\left(M^{\prime}, e^{\prime}, *^{\prime}\right)\right)$ is given by $f \in M \rightarrow M^{\prime}$ such that $f e=e^{\prime}$ and $f(x * y)=(f x) *^{\prime}(f y)$.

Example

The embedding $i \in \operatorname{Mon}((\mathbb{N}, 0,+),(\mathbb{Z}, 0,+))$ with $i n=n$

Exercise 5

Show that i is a mono and an epi but not an iso in Mon.

Exercise 6

Define the category Pre of preorders and monotone functions.

Finite Sets

FinSet

Objects: Finite Sets
Morphisms: Functions

- FinSet is a full subcategory of Set.

FinSetSkel
 Objects: \mathbb{N}
 Morphisms: $\operatorname{FinSetSkel}(m, n)=\bar{m} \rightarrow \bar{n}$

- FinSetSkel is skeletal, any isomorphic objects are equal.
- FinSet and FinSetSkel are equivalent (in the appropriate sense).

Computational Effects

Error
 Given a set of Errors $E \in$ Set
 Objects: Sets
 Morphisms: $\operatorname{Error}(A, B)=A \rightarrow B+E$

State

Given a set of states: $S \in$ Set
Objects: Sets
Morphisms: State $(A, B)=A \times S \rightarrow B \times S$

Exercise 7

Define identity and composition for both categories.

λ-terms

Lam

Objects: Finite sets of variables
Morphisms: $\operatorname{Lam}(X, Y)=Y \rightarrow \operatorname{Lam} X$ where $\operatorname{Lam} X$ is the set of λ-terms whose free variables are in X.

Exercise 8

(1) Define identity and composition.
(2) Extend the definition to typed λ-calculus.

Product categories

Given categories \mathbf{C}, \mathbf{D} we define $\mathbf{C} \times \mathbf{D}$:
Objects: $\mathbf{C} \times \mathbf{D}$
Morphisms: $\mathbf{C} \times \mathbf{D}((A, B),(C, D))=\mathbf{C}(A, C) \times \mathbf{D}(B, D)$
We abbreviate $\mathbf{C}^{2}=\mathbf{C} \times \mathbf{C}$

Slice categories

Given a category \mathbf{C} and an object $A \in|\mathbf{C}|$ we define \mathbf{C} / A as:
Objects: $|\mathbf{C} / \mathbf{A}|=\Sigma B \in|\mathbf{C}| \cdot \mathbf{C}(B, A)$
Morphisms: $\mathbf{C} / \mathbf{A}((B, f),(C, g))$:

Computable sets

ω-Set

Objects: A Set A and a relation $\Vdash_{A} \subseteq \mathbb{N} \times A$ such that $\forall a \in A . \exists i \in \mathbb{N} . i \Vdash_{A} a$.
Morphisms:

$$
\begin{aligned}
& \omega-\operatorname{Set}\left(\left(A, \Vdash_{A}\right),\left(B, \Vdash_{B}\right)\right) \\
& =\left\{f \in A \rightarrow B \mid \exists i \in \mathbb{N} . \forall j, \text { a.j } \Vdash_{A} a\right. \\
& \left.\quad \rightarrow \exists k .\{i\} j \downarrow k \wedge k \Vdash_{B} f a\right\}
\end{aligned}
$$

where $\{i\} j \downarrow k$ means the ith Turing machine applied to input j terminates and returns k.

Partial computations

ω-CPO
Objects: $\left(A, \sqsubseteq_{A}, \bigsqcup_{A}\right)$ such that $\left(A, \sqsubseteq_{A}\right)$ is a partial order, and

$$
\bigsqcup_{A} \in\left\{f \in \mathbb{N} \rightarrow A \mid \forall i . f i \sqsubseteq_{A} f(i+1)\right\} \rightarrow A
$$

is the least upper bound of a chain, i.e. $\forall i . f i \sqsubseteq \bigsqcup_{A} f$ and $(\forall i . f i \sqsubseteq a) \rightarrow \bigsqcup_{A} f \sqsubseteq a$.
Morphisms: $\omega-\mathbf{C P O}\left(\left(A, \sqsubseteq_{A}, \bigsqcup_{A}\right),\left(B, \sqsubseteq_{B}, \bigsqcup_{B}\right)\right)$ is given by functions $f \in A \rightarrow B$ which are:
monotone $\frac{a \sqsubseteq_{A} b}{f a \sqsubseteq f b}$
continuous $f\left(\bigsqcup_{A} h\right)=\bigsqcup_{B}(f \circ h)$

Definition: Functor

Given categories \mathbf{C}, \mathbf{D} a functor $F \in \mathbf{C} \rightarrow \mathbf{D}$ is given by a map on objects $F \in|\mathbf{C}| \rightarrow|\mathbf{D}|$ maps on morphisms Given $f \in \mathbf{C}(A, B), F f \in \mathbf{D}(F A, F B)$
such that

$$
\begin{aligned}
F \mathrm{id}_{A} & =\operatorname{id}_{F A} \\
F(f \circ g) & =(F f) \circ(F g)
\end{aligned}
$$

- A functor $F \in \mathbf{C} \rightarrow \mathbf{C}$ is called an endofunctor.

Example

List : Set \rightarrow Set, the list functor on morphisms is given by map

$$
\begin{aligned}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(a: a s) & =f a: \operatorname{map} f a s
\end{aligned}
$$

We just write List $f=\operatorname{map} f$.

Exercise 9

Show that List satisfies the functor laws.

Question

We consider endofunctors on Set, given maps on objects:
(1) Is $F_{1} X=X \rightarrow \mathbb{N}$ a functor?
(2) Is $F_{2} X=X \rightarrow X$ a functor?
(0) Is $F_{3} X=(X \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ a functor?

- All type expressions with only positive occurences of a set variable give rise to (covariant) functors in Set \rightarrow Set.
- All type expressions with only negative occurences of a set variable give rise to (contravariant) functors in $\mathbf{S e t}^{\mathrm{pp}} \rightarrow$ Set.

Exercise 10

Is there a type-expression which is not positive but still gives rise to a covariant endofunctor on Set?

Definition: natural transformation

Given functors $F, G \in \mathbf{C} \rightarrow \mathbf{D}$ a natural transformation $\alpha: F \rightarrow G$ is given by a family of maps

$$
\alpha \in \Pi_{A \in|\mathbf{C}|} \mathbf{D}(F A, G A)
$$

such that for any $f \in \mathbf{C}(A, B) \quad F A \xrightarrow{\alpha_{A}} G A$

Exercise 11

(1) Show that reverse $\in \Pi X \in$ Set.List $X \rightarrow$ List X is a natural transformation.
(2) Give a family of maps with the same type, which is not natural.

Functor categories

Given categories \mathbf{C}, \mathbf{D} the functor category $\mathbf{C} \rightarrow \mathbf{D}$ is given by:
Objects: Functors $F \in \mathbf{C} \rightarrow \mathbf{D}$
Morphisms Given $F, G \in \mathbf{C} \rightarrow \mathbf{D}$, a morphism is a natural transformation $\alpha \in F \rightarrow G$

- If \mathbf{C} is small, the functor category

$$
\text { PSh C }=\mathbf{C l}^{\mathrm{op}} \rightarrow \text { Set }
$$

is called the category of presheaves over \mathbf{C}.

Exercise 12

Spell out the details of the objects and morphisms of $\operatorname{PSh}(\mathbb{N}, \leq)$.

We define a functor Y, the Yoneda embedding:

$$
\begin{aligned}
& Y \in \mathbf{C} \rightarrow \mathbf{P S h} \mathbf{C} \\
& Y A=\lambda X . \mathbf{C}(X, A)
\end{aligned}
$$

Exercise 13
 Show that Y is a functor.

The Yoneda Lemma
Given $F \in \mathbf{P S h} \mathbf{C}$ the following are naturally isomorphic in $A \in|\mathbf{C}|$
$\operatorname{PSh} \mathbf{C}(Y A, F) \simeq F A$

Exercise 14

Prove the Yoneda Lemma.

The category of categories

CAT

The category of categories is given by:
Objects: Categories
Morphisms: Functors

- This is a category on level $1, \mid$ CAT $\mid \in$ Set $_{2}$.
- CAT is a 2 -category because its homsets are categories themselves (+ Godemont rules).

Free Monoids

- The forgetful functor:

$$
\begin{aligned}
& U \in \text { Mon } \rightarrow \text { Set } \\
& U(M, e, *)=M
\end{aligned}
$$

- Can we go the other way?
- The free functor:

$$
\begin{aligned}
& F \in \text { Set } \rightarrow \text { Mon } \\
& F A=(\operatorname{List} A,[],(++))
\end{aligned}
$$

- How to specify that F is free?

We construct two natural families of maps:

$$
\begin{gathered}
\operatorname{Mon}(F A,(M, e, *)) \underset{\phi^{-1}}{\leftarrow} \operatorname{Set}(A, U(M, e, *)) \\
\phi \in(\text { List } A \rightarrow M) \rightarrow A \rightarrow M \\
\phi f a=f[a] \\
\phi^{-1} \in(A \rightarrow M) \rightarrow(\operatorname{List} A \rightarrow M) \\
\phi^{-1} g[]=e \\
\phi^{-1} g(a:: a s)=(g a) *\left(\phi^{-1} g a s\right)
\end{gathered}
$$

Exercise 15

Show:

(1) $\phi \circ \phi^{-1}=\mathrm{id}$
(2) $\phi^{-1} \circ \phi=\mathrm{id}$

Definition: Adjunction

Given functors:

we say that F is left adjoint to $U(F \dashv U)$ or U is right adjoint to F
if there is a natural isomorphism (in $A \in|\mathbf{D}|, B \in|\mathbf{C}|$)

$$
\mathbf{D}(F A, B) \underset{\phi^{-1}}{\neq} \mathbf{C}(A, \cup B)
$$

A semilattice (with zero) is a monoid $(M, e, *)$ such that: commutative , if for all $x, y \in M$:

$$
x * y=y * x
$$

idempotent, if for all $x \in M$:

$$
x * x=x
$$

- We define SLat as the category of semilattices with zero.
- Morphisms and forgetful functors are defined as for Mon

Exercise 16

Construct the free functor $F \in \mathbf{S e t} \rightarrow$ SLat and show that F is left adjoint to $U \in$ SLat \rightarrow Set.

Products in Set

$$
\begin{aligned}
& A \times B=\{(a, b) \mid a \in A, b \in B\} \\
& \pi_{0}(a, b)=a \\
& \pi_{1}(a, b)=b \\
& <f, g>c=(f c, f c)
\end{aligned}
$$

Laws:

$$
\begin{aligned}
& \pi_{0} \circ<f, g>=f \\
& \pi_{1} \circ<f, g>=g \\
& \frac{\pi_{0} \circ h=f \quad \pi_{1} \circ h=g}{h=<f, g>}
\end{aligned}
$$

Products

Given objects $A, B \in|\mathbf{C}|$ we say that $A \times B$ is their product if the morphisms π_{0}, π_{1} exists and for every f, g there is a morphism $<f, g>$ so that the following diagram commutes:

Moreover, the morphism $<f, g>$ is the unique morphism which makes this diagram commute, i.e.

$$
\frac{\pi_{0} \circ h=f \quad \pi_{1} \circ h=g}{h=<f, g>}
$$

Exercise 17

Show that products in C give rise to a functor $(\times) \in \mathbf{C}^{2} \rightarrow \mathbf{C}$.

Exercise 18

Show that the following equation holds

$$
<f, g>\circ h=<f \circ h, g \circ h>
$$

Exercise 19

Show that the following isomorphism exist in all categories with products:

$$
A \times B \simeq B \times A
$$

and that the assignment is natural in A, B.

Coproducts in Set

$$
\begin{aligned}
& A+B=\{\operatorname{inl} a \mid a \in A\} \cup\{\operatorname{inr} b \mid b \in B\} \\
& {[f, g](\operatorname{inl} a)=f a} \\
& {[f, g](\operatorname{inr} b)=g b}
\end{aligned}
$$

Laws:

$$
\begin{aligned}
& {[f, g] \circ \mathrm{inl}=f} \\
& {[f, g] \circ \mathrm{inr}=g} \\
& h \circ \mathrm{inl}=f \quad h \circ \mathrm{inr}=g \\
& \hline h=[f, g]
\end{aligned}
$$

Coproducts

Given objects $A, B \in|\mathbf{C}|$ we say that $A+B$ is their coproduct if the morphisms inl, inr exists and for every f, g there is a morphism $[f, g]$ so that the following diagram commutes:

Moreover, the morphism $[f, g]$ is the unique morphism which makes this diagram commute, i.e.

$$
\frac{h \circ \mathrm{inl}=f \quad h \circ \mathrm{inr}=g}{h=[f, g]}
$$

- Products and coproducts are dual concepts: Products in $|\mathbf{C}|$ are coproducts in $\left|\mathbf{C}^{\text {op }}\right|$ and vice versa.
- Products and coproducts are left and right adjoints of the diagonal functor:

$$
\begin{aligned}
& \Delta \in \mathbf{C} \rightarrow \mathbf{C}^{2} \\
& \Delta A=(A, A)
\end{aligned}
$$

Terminal objects

$1 \in|\mathbf{C}|$ is a terminal object, if for any object $A \in \mathbf{C}$ there is exactly one arrow ! ${ }_{A}$:

$$
A-{ }_{!_{A}}>1
$$

Initial objects

$0 \in|\mathbf{C}|$ is an initial object, if for any object $A \in \mathbf{C}$ there is exactly one arrow ? ${ }_{A}$:

$$
0-\underset{?_{A}}{>}>A
$$

Question
 What are initial and terminal objects in Set?

Exercise 20

Show that any two terminal objects are isomorphic.

Global elements

- In Set we have that

$$
\operatorname{Set}(1, A) \simeq A
$$

- Hence the elements of $\mathbf{C}(1, A)$ are called the global elements of A.
- A category \mathbf{C} is well pointed, if for $f, g \in \mathbf{C}(A, B)$ we have

$$
\frac{\forall a \in \mathbf{C}(1, A) \cdot f \circ a=g \circ a}{f=g}
$$

- Set is well pointed.

Exercise 21

Consider $\operatorname{PSh}(\mathbb{N}, \leq)$ again. What is the terminal object and what are global elements? Show that $\operatorname{PSh}(\mathbb{N}, \leq)$ is not well pointed.

Exercise 22

Construct the following isomorphism in Set:

$$
A \times(B+C) \simeq A \times B+A \times C
$$

Exercise 23

Show that CMon (the category of commutative monoids) has products and coproducts.

Exercise 24

Give a counterexample for the isomorphism:

$$
A \times(B+C) \simeq A \times B+A \times C
$$

in CMon.

Exponentials in Set

- In Set we have the curry/uncurry isomorphism:

$$
A \times B \rightarrow C \simeq A \rightarrow(B \rightarrow C)
$$

- Indeed this is an adjunction $F \dashv G$ for

$$
\begin{aligned}
& F, G \in \text { Set } \rightarrow \text { Set } \\
& F X=X \times B \\
& G X=B \rightarrow X
\end{aligned}
$$

$\operatorname{Set}(F A, C) \simeq \operatorname{Set}(A, G C)$

Exponentials
 Given a category \mathbf{C} with products. We say that the object $B \in|\mathbf{C}|$ is exponentiable, if the functor $F X=X \times B$ has a right adjoint $F \dashv G$, which we write as $G X=B \rightarrow X$.
 A category with products where all objects are exponentiable is called cartesian closed.

- $B \rightarrow C$ is often written as C^{B}.

Question

What are the exponentials in FinSetSkel?

Exercise 25
 Show that the category of typed λ-terms is cartesian closed.

- Indeed, this is the initial cartesian closed category (or the classifying category).

Exercise 26

Show that in a cartesian closed category with coproducts we have that

$$
A \times(B+C) \simeq(A \times B)+(A \times C)
$$

Corollary

CMon is not cartesian closed.

Exercise 27
 Show that the presheaf categories (PSh C) are cartesian closed.

Exercise 28

Is there a cartesian closed category whose dual is also cartesian closed?

Pullbacks

Given arrows $f \in \mathbf{C}(A, C)$ and $g \in \mathbf{C}(B, C),\left(f \times_{C} g, \pi_{0}, \pi_{1}\right)$ is their pullback, if the diagram below commutes and for every (D, p_{0}, p_{1}) there is a unique arrow $<p_{0}, p_{1}>$ such that the diagram commutes:

- Pullbacks in Set:

$$
f \times_{c} g=\{(a, b) \in A \times B \mid f a=g b\}
$$

Pushouts

Given arrows $f \in \mathbf{C}(A, B)$ and $g \in \mathbf{C}(A, C),\left(f+{ }^{A} g\right.$, inl, inr) is their pushout, if the diagram below commutes and for every $\left(D, i_{0}, i_{1}\right)$ there is a unique arrow $\left[p_{0}, p_{1}\right]$ such that the diagram commutes:

Exercise 29
 What are pushouts in Set?

Limits and colimits

Given a small category of diagrams \mathbf{D}, a \mathbf{D}-diagram in \mathbf{C} is given by a functor $F \in \mathbf{D} \rightarrow \mathbf{C}$. A cone of a diagram is given by an object $D \in \mathbf{C}$ and a natural transformation $\alpha \in \mathrm{K}_{D} \rightarrow F$ where $\mathrm{K}_{D} X=D$ is a constant functor.
Morphisms between cones (D, α) and (E, β) are given by $f \in D \rightarrow E$ such that $\alpha \circ f=\beta$.
The limit of F is the terminal object in the category of cones.
Dually, a cocone is given by a natural transformation $\alpha \in F \rightarrow K_{D}$, and a morphism of cocones (D, α) and (E, β) are given by $f \in D \rightarrow E$ such that $f \circ \alpha=\beta$.
The colimit of F is the initial object in the category of cocones.

Examples

- Products are given by limits of

Note that we are leaving out identity arrows.

- Dually, coproducts are given by colimits of the same diagram.
- Pullbacks are limits of

- Pushouts are colimits of the dual diagram:
- Equalizers are limits of

- Dually, coequalizers are colimits of the same diagram.

Exercise 30
 What are equalizers and coequalizers in Set?

Exercise 31

Show that pullbacks can be constructed from equalizers and products.

- Actually, all finite limits can be constructed from equalizers and finite products (i.e. binary products and terminal objects).
- Diagrams of (\mathbb{N}, \leq) are called ω-chains:

$$
A 0 \underset{a 0}{\longrightarrow} A 1 \underset{a 1}{\longrightarrow} A 2 \underset{a 2}{\longrightarrow} \ldots
$$

Note that we are leaving out the composites of arrows.

- An ω-chain in Set is given by

$$
\begin{aligned}
& A \in \mathbb{N} \rightarrow \text { Set } \\
& a \in \Pi n \in \mathbb{N} . A n \rightarrow A(n+1)
\end{aligned}
$$

- We write $\operatorname{colim}(A, a)$ for the colimit of an ω-chain.

Exercise 32

What is the colimit of the following chain?

$$
\begin{aligned}
& A n=\bar{n} \\
& a n i=i
\end{aligned}
$$

- Dually, Diagrams of (\mathbb{N}, \geq) are called ω-cochains:

$$
A 0 \stackrel{a 0}{\leftarrow} A 1 \stackrel{a 1}{\leftarrow} A 2 \stackrel{a 2}{\leftarrow} \ldots
$$

- An ω-cochain in Set is given by

$$
\begin{aligned}
& A \in \mathbb{N} \rightarrow \operatorname{Set} \\
& a \in \Pi n \in \mathbb{N} \cdot A(n+1) \rightarrow A n
\end{aligned}
$$

- We write $\lim (A, a)$ for the limit of an ω-cochain.

Exercise 33

Given a set $X \in$ Set. What is the limit of the following chain?

$$
\begin{aligned}
& A n=\bar{n} \rightarrow X \\
& \text { anf }=\lambda i . f i
\end{aligned}
$$

- Natural numbers $\mathbb{N} \in$ Set are given by:

$$
\begin{aligned}
0 & \in \mathbb{N} \\
& \simeq 1 \rightarrow \mathbb{N} \\
\mathbf{S} & \in \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

- We can combine the two constructors in one morphism:

$$
[0, \mathrm{~S}] \in 1+\mathbb{N} \rightarrow \mathbb{N}
$$

- The functor $T X=1+X$ is called the signature functor.
- A pair $(A \in \operatorname{Set}, f \in 1+A \rightarrow A)$ is a $1+$-algebra.
- For any $1+$-algebra (A, f) there is a unique morphism fold (A, f) such that the following diagram commutes:

with

$$
\begin{aligned}
\operatorname{fold}(A, f) 0 & =f(\operatorname{inl}()) \\
\operatorname{fold}(A, f)(\operatorname{S} n) & =f(\operatorname{inr}(\operatorname{fold}(A, f) n))
\end{aligned}
$$

Exercise 34

Define addition $(+) \in \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ using fold.

T-algebras

Given an endofunctor $T \in \mathbf{C} \rightarrow \mathbf{C}$ the category of T-algebras is given by

Objects T-algebras (A, f) with

$$
T A \underset{f}{\longrightarrow} A
$$

Morphisms Given T-algebras $(A, f),(B, g)$ a T-algebra morphism is a morphism $h \in \mathbf{C}(A, B)$ such that

commutes.

Initial T-algebras

The initial object (if it exists) in the category of T-algebras is denoted as $\left(\mu T, \mathrm{in}_{T}\right)$. For every T-algebra (A, f) there is a unique morphism fold $_{T}(A, f)$ such that

commutes.

- Given $A \in$ Set the set of streams over A : A^{ω} comes with two destructors

$$
\begin{aligned}
\mathrm{hd} & \in A^{\omega} \rightarrow A \\
\mathrm{tl} & \in A^{\omega} \rightarrow A^{\omega}
\end{aligned}
$$

- We can combine the two destructors in one morphism:

$$
<\mathrm{hd}, \mathrm{tl}>\in A^{\omega} \rightarrow A \times A^{\omega}
$$

- A pair $(X \in \operatorname{Set}, f \in X \rightarrow A \times X)$ is a $A \times$-coalgebra.
- For any $A \times$-algebra (X, f) there is a unique morphism unfold (X, f) such that the following diagram commutes:

with

$$
\begin{aligned}
\operatorname{hd}(\operatorname{unfold}(X, f) x) & =\pi_{0}(f x) \\
\operatorname{tl}(\operatorname{unfold}(X, f) x) & =\operatorname{unfold}(X, f)\left(\pi_{1}(f x)\right)
\end{aligned}
$$

Exercise 35

Define the function from $\in \mathbb{N} \rightarrow \mathbb{N}^{\omega}$, which produces the stream of natural numbers starting with a given number, using unfold.

T-coalgebras

Dually, given an endofunctor $T \in \mathbf{C} \rightarrow \mathbf{C}$ the category of T-coalgebras is given by

Objects T-coalgebras (A, f) with

$$
A \underset{f}{\longrightarrow} T A
$$

Morphisms Given T-coalgebras $(A, f),(B, g)$ a T-coalgebra morphism is a morphism $h \in \mathbf{C}(A, B)$ such that

commutes.

Terminal T-coalgebras

The terminal object (if it exists) in the category of T-coalgebras is denoted as $(\nu T$, out $T)$. For every T-coalgebra (A, f) there is a unique morphism $^{\text {unfold }} T(A, f)$ such that

Lambek's lemma

- Initial algebras and terminal coalgebras are always isomorphisms.
- We construct the inverse of $\mathrm{in}_{T} \in \mathbf{C}(T(\mu T), \mu T)$ as

$$
\begin{aligned}
& \operatorname{in}_{T}^{-1} \in \mathbf{C}(\mu T, T(\mu T)) \\
& \operatorname{in}_{T}^{-1}=\operatorname{fold}_{T}\left(T(\mu T), T \operatorname{in}_{T}\right)
\end{aligned}
$$

- Dually, we construct an inverse to out T.

Exercise 36

Construct explicitely the inverses to the $[0, \mathrm{~S}]$ and $<\mathrm{hd}, \mathrm{tl}>$.

Exercise 37

Prove Lambek's lemma, i.e. show that in ${ }_{T}^{-1}$ is inverse to in T.

- A functor T is called ω-cocontinous if it preserves colimits of ω-chains, that is

$$
T(\operatorname{colim}(A, a)) \simeq \operatorname{colim}(\lambda n . T(A n), \lambda n . T(a n))
$$

- We can construct the initial T-algebra of an ω-cocontinous functor T by constructing the colimit of the following chain:

$$
0 \xrightarrow[?]{\longrightarrow} T 0 \underset{T ?}{ } T^{2} 0 \underset{T^{2} ?}{ } \cdots
$$

Exercise 38

Complete the construction, and show that the colimit is indeed an initial T-algebra.

Exercise 39

Dualize the previous slide. What is an ω-continous functor? How can we construct its terminal coalgebra?

Exercise 40

Which of the following endofunctors on Set are ω-cocontinous, and which are ω-continous:

$$
\begin{aligned}
& T_{1} X=X \times X \\
& T_{2} X=\mathbb{N} \rightarrow X \\
& T_{3} X=(X \rightarrow \mathbb{N}) \rightarrow \mathbb{N}
\end{aligned}
$$

- We define the functor of binary trees with labelled leafs:

$$
\begin{aligned}
& B T \in \text { Set } \rightarrow \text { Set } \\
& B T X=\mu Y . X+Y \times Y
\end{aligned}
$$

We write $\mathrm{L}=\mathrm{in} \circ \mathrm{inl}$ and $\mathrm{N}=\mathrm{in} \circ \mathrm{inr}$ for the constructors.

- The natural transformation η constructs a leaf:

$$
\begin{aligned}
& \eta_{A} \in A \rightarrow B T A \\
& \eta_{A}=\lambda \mathrm{a} . \mathrm{L} a
\end{aligned}
$$

- We define a natural transformation bind, which replaces each leaf by a tree.

$$
\begin{aligned}
& \operatorname{bind}_{A, B} \in(A \rightarrow B T B) \rightarrow B T A \rightarrow B T B \\
& \operatorname{bind}_{A, B} f(\mathrm{~L} a)=f a \\
& \operatorname{bind}_{A, B} f(\mathrm{~N}(l, r))=\mathrm{N}\left(\operatorname{bind}_{A, B} f l, \operatorname{bind}_{A, B} f r\right)
\end{aligned}
$$

- Haskell's $(\gg=)$ can be defined as $a \gg=f=\operatorname{bind} f$ a.

Monads (Kleisli triple)

A monad on \mathbf{C} is a triple (T, η, bind) with

$$
\begin{aligned}
T & \in \mathbf{C} \rightarrow \mathbf{C} \\
\eta & \in \mathbf{C}(A, T A) \\
\text { bind } & \in \mathbf{C}(A, T B) \rightarrow \mathbf{C}(T A, T B)
\end{aligned}
$$

such that

$$
\begin{aligned}
(\operatorname{bind} f) \circ \eta & =f \\
\operatorname{bind}(\eta \circ f) & =f \\
(\operatorname{bind} f) \circ(\operatorname{bind} g) & =\operatorname{bind}((\operatorname{bind} f) \circ g)
\end{aligned}
$$

Exercise 41

Show that the operations on binary trees satisfy the laws of a monad.

Exercise 42

Show that the following functors over Set give rise to monads (assuming $E, S \in$ Set):

$$
\begin{aligned}
& T_{\text {Error }} X=E+X \\
& T_{\text {State }} X=S \rightarrow(X \times S)
\end{aligned}
$$

Monad

A monad on \mathbf{C} is a triple (T, η, μ) with

$$
\begin{aligned}
& T \in \mathbf{C} \rightarrow \mathbf{C} \\
& \eta \in I \rightarrow T \\
& \mu \in T^{2} \rightarrow T
\end{aligned}
$$

(where $T^{2}=T \circ T$) such that the following diagrams commute.

Exercise 43

Show that the two definitions are equivalent.

- We define infinite, labelled binary trees:

$$
\begin{aligned}
& B T^{\infty} \in \text { Set } \rightarrow \text { Set } \\
& B T^{\infty} X=\nu Y . X \times(Y \times Y)
\end{aligned}
$$

- The operation ϵ extracts the top label:

$$
\begin{aligned}
& \epsilon \in B T^{\infty} A \rightarrow A \\
& \epsilon(a,(l, r))=a
\end{aligned}
$$

- cobind relabels a tree recursively:

$$
\begin{aligned}
& \text { cobind } \in\left(B T^{\infty} A \rightarrow B\right) \rightarrow\left(B T^{\infty} A \rightarrow B T^{\infty} B\right) \\
& \text { cobind } f t=\left(f t, \text { cobind } f\left(\pi_{2} t\right), \text { cobind } f\left(\pi_{3} t\right)\right)
\end{aligned}
$$

Exercise 44

Show that ($B T^{\infty}, \epsilon$, cobind) is a comonad, i.e. a monad in Set ${ }^{\text {op }}$.

Kleisli category

Given a monad (T, η, bind) on \mathbf{C} we define the Kleisli category \mathbf{C}_{T} as: Objects: |C
Morphisms: $\mathbf{C}_{T} A B=\mathbf{C}(A, T B)$
Identity: $\eta \in \mathbf{C}_{T} A A$
Composition: Given $f \in \mathbf{C}_{T} B C, g \in \mathbf{C}_{T} A B$ we define

$$
f \circ T g=(\operatorname{bind} f) \circ g
$$

Exercise 45

Verify that that \mathbf{C}_{T} is indeed a category.

Exercise 46

Explicitely construct the Kleisli-categories of $T_{\text {Error }}$ and $T_{\text {State }}$

Given an adjunction $F \dashv U$

$$
\mathbf{D}(F A, B) \underset{\phi^{-1}}{\underset{\sim}{\rightleftarrows}} \mathbf{C}(A, \cup B)
$$

we define:

$$
\begin{aligned}
\eta & \in \mathbf{C}(A, \cup(F A)) \\
\eta & =\phi\left(\operatorname{id}_{F A}\right) \\
\epsilon & \in \mathbf{D}(F, \cup B) B \\
\epsilon & =\phi^{-1}\left(\operatorname{id}_{\cup B}\right)
\end{aligned}
$$

this gives rise to a monad (T, ϵ, μ) on \mathbf{C}

$$
\begin{aligned}
& T=U F \\
& \mu=U \epsilon F
\end{aligned}
$$

Exercise 47

Spell out the constructed monad in the case where $F \in$ Set \rightarrow Mon is the free monad functor and $U \in \mathbf{M o n} \rightarrow$ Set the forgetful functor

Exercise 48

Verify the monad laws of the construction of a monad from an adjunction.

- Using \mathbf{C}_{T} we can also go the other way: \mathbf{C}_{T} gives rise to an adjunction $F_{T} \dashv U_{T}$ such that $T=U_{T} \circ F_{T}$:

$$
\begin{aligned}
& F_{T} \in \mathbf{C} \rightarrow \mathbf{C}_{T} \\
& F_{T} A=A \\
& F_{T} f=\eta \circ f \\
& U_{T} \in \mathbf{C}_{T} \rightarrow \mathbf{C} \\
& U_{T} A=T A \\
& U_{T} f=\mu \circ T f
\end{aligned}
$$

Exercise 49

Verify that $F_{T} \dashv U_{T}$.

- This is not the only way to factor a monad into an adjunction. Another construction is the Eilenberg-Moore category \mathbf{C}^{T}, indeed the two are initial and terminal objects in the category of factorisations.

