
Monads and More: Part 2

Tarmo Uustalu, Tallinn

Nottingham, 14–18 May 2007



Monads from adjuctions (Huber)
For any pair of adjoint functors L : C → D, R : D → C,
L a R with unit η : IdC

.→ RL and counit ε : LR
.→ IdD,

the functor RL carries a monad structure defined by

ηRL =df Id
η−→ RL,

µRL =df RLRL
RεL−→ RL.

The Kleisli and Eilenberg-Moore adjunctions witness that
any monad on C admits a factorization like this.



Examples

Side-effect monad:

L,R : C → C, LA =df A× S , RB =df S ⇒ B,

A× S → B

A→ S ⇒ B

RLA = S ⇒ A× S ,

An exotic one:

L,R : C → C, LA =df µX .A + X × S ∼= A× ListS ,
RB =df νY .B × (S ⇒ Y ),

µX .A + X × S → B

A→ νY .B × (S ⇒ Y )

RLA = νY .(µX .A + X × S)× (S ⇒ Y ) ∼=
νY .A× ListS × (S ⇒ Y ).
What notion of computation does this correspond to?



Continuations monad:

L : C → Cop, LA =df A⇒ E ,
R : Cop → C, RB =df B ⇒ E ,

A⇒ E ← B
E ← B × A

A× B → E

A→ B ⇒ E

RLA = (A⇒ E )⇒ E .



Monads from adjunctions ctd.

Given two functors L : C → D and R : D → C , L a R and
a monad T on D, we obtain that RTL is a monad on C.
This is because T factorizes as UJ where J ` U is the
Kleisli adjunction.
That means an adjoint situation JL ` RU implying that
RUJL = RTL is a monad.

The monad structure is

ηRTL =df Id
η−→ RL

RηT L−→ RTL,

µRTL =df RTLRTL
RTεTL−→ RTTL

µT

−→ RTL.



Examples
State monad transformer:

L,R : C → C, LA =df A× S , RB =df S ⇒ B,
T – a monad on C,
RTLA = S ⇒ T (A× S),
In particular, for T the exceptions monad we get
RTLA = S ⇒ (A× S) + E .

Continuations monad transformer:

L : C → Cop, LA =df A⇒ E ,
R : Cop → C, RB =df B ⇒ E ,
T – a monad on Cop, i.e., a comonad on C,
RTLA =df T (A⇒ E )→ E .



Free algebras

Given a endofunctor H on a category C, the initial algebra
of (H∗A, [ηA, τA]) of A + H− (if it exists) is the type of
wellfounded H-trees with mutable leaves from A, i.e.,
H-terms over variables from A.

((H∗A, τA), ηA)) is the free H-algebra on A.

(H∗, η, µ) is a monad where µ flattens a tree whose
mutable leaves are trees into a tree, i.e., a term over
terms into a term.

((H∗, η, µ), τ) is the free monad on H .

The final coalgebras H∞A of A + H− for each A also a
give a monad.



Monads from parameterized monads via initial

algebras / final coalgebras (U.)

A parameterized monad on C is a functor
F : C →Monad(C).
If F is a parameterized monad then the functors
T , T∞ : C → C defined by TA =df µX .FXA and
T∞A =df νX .FXA carry a monad structure.

In fact more can be said about them, but here we won’t.



Examples
Free monads:

FXA =df A + HX where H : C → C,
TA =df µX .A + HX , T∞A =df νX .A + HX .
These are the types of wellfounded/nonwellfounded
H-trees with mutable leaves from A.

Rose tree types:

FXA =df A× HX where H : C →Monoid(C),
TA =df µX .A× HX , T∞A =df νX .A + HX .
If HX =df ListX , these are the types of
wellfounded/nonwellfounded A-labelled rose trees.



Types of hyperfunctions with a fixed domain:

FXA =df HX ⇒ A where H : C → Cop,
TA =df µX .HX ⇒ A, T∞A =df νX .HX ⇒ A.
If HX =df X ⇒ E , these are the types of
wellfounded/nonwellfounded hyperfunctions from E to
A. (Of course these types do no exist in Set.)



Distributive laws

If T , S are monads on C, it is not generally the case that
ST is a monad. But sometimes it is.

A distributive law of a monad T over a monad S is a
natural transformation λ : TS

.→ ST satisfying

T

TηS

��

T

ηST
��

TS
λ

// ST

TSS
λS //

TµS

��

STS
Sλ // SST

µST
��

TS
λ

// ST

S

ηT S
��

S

SηT

��
TS

λ
// ST

TTS
Tλ //

µT S
��

TST
λT // STT

SµT

��
TS

λ
// ST



A distributive law λ of T over S gives a monad structure
on the endofunctor ST :

ηST =df Id
ηSηT

−→ ST ,

µST =df STST
SλT−→ SSTT

µSµT

−→ ST .



Examples
The exceptions monad distributes over any monad.

S – a monad,
TA =df A + E where E is an object,

λ =df SA + E
id+ηS

−→ SA + SE
[S inl,S inr]−→ S(A + E ),

STA = S(A + E ).
For T the state monad, this gives
ST = S ⇒ (A + E )× S , which is a different
combination of exceptions and state than we saw before.

The output monad distributes over any (1,×) strong
monad.

(S , sl) – a strong monad,
TA =df A× E where E is a monoid,
λ =df SA× E

sr−→ S(A× E ),
STA = S(A× E ).



Any (1,×) strong monad distributes over the
environment monad.

(T , sl) – a strong monad,
SA =df E ⇒ A where E is an object,

λ =df Λ(T (E ⇒ A)× A
sr−→ T ((E ⇒ A)× A)

Tev−→ E ),
STA = E ⇒ TA.



Coproduct of monads

An interesting way to combine monads is the coproduct
of monads.

A coproduct of two monads T0 and T1 on C is their
coproduct in Monad(C).
I.e., it is a monad T0 +m T1 together with two monad
maps inlm : T0 →m T0 +m T1, inrm : T0 →m T0 +m T1

such that for any monad S and monad maps
τ0 : T0 →m S , τ1 : T1 →m S there exists a unique map
T0 +m T1 →m S satisfying

T0
inlm //

τ0
%%JJJJJJJJJJJ T0 +m T1

��

T1
inrmoo

τ1
yyttttttttttt

S



Coproduct of free monads

The coproduct of the free monads of functors F , G is the
free monad of their coproduct:

F ? +m G ? = (F + G )∗

(obvious, since the free monad delivering functor has a
left adjoint and hence preserves colimits).

More generally, the coproduct of a free monad F ∗ with an
arbitary monad S is this (if (FS)∗ exists):

F ∗ +m S = S(FS)∗

i.e.,

(F ∗ +m S)A = S(µX .A + FSX ) = µX .S(A + FX )



Ideal monads (Adámek)
An ideal monad on C is a monad (T , η, µ) together with
an endofunctor T’ on C and a natural transformation
µ′ : T ′T

.→ T ′ such that

T = Id + T ′,
η = inl,
µ = [id , inr ◦ µ′].



Coproduct of ideal monads (Ghani, U.)

Given two ideal monads R = Id + R ′ and S = Id + S ′,
their coproduct is an ideal monad T = Id+T0 +T1 where

(T0A, T1A) =df µ(X , Y ).(R ′(A + Y )), S ′(A + X ))


