Monads and More: Part 1

Tarmo Uustalu, Tallinn

Nottingham, 14-18 May 2007

Outline

@ Monads and why they matter for a working functional
programmer

@ Combining monads: monad transformers, distributive
laws, the coproduct of monads

@ Finer and coarser: Lawvere theories and arrows

e Comonadic notions of computation: dataflow notions of
computation, notions of computation on trees

Prerequisites

@ Basics of functional programming and typed lambda
calculi

@ From category theory:

e functors, natural transformations
adjunctions

symmetric monoidal (closed) categories
Cartesian (closed) categories, coproducts

("]
]
(]
e initial algebra, final coalgebra of a functor

Monads

@ A monad on a category C is given by a

e a functor T : C — C (the underlying functor),

e a natural transformation 7 : Idec — T (the unit),

e a natural transformation p: TT — T (the
multiplication)

satisfying these conditions:

TA—2-TTA TTTAXZ-TTA

s T

TTA T> TA TTA T TA

@ This definition says that (7,7, ;1) is a monoid in the
endofunctor category [C,C].

An alternative formulation: Kleisli triples

@ A more combinatory formulation is the following.
e A monad (Kleisli triple) is given by
e an object mapping T : |C| — |C|,
e for any object A, a mapna: A— TA,
o for any map k: A— TB, amap k*: TA — TB (the
Kleisli extension operation)
satisfying these conditions:
o if k: A— TB, then k* onp = k,
o Ny = id7a,
oif ki A— TB, (: B — TC, then (£* o k)* = (* o k*.
@ (Notice there are no explicit functoriality and naturality
conditions.)

Monads vs. Kleisli triples

@ There is a bijection between monads and Kleisli triples.

e Given T, n, u, one defines

o if k: A— TB, then k* =gy TA—"% T7TB 12~ T8

@ Given T (on objects only), and —*, one defines
o if f: A— B, then
Tf =4 (A——~B—"~TB): TA— TB,

id7a

Kleisli category of a monad

@ A monad T on a category C induces a category KI(T)
called the Kleisli category of T defined by

an object is an object of C,

a map of from A to B is a map of C from A to TB,

idy =ar A—">TA,

o ifk:A—=T B, ¢:B —T C, then

00T k=gt A—>TB—5TTC > TC

@ From C there is an identity-on-objects inclusion functor J
to KI(T), defined on maps by

o if f: A— B, then
=g A—=B-—L-TB = A TA- "~ TB.

Computational interpretation

@ Think of C as the category of pure functions and of TA as
the type of effectful computations of values of a type A.

@ KI(T) is then the category of effectful functions.

@ 74 : A— TA is the identity function on A viewed as
trivially effectful.

e Jf : A— TB is a general pure function f : A — B viewed
as trivially effectful.

@ ip: TTA — TA flattens an effectful computation of an
effectful computation.

@ k*: TA — TB is an effectful function k: A— TB
extended into one that can input an effectful
computation.

Kleisli adjunction

@ In the opposite direction there is a functor
U : KI(T) — C defined by
o UA=4 TA,
o if k: A—T B, then Uk =4 TA——> TB.
e Jis left adjoint to U.

JA—-TB
A— TB
A— UB

@ Importantly, UJ = T. Indeed,
o UIA=TA,
o if f: A— B, then UJf = (1 o f)* = TF.
@ Moreover, the unit of the adjunction is 7.
@ J - U is the initial adjunction factorizing T in this way.
There is also a final one, known as the Eilenberg-Moore
adjunction.

Examples

@ Exceptions monad:
o TA =4t A+ E where E is some object (of exceptions),
o ma=ar AL A+E,
pa=a (A+E)+E "= A+E,
o ifk:A— B+ E, then k* =g A+ E —
e Output monad:

o TA =4t A x E where (E, e, m) is some monoid (of
output traces), e.g., the type of lists of a fixed element
type with nil and append,

o ma=ar A Ax1 S AXE,

o MA_df(AxE)><E—>A><(E><E)'dxmA><E,

o if k: A— B x E, then
k* =gt AXE S (BXEYXE -2 Bx(ExE) "% BxE.

[|d inr]

[k,inr] BiE.

@ Reader monad:

o TA =4t E = A where E is some object (of

environments),

o na =ar N(A x E =5 A),

o pia=at N(E = (E = A)) x E
D (E = A)x E 2 A),
o if k: A— E = B, then k* =4t N((E = A) x E

ond A x ERY(E = By x E 2% B).

@ Side-effect monad:

o TA=4t S = A x S where S is some object (of states),
nA:de(AX5i>A><5),
ﬂA:df/\(Si((SiAXS)XS)XS

L(S=2AxS) xS L AXS),
o ifk:A—S=BxS, then k" =4 A((§=A%xS) xS
L AXS K (S=BxS)xS 2 BxYS).

Strong functors

@ A strong functor on a category (C,/,®) is given by
e an endofunctor F on C,
e together with a natural transformation
slag: A® FB — F(A® B) (the (tensorial) strength)

satisfying
1 FA—"4 F(I @ A)
UIFAl \LFU'A
FA =———FA
(A B)® FC F((A® B) @ C)

3A,B,FC\L \LFaA,B,C

A®(B®FC) = A® F(B® C) ;—F(A® (B® C))

sla,BeC

@ A strong natural transformation between two strong
functors (F,sl), (G,sl’) is a natural transformation
T : F = G satisfying

sl
A® FB—"%F(A® B)

idA®TBl iTA@)B

SIAJ3

Strong monads

@ A strong monad on a monoidal category (C,/,®) is a
monad (T, 7, i) together with a strength sl for T for
which 1 and p are strong, i.e., satisfy

AR B=—A®B
idA@nB\L lnA@B

sl Tsl
AR TTB—2T(A® TB) —=2 TT(A® B)
idA@uBi iﬂA@B

A® TB T(A® B)

SIA,B

(Note that Id is always strong and, if F, G are strong,
then GF is strong.)

Commutative monads

e If (C,/,®) is symmetric monoidal, then a strong functor
(F,sl) is actually bistrong: it has a costrength
stag : FA® B — F(A® B) with properties symmetric to
those of a strength defined by
slg. A CB A

SraB =dt FA@BEB®FA—>F(B®A) — F(A® B)

@ A bistrong monad (T,sl,sr) is called commutative, if it

satisfies
TA® TB—— T(TA@B)—>TT(A®B)
T(A® TB) 1A®B
TsIA’B\L
TT(A® B) e T(A® B)

Examples

@ Exceptions monad:

o TA =4t A+ E where E is an object,

o slag =at Ax(B+E) 25 AxB+AxE "¢ AxB+E.
@ Output monad:

o TA =4t A x E where (E, e, m) is a monoid,

o slas =ar Ax (BxE) 2> (Ax B) x E.
@ Reader monad:

o TA =4t E = A where E is an object,

o slap=at N((Ax (E=B))x E

2, Ax ((E= B)x E)'“¥ Ax B).

Tensorial vs. functorial strength

@ A functorially strong functor on a monoidal closed
category (C, I, ®,—o) is an endofunctor F on C with a
natural transformation fspg : A— B — FA — FB
internalizing the functorial action of F.

@ There is a bijective correspondence between tensorially
and functorially strong endofunctors, in fact an
equivalence between their categories.

@ Given fs, one defines sl by

Sl s =t AQFB 25 (B —o A2B)9FB %) F(A%B)

@ Given sl, one defines fs by

fsag =ar N((A — B) ® FA =, F((A— B)® A) =% FB)

On Set, every monad is (1, x) strong

@ Any endofunctor on Set has a unique functorial strength
and any natural transformation between endofuctors on
Set is functorially strong.

@ Hence any monad on Set is both functorially and
tensorially strong.

Effects

@ Of course we want the Kleisli category of a monad to
contain more maps than the base category.

@ To describe those, we must single out some proper
sources of effectfulness. How to choose those is a topic
on its own.

e E.g., for the exceptions monad, an important map is

inr

raise =gt E — A+ E.

Semantics of pure typed lambda calculus

@ Pure typed lambda calculus can be interpreted into any
Cartesian closed category C, e.g., Set.

@ The interpretation is this:

[K] =ar an object of C
[AxB] =ar [A] x [B]
[A=B] =a [A]=I[B]

[[Q] =df [[Co]] X ... X [[Cn—l]]

[(x)x] =ar i
[(x)let x — tinu] =qr [(x,x)u]o/id,[(x)t])
[(x) fst(t)] =ar fsto[(x)1]
[(x) snd(t)] =ar snd o [(x) 1]
[(x) (2o, t1)] =ar ([(x) to]], [(x) ta])
[() Axt] =ar A([(x,x)t]7)
[(x)tu] =ar evo([(x)t], [(x)u])

@ This interpretation is sound: derivable typing judgements
of the pure typed lambda calculus are valid, i.e.,

x: CkFt:Aimplies [(x) t] : [C] — [A]

and the same holds true about all derivable equalities.

@ This interpretation is also complete.

Pre-[Cartesian closed] structure of the Kleisli

category of a strong monad

@ Given a Cartesian (closed) category C and a (1, x) strong
monad T on it, how much of that structure carries over

to KI(T)?

@ We can manufacture “pre-products” in KI(T) using the
products of C and the strength sl like this:

-
Ap X" Ar =g
fStT =d4f
sndT =df

<k07 k1>T —df

Ao X A1
n o fst

nosnd
sI* o sro (ko, k1)

k:C—-TA (. CxA—TB

(o k=4
(id¢,k)

C— CxTA—>T(C><A)—>TB

fstT =gr Ag X Ay —= Ay —= TAo

snd” =g Ag x A - A, T TA,

koZC—>TAO k]_ZC—>TA1

<k0a kl>T —d

(ko,k1) StAy, TAL

C4> TAO X TA]_ I T(Ao X TA]_) A40; T(AO X Al)

The typing rules of products hold, but not all laws.

In particular, we do not get the (3-law of products. Effects
cannot be undone!

E.g., taking T to be the exception monad defined by
TA =4 A+ E for some fixed E we do not have

snd” o7 (ko, k)T = k.

Take kg =45 raise = inr : E — TA,

ki =qid" =inl: E— TE

Then (kg, k;)T =inr: E — T(A x E) and hence

snd” o7 (ko, ky)T = inr # inl = k.

In fact, x T is not even a bifunctor unless T is
commutative, although it is functorial in each argument
separately. Effects do not commute in general!

@ “Pre-exponents” are defined from the exponents of C by

A=TB =4 A= TB
evT =4r €V

N (k) =ar noNKk)

evig=a (A= TB)x A2 7B

k:CxA— TB

AT (k) =at cMas B2 T(A= TB)

e It is not true that A=" — : KI(T) — KI(T) is right
adjoint to — x " A: KI(T) — KI(T).
So =T is not a true exponent wrt. the preproduct x .
@ But A=T — : KI(T) — C is right adjoint to
J(—xA):C—KIT):

J(ICxA)—-TB
CxA—TB
C—-A=1TB
C—-A=T8B

We that say A=" B is the Kleisli exponent of A, B.

@ More about the pre-[Cartesian closed] structure of Kleisli
categories in the story about arrows.

CoCartesian structure of the Kleisli category of a
monad

e If C is coCartesian (has coproducts), then KI(T) is
coCartesian too, since J as a left adjoint preserves
colimits.

e Concretely, the coproduct on KI(T) is defined by

A+ Al =4 A+ Al
ian —df N © inl
inrT =g noinr

[ko, ki]T =ar [ko, ki

Semantics of an effectful language

@ In the semantics of an effectful language, the semantic
universe is the Kleisli category KI(T) of the appropriate
monad T on a Cartesian closed base category C.

@ The pure fragment is interpreted into KI(T) as if the
language was pure, using the pre-[Cartesian closed]
structure:

[K]T =qt an object of KI(T)
= that object of C
[AxB]T =4 [A]" xT[B]"
=[Al” x[B]"
[A=B]T =4 [A]"=T[B]"
=[AI" = T[B]"

[[QHT =df [[Co]]T ><T... ><T [[Cn_l]]T
=[G]" x ... x [Caza] T

[(x)x]T =ar

[(x) fet x — tin u] " =as
[6) ()] =ar

[(x) snd()] T =as

[(x) (to, t1)] " =at

[(x) Mxt] T =qr

[(x)tu]T =g

T
=nom;
[, x) u] ™ oT (idT, [(x)t]T)T
= ([(x,x) u] ")* osl o (id, [(x) 1] T)
fst” o7 [(x)t] "
= Tfsto [(x)t]"
snd” o [(x)t]7
= Tsnd o [(x)t]"
([()] ™, [()ul")T
=sl*osro ([(x)to] ", [(x)t] ")
AT([(x, x)t]7)
=no N[(x,x)t] ")
ev ol ([(x)t] ", [(x)u])T
=evtoslosro ([(x)t]7, [(x)u] ")

@ As KI(T) is only pre-Cartesian closed, for this pure
fragment, soundness of typing holds, i.e.,

x:CrHt:Aimplies [(x)t]" : [C]" =T [A]"

but not all equations of the pure typed lambda-calculus
are validated.

@ In particular,

Ft:Aimplies [t]7 : 1 —T [A]T

so a closed term t of a type A denotes an element of
TIA]T.

@ Any effect-constructs must be interpreted specifically
validating their desired typing rules and equations.
E.g., for a language with exceptions we would use the
exceptions monad and define

[(x) raise(e)]T =gt raiseo’ [(x)e]”
= raise* o [(x) e] "

Monad maps

@ A monad map between monads T, S on a category C is a
natural transformation 7: T — S satisfying

TTA 57a

A=——A TTA-"-STA-—-"-SSA
CI L o
TA—=>SA TA SA

TA

@ Alternatively, a map between two monads (Kleisli triples)
T, S is, for any object A, a map 74 : TA — SA satisfying

°TAO77A_77Av
o if k:A— TB, then g o k*T = (1 0 k)*° o 7a.

(No explicit naturality condition on 7.)
@ The two definitions are equivalent.

@ Monads on C and maps between them form a category
Monad(C).

Monad maps vs. functors between Kleisli categories

@ There is a bijection between monad maps 7 between T,
S and functors V : KI(T) — KI(S) satisfying VJT = J°.
@ Given 7, one defines V by
o VA =g A,
o ifk:A— TB, then Vk =gt A —~ TB & SB.
@ Given V, one defines 7 by

o Ta=at V(TASA TA): TA =S A

