
Monads and More: Part 1

Tarmo Uustalu, Tallinn

Nottingham, 14–18 May 2007

Outline

Monads and why they matter for a working functional
programmer

Combining monads: monad transformers, distributive
laws, the coproduct of monads

Finer and coarser: Lawvere theories and arrows

Comonadic notions of computation: dataflow notions of
computation, notions of computation on trees

Prerequisites

Basics of functional programming and typed lambda
calculi

From category theory:

functors, natural transformations
adjunctions
symmetric monoidal (closed) categories
Cartesian (closed) categories, coproducts
initial algebra, final coalgebra of a functor

Monads
A monad on a category C is given by a

a functor T : C → C (the underlying functor),
a natural transformation η : IdC

.→ T (the unit),
a natural transformation µ : TT

.→ T (the
multiplication)

satisfying these conditions:

TA
ηTA //

TηA

�� HH
HH

HH
HH

H

HH
HH

HH
HH

H TTA

µA

��
TTA µA

// TA

TTTA
µTA //

TµA

��

TTA

µA

��
TTA µA

// TA

This definition says that (T , η, µ) is a monoid in the
endofunctor category [C, C].

An alternative formulation: Kleisli triples

A more combinatory formulation is the following.

A monad (Kleisli triple) is given by

an object mapping T : |C| → |C|,
for any object A, a map ηA : A→ TA,
for any map k : A→ TB, a map k? : TA→ TB (the
Kleisli extension operation)

satisfying these conditions:

if k : A→ TB, then k? ◦ ηA = k,
η?
A = idTA,

if k : A→ TB, ` : B → TC , then (`? ◦ k)? = `? ◦ k?.

(Notice there are no explicit functoriality and naturality
conditions.)

Monads vs. Kleisli triples

There is a bijection between monads and Kleisli triples.

Given T , η, µ, one defines

if k : A→ TB, then k? =df TA
Tk // TTB

µB // TB .

Given T (on objects only), η and −?, one defines

if f : A→ B, then

Tf =df (A
f // B

ηB // TB)? : TA→ TB,

µA =df (TA
idTA // TA)? : TTA→ TA.

Kleisli category of a monad
A monad T on a category C induces a category Kl(T)
called the Kleisli category of T defined by

an object is an object of C,
a map of from A to B is a map of C from A to TB,

idT
A =df A

ηA // TA ,
if k : A→T B, ` : B →T C , then

` ◦T k =df A
k // TB

T ` // TTC
µC // TC

From C there is an identity-on-objects inclusion functor J
to Kl(T), defined on maps by

if f : A→ B, then

Jf =df A
f // B

ηB // TB = A
ηA // TA

Tf // TB .

Computational interpretation

Think of C as the category of pure functions and of TA as
the type of effectful computations of values of a type A.

Kl(T) is then the category of effectful functions.

ηA : A→ TA is the identity function on A viewed as
trivially effectful.

Jf : A→ TB is a general pure function f : A→ B viewed
as trivially effectful.

µA : TTA→ TA flattens an effectful computation of an
effectful computation.

k? : TA→ TB is an effectful function k : A→ TB
extended into one that can input an effectful
computation.

Kleisli adjunction
In the opposite direction there is a functor
U : Kl(T)→ C defined by

UA =df TA,

if k : A→T B, then Uk =df TA
k?

// TB .

J is left adjoint to U .

JA→T B
A→ TB
A→ UB

Importantly, UJ = T . Indeed,
UJA = TA,
if f : A→ B, then UJf = (ηB ◦ f)? = Tf .

Moreover, the unit of the adjunction is η.

J a U is the initial adjunction factorizing T in this way.
There is also a final one, known as the Eilenberg-Moore
adjunction.

Examples
Exceptions monad:

TA =df A + E where E is some object (of exceptions),

ηA =df A
inl−→ A + E ,

µA =df (A + E) + E
[id,inr]−→ A + E ,

if k : A→ B + E , then k? =df A + E
[k,inr]−→ B + E .

Output monad:

TA =df A× E where (E , e,m) is some monoid (of
output traces), e.g., the type of lists of a fixed element
type with nil and append,

ηA =df A
ur−→ A× 1

id×e−→ A× E ,

µA =df (A× E)× E
a−→ A× (E × E)

id×m−→ A× E ,
if k : A→ B × E , then

k? =df A×E
k×id−→ (B×E)×E

a−→ B×(E×E)
id×m−→ B×E .

Reader monad:

TA =df E ⇒ A where E is some object (of
environments),

ηA =df Λ(A× E
fst−→ A),

µA =df Λ((E ⇒ (E ⇒ A))× E
〈ev,snd〉−→ (E ⇒ A)× E

ev−→ A),
if k : A→ E ⇒ B, then k? =df Λ((E ⇒ A)× E

〈ev,snd〉−→ A× E
k×id−→ (E ⇒ B)× E

ev−→ B).

Side-effect monad:

TA =df S ⇒ A× S where S is some object (of states),

ηA =df Λ(A× S
id−→ A× S),

µA =df Λ(S ⇒ ((S ⇒ A× S)× S)× S
ev−→ (S ⇒ A× S)× S

ev−→ A× S),
if k : A→ S ⇒ B × S , then k? =df Λ((S ⇒ A× S)× S

ev−→ A× S
k−→ (S ⇒ B × S)× S

ev−→ B × S).

Strong functors
A strong functor on a category (C, I ,⊗) is given by

an endofunctor F on C,
together with a natural transformation
slA,B : A⊗ FB → F (A⊗ B) (the (tensorial) strength)

satisfying

I ⊗ FA
slI ,A //

ulFA
��

F (I ⊗ A)

FulA
��

FA FA

(A⊗ B)⊗ FC
slA⊗B,C //

aA,B,FC

��

F ((A⊗ B)⊗ C)

FaA,B,C

��
A⊗ (B ⊗ FC)

idA⊗slB,C

// A⊗ F (B ⊗ C)
slA,B⊗C

// F (A⊗ (B ⊗ C))

A strong natural transformation between two strong
functors (F , sl), (G , sl′) is a natural transformation
τ : F

.→ G satisfying

A⊗ FB
slA,B //

idA⊗τB

��

F (A⊗ B)

τA⊗B

��
A⊗ GB

sl′A,B

// G (A⊗ B)

Strong monads

A strong monad on a monoidal category (C, I ,⊗) is a
monad (T , η, µ) together with a strength sl for T for
which η and µ are strong, i.e., satisfy

A⊗ B

idA⊗ηB

��

A⊗ B

ηA⊗B

��
A⊗ TB

slA,B

// T (A⊗ B)

A⊗ TTB
slA,TB//

idA⊗µB

��

T (A⊗ TB)
T slA,B // TT (A⊗ B)

µA⊗B

��
A⊗ TB

slA,B

// T (A⊗ B)

(Note that Id is always strong and, if F , G are strong,
then GF is strong.)

Commutative monads

If (C, I ,⊗) is symmetric monoidal, then a strong functor
(F , sl) is actually bistrong: it has a costrength
srA,B : FA⊗ B → F (A⊗ B) with properties symmetric to
those of a strength defined by

srA,B =df FA⊗ B
cFA,B−→ B ⊗ FA

slB,A−→ F (B ⊗ A)
FcB,A−→ F (A⊗ B)

A bistrong monad (T , sl, sr) is called commutative, if it
satisfies

TA⊗ TB
slTA,B //

srA,TB

��

T (TA⊗ B)
T srA,B // TT (A⊗ B)

µA⊗B

��

T (A⊗ TB)

T slA,B

��
TT (A⊗ B) µA⊗B

// T (A⊗ B)

Examples
Exceptions monad:

TA =df A + E where E is an object,

slA,B =df A×(B+E)
dr−→ A×B+A×E

id+snd−→ A×B+E .

Output monad:

TA =df A× E where (E , e,m) is a monoid,

slA,B =df A× (B × E)
a−1

−→ (A× B)× E .

Reader monad:

TA =df E ⇒ A where E is an object,
slA,B =df Λ((A× (E ⇒ B))× E

a−→ A× ((E ⇒ B)× E)
id×ev−→ A× B).

Tensorial vs. functorial strength

A functorially strong functor on a monoidal closed
category (C, I ,⊗, () is an endofunctor F on C with a
natural transformation fsA,B : A (B → FA (FB
internalizing the functorial action of F .

There is a bijective correspondence between tensorially
and functorially strong endofunctors, in fact an
equivalence between their categories.

Given fs, one defines sl by

slA,B =df A⊗FB
coev⊗id−→ (B (A⊗B)⊗FB

Λ−1(fs)−→ F (A⊗B)

Given sl, one defines fs by

fsA,B =df Λ((A (B)⊗ FA
sl−→ F ((A (B)⊗ A)

ev−→ FB)

On Set, every monad is (1,×) strong

Any endofunctor on Set has a unique functorial strength
and any natural transformation between endofuctors on
Set is functorially strong.

Hence any monad on Set is both functorially and
tensorially strong.

Effects

Of course we want the Kleisli category of a monad to
contain more maps than the base category.

To describe those, we must single out some proper
sources of effectfulness. How to choose those is a topic
on its own.

E.g., for the exceptions monad, an important map is

raise =df E
inr−→ A + E .

Semantics of pure typed lambda calculus

Pure typed lambda calculus can be interpreted into any
Cartesian closed category C, e.g., Set.

The interpretation is this:

JKK =df an object of C
JA× BK =df JAK× JBK

JA⇒ BK =df JAK⇒ JBK

JCK =df JC0K× . . .× JCn−1K

J(x) xiK =df πi

J(x) let x ← t in uK =df J(x , x) uK ◦ 〈id, J(x) tK〉
J(x) fst(t)K =df fst ◦ J(x) tK

J(x) snd(t)K =df snd ◦ J(x) tK
J(x) (t0, t1)K =df 〈J(x) t0K, J(x) t1K〉

J(x) λxtK =df Λ(J(x , x) tKT)
J(x) t uK =df ev ◦ 〈J(x) tK, J(x) uK〉

This interpretation is sound: derivable typing judgements
of the pure typed lambda calculus are valid, i.e.,

x : C ` t : A implies J(x) tK : JCK→ JAK

and the same holds true about all derivable equalities.

This interpretation is also complete.

Pre-[Cartesian closed] structure of the Kleisli

category of a strong monad

Given a Cartesian (closed) category C and a (1,×) strong
monad T on it, how much of that structure carries over
to Kl(T)?

We can manufacture “pre-products” in Kl(T) using the
products of C and the strength sl like this:

A0 ×T A1 =df A0 × A1

fstT =df η ◦ fst
sndT =df η ◦ snd

〈k0, k1〉T =df sl? ◦ sr ◦ 〈k0, k1〉

k : C → TA ` : C × A→ TB

` •T k =df

C
〈idC ,k〉// C × TA

slC ,A // T (C × A) `?
// TB

fstT =df A0 × A1
fst // A0

η // TA0

sndT =df A0 × A1
snd // A1

η // TA1

k0 : C → TA0 k1 : C → TA1

〈k0, k1〉T =df

C
〈k0,k1〉// TA0 × TA1

srA0,TA1// T (A0 × TA1)
sl?A0,A1 // T (A0 × A1)

The typing rules of products hold, but not all laws.

In particular, we do not get the β-law of products. Effects
cannot be undone!

E.g., taking T to be the exception monad defined by
TA =df A + E for some fixed E we do not have
sndT ◦T 〈k0, k1〉T = k1.

Take k0 =df raise = inr : E → TA,
k1 =df idT = inl : E → TE
Then 〈k0, k1〉T = inr : E → T (A× E) and hence
sndT ◦T 〈k0, k1〉T = inr 6= inl = k1.

In fact, ×T is not even a bifunctor unless T is
commutative, although it is functorial in each argument
separately. Effects do not commute in general!

“Pre-exponents” are defined from the exponents of C by

A⇒T B =df A⇒ TB

evT =df ev

ΛT (k) =df η ◦ Λ(k)

evT
A,B =df (A⇒ TB)× A

evA,B // TB

k : C × A→ TB

ΛT (k) =df C
Λ(k) // A⇒ TB

η // T (A⇒ TB)

It is not true that A⇒T − : Kl(T)→ Kl(T) is right
adjoint to −×T A : Kl(T)→ Kl(T).
So ⇒T is not a true exponent wrt. the preproduct ×T .

But A⇒T − : Kl(T)→ C is right adjoint to
J(−× A) : C → Kl(T):

J(C × A)→T B

C × A→ TB
C → A⇒ TB

C → A⇒T B

We that say A⇒T B is the Kleisli exponent of A, B .

More about the pre-[Cartesian closed] structure of Kleisli
categories in the story about arrows.

CoCartesian structure of the Kleisli category of a

monad

If C is coCartesian (has coproducts), then Kl(T) is
coCartesian too, since J as a left adjoint preserves
colimits.

Concretely, the coproduct on Kl(T) is defined by

A0 +T A1 =df A0 + A1

inlT =df η ◦ inl

inrT =df η ◦ inr

[k0, k1]
T =df [k0, k1]

Semantics of an effectful language

In the semantics of an effectful language, the semantic
universe is the Kleisli category Kl(T) of the appropriate
monad T on a Cartesian closed base category C.
The pure fragment is interpreted into Kl(T) as if the
language was pure, using the pre-[Cartesian closed]
structure:

JKKT =df an object of Kl(T)
= that object of C

JA× BKT =df JAKT ×T JBKT

= JAKT × JBKT

JA⇒ BKT =df JAKT ⇒T JBKT

= JAKT ⇒ T JBKT

JCKT =df JC0KT ×T . . .×T JCn−1KT

= JC0KT × . . .× JCn−1KT

J(x) xiKT =df πT
i

= η ◦ πi

J(x) let x ← t in uKT =df J(x , x) uKT ◦T 〈idT , J(x) tKT 〉T
= (J(x , x) uKT)? ◦ sl ◦ 〈id, J(x) tKT 〉

J(x) fst(t)KT =df fstT ◦T J(x)tKT

= T fst ◦ J(x)tKT

J(x) snd(t)KT =df sndT ◦T J(x)tKT

= T snd ◦ J(x)tKT

J(x) (t0, t1)KT =df 〈J(x)t0KT , J(x)t1KT 〉T
= sl? ◦ sr ◦ 〈J(x)t0KT , J(x)t1KT 〉

J(x) λxtKT =df ΛT (J(x , x)tKT)
= η ◦ Λ(J(x , x)tKT)

J(x) t uKT =df evT ◦T 〈J(x)tKT , J(x)uKT 〉T
= ev? ◦ sl? ◦ sr ◦ 〈J(x)tKT , J(x)uKT 〉

As Kl(T) is only pre-Cartesian closed, for this pure
fragment, soundness of typing holds, i.e.,

x : C ` t : A implies J(x) tKT : JCKT →T JAKT

but not all equations of the pure typed lambda-calculus
are validated.

In particular,

` t : A implies JtKT : 1→T JAKT

so a closed term t of a type A denotes an element of
T JAKT .

Any effect-constructs must be interpreted specifically
validating their desired typing rules and equations.
E.g., for a language with exceptions we would use the
exceptions monad and define

J(x) raise(e)KT =df raise ◦T J(x) eKT

= raise? ◦ J(x) eKT

Monad maps

A monad map between monads T , S on a category C is a
natural transformation τ : T

.→ S satisfying

A

ηT
A

��

A

ηS
A

��
TA τA

// SA

TTA
τTA //

µT
A

��

STA
SτA // SSA

µS
A

��
TA τA

// SA

Alternatively, a map between two monads (Kleisli triples)
T , S is, for any object A, a map τA : TA→ SA satisfying

τA ◦ ηT
A = ηS

A,
if k : A→ TB, then τB ◦ k?T = (τB ◦ k)?S ◦ τA.

(No explicit naturality condition on τ .)

The two definitions are equivalent.

Monads on C and maps between them form a category
Monad(C).

Monad maps vs. functors between Kleisli categories

There is a bijection between monad maps τ between T ,
S and functors V : Kl(T)→ Kl(S) satisfying VJT = JS .

Given τ , one defines V by

VA =df A,

if k : A→ TB, then Vk =df A
k−→ TB

τB−→ SB.

Given V , one defines τ by

τA =df V (TA
idTA−→ TA) : TA→S A.

