Monads and More: Part 1

Tarmo Uustalu, Tallinn

Nottingham, 14-18 May 2007

Outline

- Monads and why they matter for a working functional programmer
- Combining monads: monad transformers, distributive laws, the coproduct of monads
- Finer and coarser: Lawvere theories and arrows
- Comonadic notions of computation: dataflow notions of computation, notions of computation on trees

Prerequisites

- Basics of functional programming and typed lambda calculi
- From category theory:
- functors, natural transformations
- adjunctions
- symmetric monoidal (closed) categories
- Cartesian (closed) categories, coproducts
- initial algebra, final coalgebra of a functor

Monads

- A monad on a category \mathcal{C} is given by a
- a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ (the underlying functor),
- a natural transformation $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow T$ (the unit),
- a natural transformation $\mu: T T \rightarrow T$ (the multiplication)
satisfying these conditions:

- This definition says that (T, η, μ) is a monoid in the endofunctor category $[\mathcal{C}, \mathcal{C}]$.

An alternative formulation: Kleisli triples

- A more combinatory formulation is the following.
- A monad (Kleisli triple) is given by
- an object mapping $T:|\mathcal{C}| \rightarrow|\mathcal{C}|$,
- for any object A, a map $\eta_{A}: A \rightarrow T A$,
- for any map $k: A \rightarrow T B$, a map $k^{\star}: T A \rightarrow T B$ (the Kleisli extension operation)
satisfying these conditions:
- if $k: A \rightarrow T B$, then $k^{*} \circ \eta_{A}=k$,
- $\eta_{A}^{\star}=\mathrm{id}_{T A}$,
- if $k: A \rightarrow T B, \ell: B \rightarrow T C$, then $\left(\ell^{\star} \circ k\right)^{\star}=\ell^{\star} \circ k^{\star}$.
- (Notice there are no explicit functoriality and naturality conditions.)

Monads vs. Kleisli triples

- There is a bijection between monads and Kleisli triples.
- Given T, η, μ, one defines
- if $k: A \rightarrow T B$, then $k^{\star}=_{\mathrm{df}} T A \xrightarrow{T k} T T B \xrightarrow{\mu_{B}} T B$.
- Given T (on objects only), η and $-^{\star}$, one defines
- if $f: A \rightarrow B$, then

$$
\begin{aligned}
T f & =\mathrm{df}\left(A \xrightarrow{f} B \xrightarrow{\eta_{B}} T B\right)^{\star}: T A \rightarrow T B, \\
\text { - } \mu_{A} & ={ }_{\mathrm{df}}\left(T A \xrightarrow{\text { id }_{T A}} T A\right)^{\star}: T T A \rightarrow T A .
\end{aligned}
$$

Kleisli category of a monad

- A monad T on a category \mathcal{C} induces a category $\mathbf{K I}(T)$ called the Kleisli category of T defined by
- an object is an object of \mathcal{C},
- a map of from A to B is a map of \mathcal{C} from A to $T B$,
- $\mathrm{id}_{A}^{T}=\mathrm{df} A \xrightarrow{\eta_{A}} T A$,
- if $k: A \rightarrow^{T} B, \ell: B \rightarrow^{T} C$, then

$$
\ell \circ^{T} k=\mathrm{df} A \xrightarrow{k} T B \xrightarrow{T \ell} T T C \xrightarrow{\mu_{C}} T C
$$

- From \mathcal{C} there is an identity-on-objects inclusion functor J to $\mathbf{K I}(T)$, defined on maps by
- if $f: A \rightarrow B$, then

$$
J f={ }_{\mathrm{df}} A \xrightarrow{f} B \xrightarrow{\eta_{B}} T B=A \xrightarrow{\eta_{A}} T A \xrightarrow{T f} T B .
$$

Computational interpretation

- Think of \mathcal{C} as the category of pure functions and of $T A$ as the type of effectful computations of values of a type A.
- $\mathrm{KI}(T)$ is then the category of effectful functions.
- $\eta_{A}: A \rightarrow T A$ is the identity function on A viewed as trivially effectful.
- Jf:A TB is a general pure function $f: A \rightarrow B$ viewed as trivially effectful.
- $\mu_{A}: T T A \rightarrow T A$ flattens an effectful computation of an effectful computation.
- $k^{\star}: T A \rightarrow T B$ is an effectful function $k: A \rightarrow T B$ extended into one that can input an effectful computation.

Kleisli adjunction

- In the opposite direction there is a functor
$U: \mathbf{K I}(T) \rightarrow \mathcal{C}$ defined by
- $U A={ }_{\mathrm{df}} T A$,
- if $k: A \rightarrow^{T} B$, then $U k={ }_{\mathrm{df}} T A \xrightarrow{k^{\star}} T B$.
- J is left adjoint to U.

$$
\frac{\xlongequal[A A \rightarrow^{T} B]{\overline{A \rightarrow T B}}}{\overline{A \rightarrow U B}}
$$

- Importantly, $U J=T$. Indeed,
- $U J A=T A$,
- if $f: A \rightarrow B$, then $U J f=\left(\eta_{B} \circ f\right)^{\star}=T f$.
- Moreover, the unit of the adjunction is η.
- $J \dashv U$ is the initial adjunction factorizing T in this way. There is also a final one, known as the Eilenberg-Moore adjunction.

Examples

- Exceptions monad:
- $T A={ }_{\mathrm{df}} A+E$ where E is some object (of exceptions),
- $\eta_{A}={ }_{\mathrm{df}} A \xrightarrow{\text { inl }} A+E$,
- $\mu_{A}={ }_{\mathrm{df}}(A+E)+E \xrightarrow{[\mathrm{id}, \mathrm{inr}]} A+E$,
- if $k: A \rightarrow B+E$, then $k^{\star}={ }_{\mathrm{df}} A+E \xrightarrow{[k, \mathrm{inr}]} B+E$.
- Output monad:
- $T A={ }_{\mathrm{df}} A \times E$ where (E, e, m) is some monoid (of output traces), e.g., the type of lists of a fixed element type with nil and append,
- $\eta_{A}={ }_{\mathrm{df}} A \xrightarrow{\mathrm{ur}} A \times 1 \xrightarrow{\mathrm{id} \times e} A \times E$,
- $\mu_{A}={ }_{\mathrm{df}}(A \times E) \times E \xrightarrow{\mathrm{a}} A \times(E \times E) \xrightarrow{\mathrm{id} \times m} A \times E$,
- if $k: A \rightarrow B \times E$, then
$k^{\star}={ }_{\mathrm{df}} A \times E \xrightarrow{k \times \text { id }}(B \times E) \times E \xrightarrow{a} B \times(E \times E) \xrightarrow{\text { id } \times m} B \times E$.
- Reader monad:
- TA $={ }_{\mathrm{df}} E \Rightarrow A$ where E is some object (of environments),
- $\eta_{A}={ }_{\mathrm{df}} \Lambda(A \times E \xrightarrow{\mathrm{fst}} A)$,
- $\mu_{A}={ }_{\mathrm{df}} \Lambda((E \Rightarrow(E \Rightarrow A)) \times E$

$$
\xrightarrow{\langle\mathrm{ev}, \text { snd }\rangle}(E \Rightarrow A) \times E \xrightarrow{\mathrm{ev}} A),
$$

- if $k: A \rightarrow E \Rightarrow B$, then $k^{\star}={ }_{\mathrm{df}} \Lambda((E \Rightarrow A) \times E$

$$
\xrightarrow{\langle\mathrm{ev}, \text { snd }\rangle} A \times E \xrightarrow{k \times i d}(E \Rightarrow B) \times E \xrightarrow{\mathrm{ev}} B) .
$$

- Side-effect monad:
- TA $={ }_{\mathrm{df}} S \Rightarrow A \times S$ where S is some object (of states),
- $\eta_{A}={ }_{\mathrm{df}} \Lambda(A \times S \xrightarrow{i d} A \times S)$,
- $\mu_{A}={ }_{\mathrm{df}} \Lambda(S \Rightarrow((S \Rightarrow A \times S) \times S) \times S$

$$
\xrightarrow{\mathrm{ev}}(S \Rightarrow A \times S) \times S \xrightarrow{\mathrm{ev}} A \times S),
$$

- if $k: A \rightarrow S \Rightarrow B \times S$, then $k^{\star}={ }_{\mathrm{df}} \Lambda((S \Rightarrow A \times S) \times S$

$$
\xrightarrow{\mathrm{ev}} A \times S \xrightarrow{k}(S \Rightarrow B \times S) \times S \xrightarrow{\mathrm{ev}} B \times S) .
$$

Strong functors

- A strong functor on a category $(\mathcal{C}, I, \otimes)$ is given by
- an endofunctor F on \mathcal{C},
- together with a natural transformation

$$
\mathrm{sl}_{A, B}: A \otimes F B \rightarrow F(A \otimes B) \text { (the (tensorial) strength) }
$$ satisfying

$(A \otimes B) \otimes F C \longrightarrow F((A \otimes B) \otimes C)$

$A \otimes(B \otimes F C) \xrightarrow[|d A \otimes s| \vec{B}, C]{ } A \otimes F(B \otimes C) \underset{s_{A, B \otimes C}}{ } F(A \otimes(B \otimes C))$

- A strong natural transformation between two strong functors $(F, \mathrm{sl}),\left(G, \mathrm{sl}^{\prime}\right)$ is a natural transformation $\tau: F \rightarrow G$ satisfying

Strong monads

- A strong monad on a monoidal category $(\mathcal{C}, I, \otimes)$ is a monad (T, η, μ) together with a strength sl for T for which η and μ are strong, i.e., satisfy

(Note that Id is always strong and, if F, G are strong, then $G F$ is strong.)

Commutative monads

- If $(\mathcal{C}, I, \otimes)$ is symmetric monoidal, then a strong functor (F, sl) is actually bistrong: it has a costrength $\mathrm{sr}_{A, B}: F A \otimes B \rightarrow F(A \otimes B)$ with properties symmetric to those of a strength defined by

$$
\mathrm{sr}_{A, B}={ }_{\mathrm{df}} F A \otimes B \xrightarrow{\mathrm{c}_{F A, B}} B \otimes F A \xrightarrow{\mathrm{si}_{B, A}} F(B \otimes A) \xrightarrow{F c_{B, A}} F(A \otimes B)
$$

- A bistrong monad ($T, \mathrm{sl}, \mathrm{sr}$) is called commutative, if it satisfies

Examples

- Exceptions monad:
- $T A={ }_{\mathrm{df}} A+E$ where E is an object,
- $\mathrm{sl}_{A, B}={ }_{\mathrm{df}} A \times(B+E) \xrightarrow{\mathrm{dr}} A \times B+A \times E \xrightarrow{\text { id }+ \text { snd }} A \times B+E$.
- Output monad:
- $T A={ }_{\mathrm{df}} A \times E$ where (E, e, m) is a monoid,
- $\mathrm{sl}_{A, B}={ }_{\mathrm{df}} A \times(B \times E) \xrightarrow{\mathrm{a}^{-1}}(A \times B) \times E$.
- Reader monad:
- $T A={ }_{\mathrm{df}} E \Rightarrow A$ where E is an object,
- $\mathrm{sl}_{A, B}={ }_{\mathrm{df}} \Lambda((A \times(E \Rightarrow B)) \times E$

$$
\xrightarrow{\mathrm{a}} A \times((E \Rightarrow B) \times E) \xrightarrow{\text { id } \times \mathrm{ev}} A \times B) .
$$

Tensorial vs. functorial strength

- A functorially strong functor on a monoidal closed category $(\mathcal{C}, I, \otimes, \multimap)$ is an endofunctor F on \mathcal{C} with a natural transformation $\mathrm{fs}_{A, B}: A \multimap B \rightarrow F A \multimap F B$ internalizing the functorial action of F.
- There is a bijective correspondence between tensorially and functorially strong endofunctors, in fact an equivalence between their categories.
- Given fs, one defines sl by

$$
\mathrm{sl}_{A, B}={ }_{\mathrm{df}} A \otimes F B \xrightarrow{\mathrm{coev} \otimes i \mathrm{id}}(B \multimap A \otimes B) \otimes F B \xrightarrow{\wedge^{-1}(\mathrm{fs})} F(A \otimes B)
$$

- Given sl, one defines fs by

$$
\mathrm{fs}_{A, B}={ }_{\mathrm{df}} \Lambda((A \multimap B) \otimes F A \xrightarrow{\mathrm{sl}} F((A \multimap B) \otimes A) \xrightarrow{\mathrm{ev}} F B)
$$

On Set, every monad is $(1, \times)$ strong

- Any endofunctor on Set has a unique functorial strength and any natural transformation between endofuctors on Set is functorially strong.
- Hence any monad on Set is both functorially and tensorially strong.

Effects

- Of course we want the Kleisli category of a monad to contain more maps than the base category.
- To describe those, we must single out some proper sources of effectfulness. How to choose those is a topic on its own.
- E.g., for the exceptions monad, an important map is raise $={ }_{\mathrm{df}} E \xrightarrow{\mathrm{inr}} A+E$.

Semantics of pure typed lambda calculus

- Pure typed lambda calculus can be interpreted into any Cartesian closed category \mathcal{C}, e.g., Set.
- The interpretation is this:

$$
\begin{aligned}
& \llbracket K \rrbracket={ }_{\mathrm{df}} \quad \text { an object } \text { of } \mathcal{C} \\
& \llbracket A \times B \rrbracket \quad={ }_{\mathrm{df}} \quad \llbracket A \rrbracket \times \llbracket B \rrbracket \\
& \llbracket A \Rightarrow B \rrbracket \quad={ }_{\mathrm{df}} \quad \llbracket A \rrbracket \Rightarrow \llbracket B \rrbracket \\
& \llbracket \underline{C} \rrbracket={ }_{\mathrm{df}} \quad \llbracket C_{0} \rrbracket \times \ldots \times \llbracket C_{n-1} \rrbracket \\
& \llbracket(\underline{x}) x_{i} \rrbracket={ }_{\mathrm{df}} \quad \pi_{i} \\
& \llbracket(\underline{x}) \text { let } x \leftarrow t \text { in } u \rrbracket={ }_{\mathrm{df}} \llbracket(\underline{x}, x) u \rrbracket \circ\langle\mathrm{id}, \llbracket(x) t \rrbracket\rangle \\
& \llbracket(\underline{x}) f s t(t) \rrbracket={ }_{\mathrm{df}} \quad \mathrm{fst} \circ \llbracket(\underline{x}) t \rrbracket \\
& \llbracket(\underline{x}) \operatorname{snd}(t) \rrbracket \quad=_{\mathrm{df}} \quad \text { snd } \circ \llbracket(\underline{x}) t \rrbracket \\
& \llbracket(\underline{x})\left(t_{0}, t_{1}\right) \rrbracket \quad=_{\mathrm{df}} \quad\left\langle\llbracket(\underline{x}) t_{0} \rrbracket, \llbracket(\underline{x}) t_{1} \rrbracket\right\rangle \\
& \llbracket(\underline{x}) \lambda x t \rrbracket \quad{ }_{\mathrm{df}} \quad \Lambda\left(\llbracket(\underline{x}, x) t \rrbracket^{T}\right) \\
& \llbracket(\underline{x}) t u \rrbracket={ }_{\mathrm{df}} \quad \operatorname{ev} \circ\langle\llbracket(\underline{x}) t \rrbracket, \llbracket(\underline{x}) u \rrbracket\rangle
\end{aligned}
$$

- This interpretation is sound: derivable typing judgements of the pure typed lambda calculus are valid, i.e.,

$$
\underline{x}: \underline{C} \vdash t: A \text { implies } \llbracket(\underline{x}) t \rrbracket: \llbracket \underline{C} \rrbracket \rightarrow \llbracket A \rrbracket
$$

and the same holds true about all derivable equalities.

- This interpretation is also complete.

Pre-[Cartesian closed] structure of the Kleisli

 category of a strong monad- Given a Cartesian (closed) category \mathcal{C} and a $(1, \times)$ strong monad T on it, how much of that structure carries over to $\mathbf{K I}(T)$?
- We can manufacture "pre-products" in $\mathbf{K I}(T)$ using the products of \mathcal{C} and the strength sl like this:

$$
\begin{array}{rll}
A_{0} \times^{T} A_{1} & =A_{\mathrm{df}} \times A_{1} \\
\mathrm{fst}^{T} & ={ }_{\mathrm{df}} \quad \eta \circ \mathrm{fst} \\
\mathrm{snd}^{T} & ={ }_{\mathrm{df}} \quad \eta \circ \mathrm{snd} \\
\left\langle k_{0}, k_{1}\right\rangle^{T} & ={ }_{\mathrm{df}} & \text { sl }^{\star} \circ \mathrm{sr} \circ\left\langle k_{0}, k_{1}\right\rangle
\end{array}
$$

$$
\begin{gathered}
k: C \rightarrow T A \quad \ell: C \times A \rightarrow T B \\
\ell \bullet T=_{\mathrm{df}} \\
C \xrightarrow{\left\langle\mathrm{id}_{C}, k\right\rangle} C \times T A \xrightarrow{\text { sl }_{C, A}} T(C \times A) \xrightarrow{\ell^{\star}} T B
\end{gathered}
$$

$$
\mathrm{fst}^{T}={ }_{\mathrm{df}} A_{0} \times A_{1} \xrightarrow{\mathrm{fst}} A_{0} \xrightarrow{\eta} T A_{0}
$$

$$
\mathrm{snd}^{T}={ }_{\mathrm{df}} A_{0} \times A_{1} \xrightarrow{\text { snd }} A_{1} \xrightarrow{\eta} T A_{1}
$$

$$
k_{0}: C \rightarrow T A_{0} \quad k_{1}: C \rightarrow T A_{1}
$$

$$
\left\langle k_{0}, k_{1}\right\rangle^{T}={ }_{\mathrm{df}}
$$

$$
C \xrightarrow{\left\langle k_{0}, k_{1}\right\rangle} T A_{0} \times T A_{1} \xrightarrow{\mathrm{sr}_{A_{0}}, T A_{1}} T\left(A_{0} \times T A_{1}\right) \xrightarrow{\text { sl }_{A_{0}, A_{1}}^{\star}} T\left(A_{0} \times A_{1}\right)
$$

- The typing rules of products hold, but not all laws.
- In particular, we do not get the β-law of products. Effects cannot be undone!
- E.g., taking T to be the exception monad defined by $T A={ }_{\mathrm{df}} A+E$ for some fixed E we do not have $\operatorname{snd}^{T} \circ^{T}\left\langle k_{0}, k_{1}\right\rangle^{T}=k_{1}$.
- Take $k_{0}={ }_{\text {df }}$ raise $=$ inr : $E \rightarrow$ TA, $k_{1}={ }_{\mathrm{df}} \mathrm{id}^{T}=\mathrm{inl}: E \rightarrow T E$
Then $\left\langle k_{0}, k_{1}\right\rangle^{\top}=\operatorname{inr}: E \rightarrow T(A \times E)$ and hence snd $^{T} \circ^{T}\left\langle k_{0}, k_{1}\right\rangle^{T}=\mathrm{inr} \neq \mathrm{inl}=k_{1}$.
- In fact, \times^{\top} is not even a bifunctor unless T is commutative, although it is functorial in each argument separately. Effects do not commute in general!
- "Pre-exponents" are defined from the exponents of \mathcal{C} by

$$
\begin{array}{rll}
A \Rightarrow^{T} B & ={ }_{\mathrm{df}} & A \Rightarrow T B \\
\mathrm{ev}^{T} & ={ }_{\mathrm{df}} & \mathrm{ev} \\
\Lambda^{T}(k) & ={ }_{\mathrm{df}} & \eta \circ \Lambda(k)
\end{array}
$$

$$
\mathrm{ev}_{A, B}^{T}={ }_{\mathrm{df}}(A \Rightarrow T B) \times A \xrightarrow{\mathrm{ev}_{A, B}} T B
$$

$$
k: C \times A \rightarrow T B
$$

$\Lambda^{T}(k)=\mathrm{df} C \xrightarrow{\Lambda(k)} A \Rightarrow T B \xrightarrow{\eta} T(A \Rightarrow T B)$

- It is not true that $A \Rightarrow^{T}-: \mathbf{K I}(T) \rightarrow \mathbf{K I}(T)$ is right adjoint to $-\times^{T} A: \mathbf{K I}(T) \rightarrow \mathbf{K I}(T)$. So \Rightarrow^{T} is not a true exponent wrt. the preproduct \times^{T}.
- But $A \Rightarrow^{T}-: \mathbf{K I}(T) \rightarrow \mathcal{C}$ is right adjoint to $J(-\times A): \mathcal{C} \rightarrow \mathbf{K I}(T):$

$$
\begin{gathered}
\frac{J(C \times A) \rightarrow^{T} B}{\underline{C \times A \rightarrow T B}} \\
\underline{\overline{C \rightarrow A \Rightarrow T B}} \\
C \rightarrow A \Rightarrow^{T} B
\end{gathered}
$$

We that say $A \Rightarrow^{T} B$ is the Kleisli exponent of A, B.

- More about the pre-[Cartesian closed] structure of Kleisli categories in the story about arrows.

CoCartesian structure of the Kleisli category of a

 monad- If C is coCartesian (has coproducts), then $\mathbf{K I}(T)$ is coCartesian too, since J as a left adjoint preserves colimits.
- Concretely, the coproduct on $\mathbf{K I}(T)$ is defined by

$$
\begin{array}{rlll}
A_{0}+{ }^{T} A_{1} & ={ }_{\mathrm{df}} & A_{0}+A_{1} \\
\mathrm{inl}^{T} & ={ }_{\mathrm{df}} & \eta \circ \mathrm{inl} \\
\mathrm{inr}^{T} & ={ }_{\mathrm{df}} & \eta \circ \mathrm{inr} \\
{\left[k_{0}, k_{1}\right]^{T}} & =_{\mathrm{df}} & {\left[k_{0}, k_{1}\right]}
\end{array}
$$

Semantics of an effectful language

- In the semantics of an effectful language, the semantic universe is the Kleisli category $\mathbf{K I}(T)$ of the appropriate monad T on a Cartesian closed base category \mathcal{C}.
- The pure fragment is interpreted into $\mathbf{K I}(T)$ as if the language was pure, using the pre-[Cartesian closed] structure:

$$
\begin{aligned}
& \llbracket K \rrbracket^{T}={ }_{\mathrm{df}} \quad \text { an object of } \mathbf{K I}(T) \\
& =\text { that object of } \mathcal{C} \\
& \llbracket A \times B \rrbracket^{T}={ }_{\mathrm{df}} \quad \llbracket A \rrbracket^{T} \times^{T} \llbracket B \rrbracket^{T} \\
& \llbracket A \Rightarrow B \rrbracket^{T}={ }_{\mathrm{df}} \quad \llbracket A \rrbracket^{T} \Rightarrow^{T} \llbracket B \rrbracket^{T} \\
& =\llbracket A \rrbracket^{T} \Rightarrow T \llbracket B \rrbracket^{T} \\
& \llbracket \underline{C} \rrbracket^{T}={ }_{\mathrm{df}} \quad \llbracket C_{0} \rrbracket^{T} \times^{T} \ldots \times^{T} \llbracket C_{n-1} \rrbracket^{T} \\
& =\llbracket C_{0} \rrbracket^{T} \times \ldots \times \llbracket C_{n-1} \rrbracket^{T}
\end{aligned}
$$

$$
\llbracket(\underline{x}) x_{i} \rrbracket^{T}={ }_{\mathrm{df}} \quad \pi_{i}^{T}
$$

$$
\llbracket(\underline{x}) \text { let } x \leftarrow t \text { in } u \rrbracket^{T}={ }_{\mathrm{df}} \llbracket(\underline{x}, x) u \rrbracket^{T} \circ^{T}\left\langle\mathrm{id}^{T}, \llbracket(x) t \rrbracket^{T}\right\rangle^{T}
$$

$$
\llbracket(\underline{x}) f s t(t) \rrbracket^{T}=\mathrm{df} \quad \mathrm{fst}^{T} \circ^{T} \llbracket(\underline{\underline{x}}) t \rrbracket^{T}
$$

$$
=\left(\llbracket(\underline{x}, x) u \rrbracket^{T}\right)^{\star} \circ \text { sl } \circ\left\langle\mathrm{id}, \llbracket(x) t \rrbracket^{T}\right\rangle
$$

$$
=T \mathrm{fst} \circ \llbracket(\underline{x}) t \rrbracket^{T}
$$

$$
\llbracket(\underline{x}) \operatorname{snd}(t) \rrbracket^{T}=\mathrm{df} \quad \operatorname{snd}^{T} \circ^{T} \llbracket(\underline{x}) t \rrbracket^{T}
$$

$$
=T \text { snd } \circ \llbracket(\underline{x}) t \rrbracket^{T}
$$

$$
\begin{array}{rlc}
\llbracket(\underline{x})\left(t_{0}, t_{1}\right) \rrbracket^{T} & ={ }_{\mathrm{df}} & \left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{T}, \llbracket(\underline{x}) t_{1} \rrbracket^{T}\right\rangle^{T} \\
=\left.\mathrm{s}\right|^{\star} \circ \mathrm{sr} \circ\left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{T}, \llbracket(\underline{x}) t_{1} \rrbracket^{T}\right\rangle \\
\llbracket(\underline{x}) \lambda x t \rrbracket^{T} & ={ }_{\mathrm{df}} \quad \Lambda^{T}\left(\llbracket(\underline{x}, x) t \rrbracket^{T}\right) \\
=\eta \circ \Lambda\left(\llbracket(\underline{x}, x) t \rrbracket^{T}\right) \\
\llbracket(\underline{x}) t u \rrbracket^{T} & ={ }_{\mathrm{df}} \quad \mathrm{ev}^{T} \circ \circ^{T}\left\langle\llbracket(\underline{x}) t \rrbracket^{T}, \llbracket(\underline{x}) u \rrbracket^{T}\right\rangle^{T} \\
& =\left.\mathrm{ev}^{\star} \circ \mathrm{sl}\right|^{\star} \circ \operatorname{sr} \circ\left\langle\llbracket(\underline{x}) t \rrbracket^{T}, \llbracket(\underline{x}) u \rrbracket^{T}\right\rangle
\end{array}
$$

- As $\mathbf{K I}(T)$ is only pre-Cartesian closed, for this pure fragment, soundness of typing holds, i.e.,

$$
\underline{x}: \underline{C} \vdash t: A \text { implies } \llbracket(\underline{x}) t \rrbracket^{T}: \llbracket \underline{C} \rrbracket^{T} \rightarrow^{T} \llbracket A \rrbracket^{T}
$$

but not all equations of the pure typed lambda-calculus are validated.

- In particular,

$$
\vdash t: A \text { implies } \llbracket t \rrbracket^{T}: 1 \rightarrow^{T} \llbracket A \rrbracket^{T}
$$

so a closed term t of a type A denotes an element of $T \llbracket A \rrbracket^{T}$.

- Any effect-constructs must be interpreted specifically validating their desired typing rules and equations. E.g., for a language with exceptions we would use the exceptions monad and define

$$
\begin{aligned}
\llbracket(\underline{x}) \text { raise }(e) \rrbracket^{T}=\mathrm{df}^{\text {raise } \circ^{T}} & \llbracket(\underline{x}) e \rrbracket^{T} \\
& =\operatorname{raise}^{\star} \circ \llbracket(\underline{x}) e \rrbracket^{T}
\end{aligned}
$$

Monad maps

- A monad map between monads T, S on a category \mathcal{C} is a natural transformation $\tau: T \dot{\rightarrow} S$ satisfying

- Alternatively, a map between two monads (Kleisli triples) T, S is, for any object A, a map $\tau_{A}: T A \rightarrow S A$ satisfying
- $\tau_{A} \circ \eta_{A}^{T}=\eta_{A}^{S}$,
- if $k: A \rightarrow T B$, then $\tau_{B} \circ k^{\star T}=\left(\tau_{B} \circ k\right)^{\star S} \circ \tau_{A}$.
(No explicit naturality condition on τ.)
- The two definitions are equivalent.
- Monads on \mathcal{C} and maps between them form a category $\operatorname{Monad}(\mathcal{C})$.

Monad maps vs. functors between Kleisli categories

- There is a bijection between monad maps τ between T, S and functors $V: \mathbf{K I}(T) \rightarrow \mathbf{K I}(S)$ satisfying $V J^{T}=J^{S}$.
- Given τ, one defines V by
- $V A={ }_{\mathrm{df}} A$,
- if $k: A \rightarrow T B$, then $V k={ }_{\mathrm{df}} A \xrightarrow{k} T B \xrightarrow{\tau_{B}} S B$.
- Given V, one defines τ by

$$
\text { - } \tau_{A}={ }_{\mathrm{df}} V\left(T A \xrightarrow{\mathrm{id}_{T A}}{ }^{T} A\right): T A \rightarrow^{S} A .
$$

