Monads and More: Part 2

Tarmo Uustalu, Tallinn

Nottingham, 14-18 May 2007

Monads from adjuctions (Huber)

- For any pair of adjoint functors $L: \mathcal{C} \rightarrow \mathcal{D}, R: \mathcal{D} \rightarrow \mathcal{C}$, $L \dashv R$ with unit $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow R L$ and counit $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathcal{D}}$, the functor $R L$ carries a monad structure defined by
- $\eta^{R L}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta} R L$,
- $\mu^{R L}={ }_{\mathrm{df}} R L R L \xrightarrow{R \varepsilon L} R L$.
- The Kleisli and Eilenberg-Moore adjunctions witness that any monad on \mathcal{C} admits a factorization like this.

Examples

- Side-effect monad:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} A \times S, R B={ }_{\mathrm{df}} S \Rightarrow B$,

$$
\frac{A \times S \rightarrow B}{\overline{A \rightarrow S \Rightarrow B}}
$$

- $R L A=S \Rightarrow A \times S$,
- An exotic one:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} \mu X . A+X \times S \cong A \times \operatorname{List} S$, $R B={ }_{\mathrm{df}} \nu Y . B \times(S \Rightarrow Y)$,

$$
\frac{\mu X . A+X \times S \rightarrow B}{A \rightarrow \nu Y . B \times(S \Rightarrow Y)}
$$

- $R L A=\nu Y .(\mu X . A+X \times S) \times(S \Rightarrow Y) \cong$ $\nu Y . A \times \operatorname{List} S \times(S \Rightarrow Y)$.
- What notion of computation does this correspond to?
- Continuations monad:
- $L: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}, L A={ }_{\mathrm{df}} A \Rightarrow E$, $R: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{C}, R B={ }_{\mathrm{df}} B \Rightarrow E$,

$$
\begin{aligned}
& \hline \overline{A \Rightarrow E \leftarrow B} \\
& \hline \overline{\bar{E} \leftarrow B \times A} \\
& \overline{\overline{A \times B \rightarrow E}} \\
& \hline A \rightarrow B \Rightarrow E
\end{aligned}
$$

- $R L A=(A \Rightarrow E) \Rightarrow E$.

Monads from adjunctions ctd.

- Given two functors $L: \mathcal{C} \rightarrow \mathcal{D}$ and $R: \mathcal{D} \rightarrow C, L \dashv R$ and a monad T on \mathcal{D}, we obtain that $R T L$ is a monad on \mathcal{C}.
- This is because T factorizes as $U J$ where $J \vdash U$ is the Kleisli adjunction.
That means an adjoint situation $J L \vdash R U$ implying that $R U J L=R T L$ is a monad.
- The monad structure is

$$
\begin{aligned}
& \text { - } \eta^{R T L}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta} R L \xrightarrow{R \eta^{T} L} R T L, \\
& \text { - } \mu^{R T L}={ }_{\mathrm{df}} R T L R T L \xrightarrow{R T \varepsilon T L} R T T L \xrightarrow{\mu^{T}} R T L .
\end{aligned}
$$

Examples

- State monad transformer:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} A \times S, R B={ }_{\mathrm{df}} S \Rightarrow B$,
- T - a monad on \mathcal{C},
- $R T L A=S \Rightarrow T(A \times S)$,
- In particular, for T the exceptions monad we get $R T L A=S \Rightarrow(A \times S)+E$.
- Continuations monad transformer:
- $L: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}, L A={ }_{\mathrm{df}} A \Rightarrow E$, $R: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{C}, R B={ }_{\mathrm{df}} B \Rightarrow E$,
- T - a monad on $\mathcal{C}^{\text {op }}$, i.e., a comonad on \mathcal{C},
- $R T L A={ }_{\mathrm{df}} T(A \Rightarrow E) \rightarrow E$.

Free algebras

- Given a endofunctor H on a category \mathcal{C}, the initial algebra of $\left(H^{*} A,\left[\eta_{A}, \tau_{A}\right]\right)$ of $A+H$ - (if it exists) is the type of wellfounded H-trees with mutable leaves from A, i.e., H-terms over variables from A.
- $\left.\left(\left(H^{*} A, \tau_{A}\right), \eta_{A}\right)\right)$ is the free H-algebra on A.
- $\left(H^{*}, \eta, \mu\right)$ is a monad where μ flattens a tree whose mutable leaves are trees into a tree, i.e., a term over terms into a term.
- $\left(\left(H^{*}, \eta, \mu\right), \tau\right)$ is the free monad on H.
- The final coalgebras $H^{\infty} A$ of $A+H$ - for each A also a give a monad.

Monads from parameterized monads via initial

 algebras / final coalgebras (U.)- A parameterized monad on \mathcal{C} is a functor $F: \mathcal{C} \rightarrow \operatorname{Monad}(\mathcal{C})$.
- If F is a parameterized monad then the functors $T, T^{\infty}: \mathcal{C} \rightarrow \mathcal{C}$ defined by $T A={ }_{\mathrm{df}} \mu X . F X A$ and $T^{\infty} A={ }_{\mathrm{df}} \nu X . F X A$ carry a monad structure.
- In fact more can be said about them, but here we won't.

Examples

- Free monads:
- $F X A={ }_{\mathrm{df}} A+H X$ where $H: \mathcal{C} \rightarrow \mathcal{C}$,
- $T A={ }_{\mathrm{df}} \mu X . A+H X, T^{\infty} A==_{\mathrm{df}} \nu X . A+H X$.
- These are the types of wellfounded/nonwellfounded H-trees with mutable leaves from A.
- Rose tree types:
- $F X A={ }_{\mathrm{df}} A \times H X$ where $H: \mathcal{C} \rightarrow \operatorname{Monoid}(\mathcal{C})$,
- $T A={ }_{\mathrm{df}} \mu X . A \times H X, T^{\infty} A={ }_{\mathrm{df}} \nu X . A+H X$.
- If $H X={ }_{\mathrm{df}}$ List X, these are the types of wellfounded/nonwellfounded A-labelled rose trees.
- Types of hyperfunctions with a fixed domain:
- $F X A={ }_{\mathrm{df}} H X \Rightarrow A$ where $H: \mathcal{C} \rightarrow \mathcal{C}^{\text {op }}$,
- $T A={ }_{\mathrm{df}} \mu X . H X \Rightarrow A, T^{\infty} A==_{\mathrm{df}} \nu X . H X \Rightarrow A$.
- If $H X={ }_{\mathrm{df}} X \Rightarrow E$, these are the types of wellfounded/nonwellfounded hyperfunctions from E to A. (Of course these types do no exist in Set.)

Distributive laws

- If T, S are monads on \mathcal{C}, it is not generally the case that $S T$ is a monad. But sometimes it is.
- A distributive law of a monad T over a monad S is a natural transformation $\lambda: T S \rightarrow S T$ satisfying

- A distributive law λ of T over S gives a monad structure on the endofunctor $S T$:
- $\eta^{S T}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta^{S} \eta^{T}} S T$,
- $\mu^{S T}={ }_{\mathrm{df}} S T S T \xrightarrow{S \lambda T}$ SSTT $\xrightarrow{\mu^{S} \mu^{T}} S T$.

Examples

- The exceptions monad distributes over any monad.
- S - a monad,
- $T A={ }_{\mathrm{df}} A+E$ where E is an object,
- $\lambda={ }_{\mathrm{df}} S A+E \xrightarrow{\mathrm{id}+\eta^{s}} S A+S E \xrightarrow{[\text { Sinl,Sinr }]} S(A+E)$,
- $S T A=S(A+E)$.
- For T the state monad, this gives
$S T=S \Rightarrow(A+E) \times S$, which is a different combination of exceptions and state than we saw before.
- The output monad distributes over any $(1, \times)$ strong monad.
- $(S$, sl) - a strong monad,
- $T A={ }_{\mathrm{df}} A \times E$ where E is a monoid,
- $\lambda={ }_{\mathrm{df}} S A \times E \xrightarrow{\mathrm{sr}} S(A \times E)$,
- $S T A=S(A \times E)$.
- Any $(1, \times)$ strong monad distributes over the environment monad.
- ($T, \mathrm{sl})$ - a strong monad,
- $S A={ }_{\mathrm{df}} E \Rightarrow A$ where E is an object,
- $\lambda={ }_{\mathrm{df}} \Lambda(T(E \Rightarrow A) \times A \xrightarrow{\text { sr }} T((E \Rightarrow A) \times A) \xrightarrow{T \mathrm{ev}} E)$,
- $S T A=E \Rightarrow T A$.

Coproduct of monads

- An interesting way to combine monads is the coproduct of monads.
- A coproduct of two monads T_{0} and T_{1} on \mathcal{C} is their coproduct in Monad(C).
- I.e., it is a monad $T_{0}+{ }^{\mathrm{m}} T_{1}$ together with two monad maps $\mathrm{inl}^{\mathrm{m}}: T_{0} \rightarrow{ }^{\mathrm{m}} T_{0}+{ }^{\mathrm{m}} T_{1}, \mathrm{inr}^{\mathrm{m}}: T_{0} \rightarrow{ }^{\mathrm{m}} T_{0}+{ }^{\mathrm{m}} T_{1}$ such that for any monad S and monad maps $\tau_{0}: T_{0} \rightarrow^{\mathrm{m}} S, \tau_{1}: T_{1} \rightarrow^{\mathrm{m}} S$ there exists a unique map $T_{0}+{ }^{\mathrm{m}} T_{1} \rightarrow{ }^{\mathrm{m}} S$ satisfying

$$
T_{0} \stackrel{\mathrm{inl} \mathrm{~m}^{\mathrm{m}}}{\longrightarrow} T_{0}+{ }^{\mathrm{m}} T_{1} \stackrel{\mathrm{inf}^{\mathrm{m}}}{\tau_{0}} T_{1}
$$

Coproduct of free monads

- The coproduct of the free monads of functors F, G is the free monad of their coproduct:

$$
F^{\star}+{ }^{\mathrm{m}} G^{\star}=(F+G)^{*}
$$

(obvious, since the free monad delivering functor has a left adjoint and hence preserves colimits).

- More generally, the coproduct of a free monad F^{*} with an arbitary monad S is this (if $(F S)^{*}$ exists):

$$
F^{*}+{ }^{\mathrm{m}} S=S(F S)^{*}
$$

i.e.,

$$
\left(F^{*}+{ }^{\mathrm{m}} S\right) A=S(\mu X \cdot A+F S X)=\mu X \cdot S(A+F X)
$$

Ideal monads (Adámek)

- An ideal monad on \mathcal{C} is a monad (T, η, μ) together with an endofunctor T^{\prime} on \mathcal{C} and a natural transformation $\mu^{\prime}: T^{\prime} T \rightarrow T^{\prime}$ such that
- $T=\mathrm{ld}+T^{\prime}$,
- $\eta=\mathrm{inl}$,
- $\mu=\left[i d\right.$, inr $\left.\circ \mu^{\prime}\right]$.

Coproduct of ideal monads (Ghani, U.)

- Given two ideal monads $R=\mathrm{Id}+R^{\prime}$ and $S=\mathrm{Id}+S^{\prime}$, their coproduct is an ideal monad $T=\mathrm{Id}+T_{0}+T_{1}$ where

$$
\left.\left(T_{0} A, T_{1} A\right)=_{\mathrm{df}} \mu(X, Y) \cdot\left(R^{\prime}(A+Y)\right), S^{\prime}(A+X)\right)
$$

