Monads and More: Part 3

Tarmo Uustalu, Tallinn

Nottingham, 14-18 May 2007

Arrows (Hughes)

- Arrows are a generalization of strong monads on symmetric monoidal categories (in their Kleisli triple form).
- An arrow on a symmetric monoidal category (C, I, ⊗) is given by
 - an object mapping $R : |\mathcal{C}| \times |\mathcal{C}| \rightarrow |\mathbf{Set}|$,
 - for any objects A, B of C, a map arr : Hom_C $(A, B) \rightarrow R(A, B)$ of **Set**,
 - for any objects A, B, C of C, a map $\ll : R(A, B) \times R(B, C) \rightarrow R(A, C)$ of **Set**,
 - for any objects A, B, C of C, a map second_C : $R(A, B) \rightarrow R(C \otimes A, C \otimes B)$ of **Set**

satisfying the conditions on the next slide.

- (ctd. from the previous slide)
 - if $k \in R(A, B)$, then arrid_B $\ll k = k$,
 - if $k \in R(A, B)$, then $k \ll \operatorname{arr} \operatorname{id}_A = k$,
 - if $k \in R(A, B)$, $\ell \in R(B, C)$, $m \in R(C, D)$, then $(m \lll \ell) \lll k = m \lll (\ell \lll k)$,
 - if $f: A \rightarrow B$, $g: B \rightarrow C$, then arr $(g \circ f) = \arg g \ll \arg f$,
 - if $f : A \rightarrow B$, then second_C (arr f) = arr(id_C × f),
 - if $k \in R(A, B)$, $\ell \in R(B, C)$, second_D ($\ell \ll k$) = second_D $\ell \ll$ second_D k,
 - if $k \in R(A, B)$, $f : C \to D$, then arr $(f \times id_B) \ll second_C k = second_D k \ll arr (f \times id_A)$,

- if $k \in R(A, B)$, $k \ll \operatorname{arr}, \operatorname{ul}_A = \operatorname{ul}_B \ll \operatorname{second}_I k$,
- if $k \in R(A, B)$, second_C (second_D k) $\ll a_{C,D,A} = a_{C,D,B} \ll second_{C \otimes D} k$.

Examples

- Arrows from monoidal functors.
 - R(A, B) =_{df} Hom_C(FA, FB) where F is a monoidal endofunctor on C (i.e., there is a natural iso m_{A,B} : FA ⊗ FB → F(A ⊗ B),
 - if $f : A \rightarrow B$, then arr $f = Ff : FA \rightarrow FB$,
 - if $k : FA \to FB$, $\ell : FB \to FC$, then $\ell \lll k =_{\mathrm{df}} A \xrightarrow{Fk} FB \xrightarrow{F\ell} FC$,
 - if $k : FA \to FB$, then second $k =_{\mathrm{df}} F(C \otimes A) \xrightarrow{\mathsf{m}^{-1}} FC \otimes FA \xrightarrow{\mathsf{id} \otimes Fk} FC \otimes FB \xrightarrow{\mathsf{m}} F(C \otimes B).$

- Kleisli maps of strong monads.
 - $R(A, B) =_{df} Hom_{\mathcal{C}}(A, TB)$ where T is a strong monad,
 - if $f : A \rightarrow B$, then arr $f = Jf : A \rightarrow TB$ where J is the Kleisli inclusion of T,

• if
$$k : A \to TB$$
, $\ell : B \to TC$, then
 $\ell \lll k =_{\mathrm{df}} A \xrightarrow{k} TB \xrightarrow{\ell^*} TC$,

• if $k : A \to TB$, then second $k =_{df} C \otimes A \xrightarrow{id \otimes k} C \otimes TB \xrightarrow{sr} T(C \otimes B)$.

CoKleisli maps of comonads on Cartesian categories.

- $R(A, B) =_{df} Hom_{\mathcal{C}}(DA, B)$ where D is a comonad on C,
- if f : A → B, then arr f = Jf : DA → B where J is the coKleisli inclusion of D,
- if $k : DA \to B$, $\ell : DB \to C$, then $\ell \lll k =_{\mathrm{df}} DA \xrightarrow{k^{\dagger}} DB \xrightarrow{\ell} C$,
- if $k : DA \to B$, then second $k =_{df} D(C \times A) \xrightarrow{\langle Dfst, Dsnd \rangle} DC \times DA \xrightarrow{\varepsilon \times k} C \times B$.

- Output once more:
 - R(A, B) =_{df} E × Hom_C(A, B) where (E, e, m) is a monoid in Set,
 - if $f : A \rightarrow B$, then arr $f = (e, f) : E \times \operatorname{Hom}_{\mathcal{C}}(A, B)$,
 - if $(x, f) : E \times Hom_{\mathcal{C}}(A, B)$, $(y, g) : E \times Hom_{\mathcal{C}}(B, C)$, then

 $(y,g) \ll (x,f) =_{df} (m(x,y), g \circ f) \in E \times Hom_{\mathcal{C}}(A, C),$ • if $(x,f) : E \times Hom_{\mathcal{C}}(A, B)$, then

second $(x, f) = d_f (x, C \otimes f) \in E \times Hom_C(C \otimes A, C \otimes B).$

Arrows in the monoid form (Jacobs, Heunen, Hasuo)

- An alternative definition mimicks the definition of monads in the standard, i.e., monoid form.
- An arrow on a symmetric monoidal category (C, I, ⊗) is a strong monoid in the category of endoprofunctors on (C, I, ⊗).
- A profunctor from C to D is a functor $C^{op} \times D \to \mathbf{Set}$. The identity profunctor on C is $Id =_{df} Hom_{C} : C^{op} \times C \to \mathbf{Set}$. The composition of profunctors $R : C \to D$ and $S : D \to \mathcal{E}$ is $SR(A, C) =_{df} \int^{B} R(A, B) \otimes S(B, C)$.

- Accordingly, the data of an arrow are the following.
 - The carrier of an arrow is a profunctor R from C to C, i.e., a functor $R : C^{\text{op}} \times C \rightarrow \mathbf{Set}$.
 - The unit is a natural transformation from Id to R, i.e., a family of maps arr_{A,B} : Hom_C(A, B) → R(A, B) natural in A, B.

The multiplication is a nat. transf. from RR to E, i.e., a family of maps $\ll_{A,B,C} : R(A,B) \times R(B,C) \rightarrow R(A,C)$ natural in A, C and dinatural in B.

The strength is a family of

second_{A,B,C} :: $R(A,B) \rightarrow R(C \otimes A, C \otimes B)$ natural in A, B and dinatural in C.

Symmetric premonoidal categories (Power, Robinson)

- Intuitively, a symmetric premonoidal category is the same as a symmetric monoidal category, except that the tensor is not necessarily a bifunctor, it must only be functorial in each argument separately.
- More officially: A *symmetric premonoidal category* is given by
 - $\bullet\,$ a category ${\cal K},$
 - an object I of \mathcal{K} ,
 - for any object C, a functor $C \rtimes : \mathcal{K} \to \mathcal{K}$,
 - natural isomorphisms a, ul, ur, c satisfying the laws of a symmetric monoidal category and have all their components central (see further).

- Symmetry yields a symmetric functor − × C : K → K where A × B = A × B.
- A morphism $f : A \rightarrow B$ is called *central* if, for any $g : C \rightarrow D$, both

$$(f \ltimes D) \circ (A \rtimes g) = (B \rtimes g) \circ (f \ltimes C) (D \rtimes f) \circ (g \ltimes A) = (g \ltimes B) \circ (C \rtimes f)$$

Freyd categories

- \bullet A Freyd category on a symmetric monoidal category ${\mathcal C}$ is given by
 - a symmetric premonoidal category ($\mathcal{K}, I^{\mathcal{K}}, \otimes^{\mathcal{K}}$)
 - together with an identity-on-objects inclusion functor J : C → K that preserves centrality and strictly preserves its the (I, ⊗) structure as premonoidal (meaning that I^K = I, A ⊗^K B = A ⊗ B).

Freyd categories vs. arrows (Jacobs, Heunen, Hasuo)

- Freyd categories are in a bijection with arrows.
- For an arrow R on a symmetric monoidal category (C, I, ⊗), the Freyd category ((K, I^K, ⊗^K), J) is defined by
 - $\bullet\,$ an object is an object of $\mathcal{C},$
 - a map from A to B is an element of R(A, B),

•
$$\mathsf{id}^{\mathcal{K}}_A =_{\mathrm{df}} \mathsf{arr} \mathsf{id}_A$$

• if $k : A \to^{\mathcal{K}} B$, $\ell : B \to^{\mathcal{K}} C$, then $\ell \circ^{\mathcal{K}} k =_{\mathrm{df}} \ell \lll k$,

•
$$I^{\mathcal{K}} = I, A \otimes^{\mathcal{K}} B =_{\mathrm{df}} A \otimes B,$$

- if $k : A \to^{\mathcal{K}} B$, then $C \otimes^{\mathcal{K}} k =_{\mathrm{df}} \mathrm{second} k$,
- if $f : A \to B$, then $Jf =_{df} arr f$.

- Given a Freyd category ((K, I^K, ⊗^K), J) on C, the corresponding arrow R is defined by
 - $R(A,B) =_{\mathrm{df}} \mathrm{Hom}_{\mathcal{K}}(A,B)$,
 - if $f : A' \to A$, $g : B \to B'$, $k \in \text{Hom}_{\mathcal{K}}(A, B)$, then $R(f,g) k =_{\text{df}} \arg \ll k \ll \arg f$,
 - if $f : A \rightarrow B$, then arr $f =_{df} Jf \in Hom_{\mathcal{K}}(A, B)$,
 - if $k \in \operatorname{Hom}_{\mathcal{K}}(A, B)$, $\ell \in \operatorname{Hom}_{\mathcal{K}}(B, C)$, then $\ell \lll k =_{\operatorname{df}} \ell \circ^{\mathcal{K}} k \in \operatorname{Hom}_{\mathcal{K}}(A, C)$,
 - if $k \in \operatorname{Hom}_{\mathcal{K}}(A, B)$, then second $k =_{df} C \otimes^{\mathcal{K}} k \in \operatorname{Hom}_{\mathcal{K}}(C \otimes A, C \otimes B)$.

When is Freyd Kleisli? (Power)

- Given a Freyd category ((K, I^K, ⊗^K), J) on a symmetric monoidal category (C, I, ⊗), when is it the Kleisli category of a strong monad?
- A simple condition is in terms of Kleisli exponents.
- Suppose J(-⊗A): C → K has a right adjoint A ⇒^K -. In this case we say the Freyd category is *closed*. Then also TB =_{df} I ⇒^K B is a strong monad with Kleisli exponents and ((K, I^K, ⊗^K), J) is its Kleisli category.