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Abstract

We show that the syntactically rich notion of inductive
families can be reduced to a core type theory with a fixed
number of type constructors exploiting the novel notion of
indexed containers. Indexed containers generalize simple
containers, capturing strictly positive families instead of
just strictly positive types, without having to extend the core
type theory. Other applications of indexed containers in-
clude datatype-generic programming and reasoning about
polymorphic functions. The construction presented here has
been formlized using the Agda system.

1 Introduction

Inductive datatypes are a central feature of modern Type
Theory (e.g. COQ [23]) or functional programming (e.g.
Haskell1) . A simple example is the type (or set) of de
Bruijn λ-terms Lam ∈ Set, which can be specified as
the inductive type generated by the following constructors,
which using a 2-dimensional syntax inspired by the Epi-
gram [17] syntax, can be written as follows:

i ∈ N

var i ∈ Lam

t, u ∈ Lam

app t u ∈ Lam

t ∈ Lam

lam t ∈ Lam

Of course, we don’t have to assume the natural numbers
as primitive, but instead give an inductive definition a la
Peano:

0 ∈ N
n ∈ N

succ n ∈ N
An elegant way to formalize and reason about inductive

types is to model them as the initial algebra of an endofunc-
tor, e.g. in the case of natural numbers FN X = 1 + X and
in the case of λ-terms FLam X = N + X × X + X . This
perspective has been very successful in providing a generic

1Here we shall view Haskell as an approximation of strong functional
programming as proposed by Turner [24] and ignore non-termination.

approach to programming with and reasoning about induc-
tive types, e.g. see the Algebra of Programming [7].

While the theory of inductive types is well developed, we
often want to have a finer, more expressive, notion of types,
for example to ensure the absence of run time errors — ac-
cess to arrays out of range or access to an undefined variable
in the previous example of λ-terms. To model this we move
to the notion of an inductive family in Type Theory, where
we can for example define the set of lambda terms Lam n
with at most n free variables. Indeed we can view Lam as a
function N → Set which assigns to every natural number n
the type of λ terms with n free variables. Functions whose
codomain is Set we call families and to define this family
we first introduce the family of finite sets Fin ∈ N → Set
which assigns to n a type with exactly n elements:

n ∈ N

fzero ∈ Fin (n + 1)

i ∈ Finn

fsucc i ∈ Fin (n + 1)

which we use to encode the de Bruijn variables in the
representation of λ-terms (Lam ∈ N → Set):

i ∈ Finn

var i ∈ Lam n

t, u ∈ Lam n

app t u ∈ Lam n

t ∈ Lam (n + 1)

lam t ∈ Lam n

Importantly, the constructor lam reduces the number of
free variables by one — by binding one. Inductive families
may be mutually defined, an example being the β normal
and neutral terms (Nf,Ne ∈ N → Set)

i ∈ Finn

var i ∈ Ne n

t ∈ Ne n u ∈ Nf n

app t u ∈ Ne n

t ∈ Lam (n + 1)

lam t ∈ Lam n

t ∈ Ne n

t ∈ Nf n

Inductive families like this are the backbone of recent
dependently typed programming as present in Epigram or
Agda [22]. Coq supports the definition of inductive families
but made programming with them rather hard — the situa-
tion has been now improved due to the new Program tactic



[21]. Using Generalized Algebraic Datatypes (GADTs) [8]
Fin and Lam can be encoded in Haskell:

data Fin a where
FZero :: Fin (Maybe a)
FSucc :: Fin a -> Fin (Maybe a)

data Lam a where
Var :: Fin a -> Lam a
App :: Lam a -> Lam a -> Lam a
Abs :: Lam (Maybe a) -> Lam a

Here Fin and Lam are indexed by types instead of natural
numbers. We could have gone further and expressed this
by predicating the constructors with a type level predicate
Nat. Note that Lam is actually just a nested datatype [6]
while Fin exploits the full power of GADTs because the
range of the constructors is constrained.

The initial algebra semantics of inductive types can be
extended to model inductive families by replacing functors
on the category Set with functors on the category of fam-
ilies indexed by a given type - in the case of λ-terms this
indexing type was N. The objects of the category of fam-
ilies indexed over a type I ∈ Set are I-indexed families,
i.e. functions of type I → Set, and a morphism between
I-indexed families A,B ∈ I → Set is given by a family of
maps f ∈ Πi ∈ I.A i → B i. Indeed, this category is eas-
ily seen to be isomorphic to the slice category Set/I but the
chosen representation is more convenient type-theoretically.
Using Σ-types and equality types from Type Theory, we can
define the following endofunctors FFin and FLam on the
category of families over N whose initial algebras are Fin
and Lam, respectively:

FFin, FLam ∈ (N → Set) → N → Set

FFin A n = Σm ∈ N.(m + 1 = n)× (1 + A m)
FLam A n = Fin n + A n×A n + A (n + 1)

We are using equality types to express the focussed charac-
ter of the constructors for Fin. This corresponds to the use
of GADTs in the Haskell encoding.

This approach extends uniformly to more complicated
examples such as the family of typed λ-terms, using lists of
types [Ty] to represent typing contexts:

Ty ∈ Set

Var,Lam ∈ [Ty] → Ty → Set

given by the following constructors

ty ∈ Ty
σ, τ ∈ Ty

arrσ τ ∈ Ty

vzero ∈ Var (σ : Γ)σ

x ∈ VarΓ σ

vsucc x ∈ Var (τ : Γ)σ

x ∈ VarΓ σ

var x ∈ Lam Γ σ

t ∈ Lam Γ (arr σ τ) u ∈ Lam Γ σ

app t u ∈ Lam Γ τ

t ∈ Lam (σ : Γ) τ

lam t ∈ Lam Γ (arr σ τ)

Types like this can be used to implement a tag-free, ter-
minating evaluator [4]. To obtain the corresponding func-
tors is a laborious but straightforward exercise.

Containers

The initial algebra semantics is useful to provide a generic
analysis of inductive types exploiting generic concepts such
as constructors and map-function. However, doesn’t say
whether inductive types actually exist and it falls short
to provide a systematic construction of generic operations
such as equality or the zipper [13, 16].

In previous work, [2, 1], we have proposed the notion
of a container type: A (unary) container is given by a set of
shapes S ∈ Set and a family of positions P ∈ S → Set as-
signing to each shape, the set of positions where data can be
stored in a data structure of that shape. We write SCP for a
container, for example the type of lists is given by N C Fin
indicating that the shape of a list is a natural number (its
length) and lists of length n have Finn positions where data
is stored. Every container gives rise to a functor, and con-
tainers are closed under forming products, coproducts, con-
stant exponentiation and taking initial algebras and terminal
coalgebras which model lazy datatypes. Hence, the theory
of containers also provides a convenient way to express that
a category has all strictly positive datatypes. We have intro-
duced the notion of a container morphism and showed that
they uniquely capture polymorphic functions/natural trans-
formations between the functors generated by the contain-
ers. We have related containers to strictly positive datatypes
and showed that every strictly positive datatype gives rise to
a container. The categorical infrastructure required for this
interpretation is quite modest, it works in any locally carte-
sian closed category with finite types (i.e. an initial object
and a disjoint boolean object) and W-types.

While containers provide an elegant foundation for
generic programming with inductive types, the present pa-
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per develops the theory of indexed containers which allows
us to provide a similar foundation for programming with in-
ductive families like Fin and Lam. Our results give us the
best of both worlds in that the theory of ordinary contain-
ers carries over to the more expressive indexed setting, e.g.
we can again establish a notion of container morphism such
that the interpretation functor is full and faithful. Maybe
most surprisingly all this additional expressivity comes for
free, as far as the type-theoretic infrastructure is concerned
— W-types are still enough.

Main results

We introduce the notion of indexed container which gener-
alizes containers allowing us to represent inductive families.
This is a further step from dependent polynomial functors
[10] representing endofunctors on a slice category. Indexed
containers as introduced in the present paper allow to repre-
sent functors between different slices and capture also mu-
tual and nested inductive definitions.

While [10] show that dependent polynomial functors al-
ways have initial algebras, we show that indexed containers
are closed under parametrized initial algebras. Hence we
can apply the fixpoint construction several times. The flex-
ibility of indexed containers allows us to also establish clo-
sure under the adjoints of reindexing which leads directly
to a grammar for strictly positive families, which itself is an
instance of a strictly positive family section 7) — see also
our previous work [18, 19].

Our presentation here uses type theoretic notation while
our own previous work on containers and [10] used categor-
ical notions. While this can be more bureaucratic in places,
it leads directly to an implementation in a dependently typed
programming language. This is witnessed by our formalisa-
tion of the main results of this paper in Agda (see appendix
A).

Related Work

We have already discussed the relation to our own work on
containers and strictly positive families and to dependent
polynomial functors.

Containers are related to normal functors [11] which
themselves are a special case of analytic functors [14] —
those allow only finite sets of positions. Fiore’s work on
generalized species [9] considers those concept in a more
generic setting — the precise relation to indexed containers
remain to be explored.
Perhaps the earliest publication related to indexed contain-
ers occurs in Petersson and Synek’s paper [20] from 1989.
They present rules extending Martin-Löf’s type theory with
a set constructor for ‘tree sets’ : families of mutually de-
fined inductive sets, over a fixed index set.

Inspired in part by Petersson and Synek’s constructor,
Hancock, Hyvernat and Setzer [12] applied indexed (and
unindexed) containers, under the name ‘interaction struc-
tures’ to the task of modeling imperative interfaces such as
command-response interfaces in a number of publications.
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2 Type theoretic preliminaries

We work in an extensional Type Theory [15] with the fol-
lowing ingredients:

Seti A cumulative hierarchy of universes Seti ∈ Seti+1

for i ∈ N, cumulativity means that A : Seti implies
A : Seti+1. We will omit the indices in our develop-
ment pretending that Set : Set but making sure that
all our definitions can be stratified.

0, 1 An empty type 0 ∈ Seti and a unit type 1 ∈ Set.
Categorically, those correspond to initial and terminal
objects. For any set A we write ?A ∈ 0 → A for
the unique map of this type. We write () ∈ 1 for the
unique inhabitant of 1 and !A ∈ A → 1 with !A a = ()
for the unique map into 1.

2 A type of Booleans 2 ∈ Seti, which is disjoint, i.e. we
have that (true = false) → 0 is inhabited.

Σ- and Π-types Given A ∈ Seti and B ∈ Seti given that
x ∈ A then Σx ∈ A.B, Πx ∈ A,B ∈ Seti. Elements
of Σ-types are pairs, if a ∈ A and b ∈ B[x := a] then
(a, b) ∈ Σx ∈ A.B, while elements of Π-types are
functions: given b ∈ B assuming x ∈ A then λx.b ∈
Πx ∈ A.B2

Equality types Given a, b ∈ A ∈ Seti we write a = b ∈
Seti for the equality type. The constructor for equality
is reflexivity refl a ∈ a = a if a ∈ A.

W-types As for Σ and Π Given A ∈ Seti and B ∈ Seti

given that x ∈ A then W x ∈ A.B ∈ Seti. The
elements of a W-type are well-founded trees which are
constructed using sup: if w ∈ Σx ∈ A.B → W x ∈
A.B then supw ∈ Wx ∈ A.B. 3

2We use untyped λ-abstraction and make sure that the type can be in-
ferred from the context.

3Usually the type of sup is curried and sup has two arguments instead.
This version is more convenient for our purposes.
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We omit a detailed treatment of eliminators and use func-
tional programming notation, like if-then-else, dependently
typed pattern matching and structural recursion as present
in Agda and Epigram. All our definitions can be trans-
lated into using the standard eliminators at the price of
readability. To avoid clutter we adopt the usual type-
theoretic device of allowing hidden arguments, if they are
inferable from the use. We indicate hidden arguments by
subscripting the type, i.e. writing Πx∈AB and Σx∈AB in-
stead Πx ∈ A.B and Σx ∈ A.B.

If we ignore the predicative hierarchy, the categorical in-
frastructure corresponds to Locally Cartesian Closed cate-
gory, with initial objects, a disjoint boolean object and ini-
tial algebras for functors of the form

FWx∈A.BX = Σx ∈ A.B → X

While finite products arise as non-dependent Σ-types, fi-
nite coproducts can be represented as

A + B = Σb ∈ 2.if b thenA else B

Given f ∈ A → C, g ∈ B → C we define

case f g ∈ A + B → C

case f g (b, x) = if (f x) (g x) b

Replacing Σ by Π this gives rise to an alternative way to
define ×.

3 Indexed functors

Given I ∈ Set we consider the category of families over
I . It’s objects are families of types A ∈ I → Set and
given A,B ∈ I → Set a morphism f is a family of func-
tions f ∈ Πi∈IA i → B i, identity and composition are
obvious. We denote this category as Fam I . Indeed Fam I
is isomorphic to the slice category Set/I whose objects are
morphisms J → I for some J ∈ Set and whose morphisms
are commuting triangles.

An indexed functor over I ∈ Set is a functor from
Fam I to Set, to make this precise an indexed functor F
is given by

Fobj ∈ (I → Set) → Set

Fmor ∈ ΠA,B∈I→Set(Πi∈IA i → B i) → F A → F B

subject to the conditions that Fmor preserves identity and
composition. As usual we omit the annotations when the
meaning is clear from the context and overload F to mean
Fobj and Fmor.

Given two indexed functors F,G a family of maps

α ∈ ΠA ∈ I → Set.F A → G A

is a natural transformation, if the naturality condition holds.
We write F ⇒ G for the set of natural transformations
and Func I for the category of indexed functors and natural
transformations.

Func comes with a monad-like structure, we have

ηF ∈ I → Func I

ηF i A = A i

and given H ∈ I → Func J and F ∈ Func I we construct

H >>=F F ∈ Func J

(H >>=F F ) A = F (λi.H iA)

it is easy to see that the usual equations for a monad hold.
It is not actually a monad since Func : Seti → Seti+1 is
not closed at any level. Func is. however, a monoid in the
category of endofunctors from Seti to Seti+1.

The opposite of the Kleisli category associated to Func
has as objects sets I, J ∈ Set and morphisms given by an
J-indexed family of I-indexed functors. We overload Func
and write Func I J = J → Func I . We use the opposite of
the Kleisli category so that F ∈ Func I J is a functor from
Fam I to Fam J . Indeed given A ∈ Fam I we write:

F@A ∈ Fam J

(F@A) j = F j A

This construction also extends to natural transformations,
i.e. the set of natural transformation between F,G ∈
Func I O is given by Πo ∈ O.F o ⇒ G o.

There are several operations which we can use to con-
struct indexed functors. Clearly the Kleisli structure gives
identities and composition in Func. Assuming f ∈ O →
O′, reindexing is defined by composition:

∆F f ∈ Func I O′ → Func I O

∆F f F = F ◦ f

Notice the contravariance in the above definition which is
to be expected of reindexing. An example of the use of
reindexing occurs in the definition of the indexed functor
whose fixed point is Lam where we need to turn an indexed
functor F into an indexed functor F ′ defined by F ′ n X =
F (n + 1) X . In this situation, F ′ is just ∆F (+1)F .

Unsurprisingly, ∆F f has both left and right adjoints,
those are given by

ΣF f,ΠF f ∈ Func I O → Func I O′

ΣF f F = λX, o.Σo′ ∈ O′.f o = o′ × F X o′

ΠF f F = λX, o.Πo′ ∈ O′.(f o = o′) → F X o′

ΣF is used in the construction of FFin:

FFin = F succ (λA m.1 + A m)
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Finite coproducts and products of indexed functors arise as
special cases of ΣF and ΠF. Given F,G ∈ Func I we con-
struct

H0 ∈ Func I 0
H0 =?Func I

H2 ∈ Func I 2
H = λb.if b thenF else G

Using the unique forgetful functions !A ∈ A → 1 we obtain

KF
0 , F +F G, KF

1 , F ×F G ∈ Func I 1 ' Func I

KF
0 = ΣF !0 H0

F +F G = ΣF !2 H2

KF
1 = ΠF !0 H0

F ×F G = ΠF !2 H2

More concretely KF
0 , KF

1 are simply the constant functors
returning 0 (resp. 1), and F +F G and F ×F G are the
point-wise coproducts (resp. coproducts) of F and G. The
point of the reduction to ΣF and ΠF is to be able to avoid
having to apply the same construction several times later.

In the examples we only used finite products, the more
general case of ΠF is relevant when we define infinitely
branching trees.

4 Initial algebras of indexed functors

Given an indexed endofuncor F ∈ Func I I we can ap-
ply the usual notion of initial algebra, To spell it out: an
F -algebra (A, a) is a a family A : Fam I together with
a function in Fam I: a : Πi∈I(F@A) i → A i. Given
F -algebras (A, a) and (B, b) a morphism is a function
f : Πi∈IA i → B i s.t.

F@A
a //

F@f

��

A

f

��
F@B

b // B

An initial F -algebra (µ0 F, in) is the initial object in this
category, if it exists. Initial algebras of functors don’t al-
ways exist as we already know from the non-indexed case
(which arises as a special case of indexed functors where
I = 1). For example the functor F ∈ Set → Set given
by F A = (A → 2) → 2 hasn’t got an initial algebra in a
predicative theory.

We can apply the initial algebra construction only once,
because it takes is us from an indexed functor F ∈ Func I I
to the category of families µ0 F ∈ Fam I . Hence we can’t
define nested or mutual inductive families. To overcome
this we introduce parametrized initial objects.

Coproducts of indexed functors correspond to indexed
functors on the product of slices, i.e. just by looking at the
object part:

Func (I + J)
= (I + J → Set) → Set

' (I → Set)× (J → Set) → Set

We can curry the last line:

' (I → Set) → (J → Set) → Set

This gives rise to partial application of an indexed functor
which we will employ in our definition of parametrized ini-
tial algebras.

F ∈ Func (I + J) J
G ∈ Func I J

F [G] ∈ Func I J

F [G] j A = F j (case A (G@A))

This definition is functorial, i.e. given α ∈ G ⇒ H we
obtain F [α] ∈ F [G] ⇒ F [H].

Given F ∈ Func (I + J) J a parametrized F -algebra
is given by an indexed functor G ∈ Func I J and a natu-
ral transformation α ∈ F [G] ⇒ G. A morphism between
two parametrized F -algebras (G, α) and (H,β) is a natural
transformation γ ∈ G ⇒ H such that

F [G] α //

F [γ]

��

G

γ

��
F [H]

β // H

The parametrized initial algebra of F , i.e. the initial object
in the category of parametrized F -algebras, we denote by
(µI F, inF ), if it exists. The special case of I = 0 corre-
sponds to non-parametrized algebras.

5 Indexed containers

Given I ∈ Set we define the category Cont I of in-
dexed containers over I , together with an extension functor
J−KC ∈ Cont I → Func I . While an ordinary container is
a pair of a set of shapes and a family of positions indexed by
shapes, an indexed container also consists of a set of shapes

S ∈ Set

and a family of positions indexed by shapes and the index-
ing set I:

P ∈ S → I → Set.
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We denote this container as

S C P ∈ Cont I.

Its extension is given as:

JS C P KC ∈ Func I

JS C P KCobj A = Σs ∈ S.Πi∈IP s i → A i

JS C P KCmor f (s, h) = (s, λi ∈ I.f i ◦ h i)

Given indexed containers SCP, TCQ ∈ Cont I a container
morphism is given by a function on shapes

f ∈ S → T

and an I-indexed contravariant function on positions

r ∈ Πs∈S,i∈IQ (f s) i → P s i.

We write the morphism as

f C r ∈ Cont I (S C P ) (T C Q)

The extension of a container morphism is a natural transfor-
mation between the associated functors given by:

Jf C rKC ∈ ΠX ∈ I → Set.JS C P KC X → JT C QKC X

Jf C rKC X .(s, h) = (f s, λq.h (r q))

As for ordinary containers (see [2]) we can show

Proposition 1 The extension functor J−KC ∈ Cont I →
Func I is full and faithful.

We will now lift the operations we have previously de-
fined on indexed functors to indexed containers. However,
as we will see – unlike indexed functors – indexed contain-
ers always admit initial algebras. We start with identifying
the monadic structure on Cont which is preserved by J−KC:

ηC ∈ I → Cont I

ηC i = (1, λs, j.i = j)

Given H = λi.S iCP i ∈ I → Cont J with S ∈ I → Set
and P ∈ Πi ∈ I.S i → J → Set and T C Q ∈ Cont I:

H >>=C T C Q ∈ Cont J

(H >>=C T C Q) = U C R

with

U ∈ Set

U = JT C QKC S

R ∈ U → I → Set

R (t, f) i = Σq ∈ Qt i, j ∈ J.P i (F i q) j

The operations satisfy the monadic laws but suffer the from
the same size issue as the monadic structure on indexed
functors. Moreover, the monadic structure is preserved by
the extension operation.

As in the case of Func this gives rise to the category
Cont, whose objects are sets I, J ∈ Set and morphisms are
Cont I J = J → Cont I . We will exploit that the elements
of Cont I J can be isomorphically represented as a pair:

~S ∈ J → Set
~P ∈ Πj∈J

~S j → I → Set

and write ~S C ~P ∈ Cont I J .
The definition of reindexing carries over without change

from indexed functors, i.e. given f ∈ O → O′, we de-
fine ∆C f ∈ Cont I O′ → Cont I O by ∆C f F = F ◦ f
Moreover, we can define its adjoints on indexed containers:

ΣC f,ΠC f ∈Cont I O → Cont I O′

ΣC f(~S C ~P ) =λo.Σo′ ∈ O′.f o = o′ × ~S o′

Cλo, (_, _, s).P s

ΣC f(~S C ~P ) =λo.Πo′∈O′f o = o′ → ~S o′

Cλo, g.Σo ∈ O, e ∈ f o = p, ~P (g e)

It is easy to see that JΣC f (S CP KC ' ΣF f JS CP KC and
JΠC f (S C P )KC ' ΠF f JS C P KC and using proposition
1 we can conclude

Proposition 2 Reindexing of indexed containers ∆C f has
left and right adjoints

ΣC f ` ∆C f ` ΠC F

and this structure is preserved by J−KC.

Using the construction in section 3 this entails that indexed
containers are closed under coproducts and products.

6 Initial algebras of containers

An indexed container ~S C ~P ∈ Cont I I denotes an endo-
functor on Fam I . Unlike for functors in general, initial al-
gebras of indexed containers always exist. While the initial
algebra of an ordinary unary container S C P is given by
the W-type W x ∈ S.P s, the initial algebra of an indexed
container is given by an indexed generalisation of W-types.
That is given

~S ∈ I → Set
~P ∈ I → Πi∈I

~S i → I → Set

we define

WI ~S ~P ∈ I → Set
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as inductively generated by

i ∈ I (s, f) ∈ Σs ∈ ~S i.Πs ∈ S i.Πj∈I
~P s j → WI ~S ~P j

supI (s, f) ∈ WI ~S ~P j

or with other words WI ~S ~P is the initial algebra of JS C
P KC. The interesting observation is that WI can be con-
structed from ordinary W-types. The idea is to define an
approximation of WI as an ordinary W type, namely

W (j, s) ∈ Σj ∈ J.~S jΣj′ ∈ J. ~P s j′

and then to identify the good trees by type-checking. Vari-
ants of this construction can be found in [2] and [10].

Proposition 3 (WI ~S ~P , supI), i.e. the initial algebra of
J~S C ~P KC can be constructed from W-types using Π, Σ
and equality types. Equivalently it exists in any Martin-
Löf category (Locally Cartesian Closed category with W-
types).

We are going to generalize this result to parametrized
initial algebras. We first define partial application, given

~S C ~P ∈ Cont (I + J) J

~T C ~Q ∈ Cont I J

with

~S ∈ J → Set
~P ∈ Πj∈J

~S j → I + J → Set
~T ∈ J → Set

~Q ∈ Πj∈J
~T j → I → Set

we define

~S C ~P [~T C ~Q] = ~U C ~R

∈ Cont I J

We observe that we can separate the I- and J-indexed posi-
tions of ~P by case analysis, giving rise to

~P I ∈ Πj∈J
~S j → I → Set

~P J ∈ Πj∈J → ~S j → J → Set

Clearly ~S C ~P J ∈ Cont J J is a container, and we can
use it’s extension to construct the shapes of the resulting
container:

~U ∈ J → Set
~U = J~S C ~P JKC@~T

We also express the construction of the positions paramet-
rically, using

� ~Q ∈ Πj∈J
~U j → I → Set

� ~Q (s, f) i = ~P I s i + Σk∈JΣp ∈ ~P J s k. ~Q (f p) i

This represents the possible positions in the combined con-
tainer which are either top-level positions ( ~P I ) or positions
inside the second container given by a top-level ( ~P J ) posi-
tion combined with a position in ~Q of the appropriate shape.
Hence we set:

~R ∈ Πj∈J
~U j → I → Set

~R = � ~Q

As expected this construction is functorial: on shapes we
exploit the morphism part of J~S C ~P JKC. To construct the
position part of the morphism we exploit that � is an indexed
functor itself and it commutes with J~S C ~P JKC, i.e.

� ~Q′ (J~S C ~P JKC f x = � ( ~Q′ ◦ f) x

We are going to reuse those components in the construc-
tion of the parametrized initial algebra of ~S C ~P above:

µI = ~Uµ C ~Rµ

∈ Cont I J

The shapes are the trees which can be constructed using
J~S C ~P JKC, hence

~Uµ ∈ J → Set
~Uµ = WJ ~S ~P J

The positions are the paths in the resulting trees which can
be constructed using structural recursion of the indexed W-
type:

~Rµ ∈ Πj∈J
~Uµ j → I → Set

~Rµ (supJ (s, f)) = � ~Rµ (s, f)

We are ready to define the constructor, i.e. the morphism
part of the parametrized initial algebra:

in = f C r

∈ Cont (~S C ~P [µI ])µI

Clearly, the shape component is just the constructor for WJ :

f ∈ Πj∈J(J~S C ~P JKC@~Uµ) j → ~Uµ j

f = supJ

The morphism on positions is just the identity, because we
can exploit the recursive definition of ~Rµ:

r ∈ Πj∈J,i∈IΠ(s, f) ∈ ~Uµ j. ~Rµ (supJ (s, f) i → � ~R u i

r (s, f) r = r

The definition of fold is straightforward, it is basically
forced upon us and hence unicity holds. We summarize:
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Proposition 4 (µI , in) is the parametrized initial algebra
of J~S C ~P KC.

7 Strictly positive families

Finally, we will define a syntactic representation of
strictly positive families, which itself is a strictly positive
indexed family. Given J ∈ Set we define SPF ∈ I →
Set inductively. As before for Func and Cont we define
SPF I J = J → SPF I . This notation will subsequently
be justified by establishing that SPF is monadic and hence
gives rise to a category of strictly positive families.

i ∈ I

ηT i ∈ SPF I

O′ ∈ Set f ∈ O′ → O F ∈ SPF O′ I

ΠT f F ∈ SPF I O
ΣT f F ∈ SPF O J

F ∈ SPF (I + J) J

µT F ∈ SPF I J

As before SPF I ∈ Seti+1 if I ∈ Seti because the con-
structors ΣT,ΠT are indexed by a set which should live on
the same level as the index. Ignoring size again, SPF is
monadic, ηT is a constructor. Given F ∈ I → SPF J =
SPF J I and G ∈ SPF I we define F >>=T G ∈ SPF J
recursively over G:

F >>=T (ηT i) = F i

F >>=T (ΠT f G j) = ΠT f (F ◦G)) j

F >>=T (ΣT f G j) = ΣT f (F ◦G)) j

F >>=T (µT G j) = µT (G ◦ SPF inl) j

Here F ◦G = λo.F >>=T (G o) is the derived composition
operation and SPF f G = (ηT ◦ f) >>=T G. In this presen-
tation the algorithm isn’t structurally recursive but this can
be addressed by defining SPF inl separately along the lines
of [3].

It is straightforward to define an interpretation of the
syntax as indexed containers, that is given A ∈ SPF I
we obtain JAKT ∈ Cont I . As before this automatically
extends to morphisms: given F ∈ SPF I J we obtain
JF KT ∈ Cont I J .

JηT iKT = ηC i

JΠT f G jKT = ΠC f JGKT j

JΣT f G jKT = ΣC f JGKT j

JµT G jKT = µC JGKT j

The monadic structure is preserved by the interpretation
function.

By combining J−KT and J−KC we obtain an interpreta-
tion of indexed types as indexed functors J−KF ∈ SPF I →
Func I . Note that it us necessary to go via indexed contain-
ers, since – as we have remarked earlier – functors are not
necessarily closed under initial algebras.

As an example we encode Fin and Lam as strictly posi-
tive families exploiting the construction of finite coproducts
and products in the syntax:

FinT ,LamT ∈ SPF 0 N
FinT = µT (λn.ΣT succ KT

0 n +T ΣT succ (ηT ◦ inr)

LamT = µT (λn.(FinT ◦ (SPF inl)) n

+T ηT (inr n)×T ηT (inr n)

+T ηT (inr (succ n))

8 Conclusions and further work

We have shown how inductive families, a central fea-
ture in dependently typed programming, can be constructed
from the standard infrastructure present in Type Theory, i.e.
W-types together with Π,Σ and equality types. Indeed, we
are able to reduce the syntactically rich notion of inductive
families to a small collection of categorically inspired com-
binators. This is an interesting alternative to the complex
syntactic schemes present in the Calculus of Inductive Con-
structions (CIC), or in the Agda and Epigram systems. We
are able to encode inductively defined families in a small
core language which means that we rely only on a small
trusted code base. The reduction to W-types requires an ex-
tensional propositional equality — our recent work on Ob-
servational Type Theory (OTT) [5] shows that this is not an
obstacle to implementation.

Central to our construction is the notion of indexed con-
tainer generalizing both simple containers and dependent
polynomial functors. Indexed containers like simple con-
tainers are closed under an initial algebra construction and
like dependent polynomial functors model inductive fami-
lies. We were able to exploit recent progress in the imple-
mentation of the Agda system to give a certified implemen-
tation of our main results closely following the high level
structure of our construction. We decided not to base our
presentation on the formalisation to be able to ignore irrele-
vant details of the actual formalisation and provide a better
narrative.

We haven’t included coinductive families, i.e. terminal
coalgebras of indexed functors, in the present paper. It
seems clear that we could representing coinductive fami-
lies by following [2]. There, we showed how to encode
M-types, i.e. the coinductive counterpart of W-types, using
a limit construction. To dualize the construction presented
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here we have to replace the recursive definition of ~Rµ by an
inductive definition.

A more serious challenge are mutual inductively (or
coinductively) defined families where one type depends on
another. A typical example is the syntax of Type Theory it-
self which, to simplify, can be encoded by mutually defining
contexts, types and terms:

Con ∈ Set

Ty ∈ Con → Set

Tm ∈ ΠΓ ∈ Con.Ty Γ → Set

This sort of definition can be justified using Dybjer and Set-
zer’s inductive-recursive definitions. However, induction-
recursion doesn’t seem necessary here because there are no
negative occurrences of types as in universe constructions.
Can we extend indexed containers to capture this kind of
families? A promising avenue seems to be to consider the
interpretation of containers in the category of families or
more generally telescopes or equivalently arrow categories.
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A Appendix: Formalisation in Agda

We begin by defining Cont:

data Cont (I : Set) : Set1 where
_ C _ : (S : Set) → (P : S → I → Set) → Cont I

sh : {I : Set} → Cont I → Set
sh (S C P) = S
po : {I : Set} → (C : Cont I) → sh C → I → Set
po (S C P) = P
ICont : Set → Set → Set1
ICont I O = O → Cont I

It will be useful to view ICont, as O-indexed shapes and positions, rather than being an O-indexed Cont:

data ICont* (I O : Set) : Set1 where
_ C _ : (S : O → Set) → (P : (o : O) → S o → I → Set) → ICont* I O

ic* : {I O : Set} → ICont I O → ICont* I O
ic* C = (λ o → sh (C o)) C λ o → po (C o)
*ic : {I O : Set} → ICont* I O → ICont I O
*ic (S C P) o = S o C P o

Similarly we define this view which allows us to see a Cont (I + J) as having 2 sets of positions:

data Cont+ (I J : Set) : Set1 where
_ C _, : (S : Set) → (P : S → I → Set) →

(Q : S → J → Set) → Cont+ I J
sh : {I J : Set} → Cont+ I J → Set
sh (S C P, Q) = S

poI : {I J : Set} → (C : Cont+ I J) → (sh C) → I → Set
poI (S C P, Q) = P

poJ : {I J : Set} → (C : Cont+ I J) → (sh C) → J → Set
poJ (S C P, Q) = Q
c+ : {I J : Set} → Cont (I + J) → Cont+ I J
c+ (S C P) = S C (λ s i → P s (inl i)), (λ s j → P s (inr j))
ICont+ : Set → Set → Set → Set1
ICont+ I J O = O → Cont+ I J
data ICont+* (I J O : Set) : Set1 where

_ C _, : (S : O → Set) → (P : (o : O) → S o → I → Set) →
(Q : (o : O) → S o → J → Set) → ICont+* I J O

ic+* : {I J O : Set} → ICont+ I J O → ICont+* I J O
ic+* C = (\o → sh (C o)) C (λ o → poI (C o)), λ o → poJ (C o)
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Morphisms in Cont I:

data _ ⇒ _ {I : Set} (C D : Cont I) : Set where
_ C _ : (f : sh C → sh D) →

(r : (s : sh C) → (i : I) → po D (f s) i → po C s i) → C ⇒ D
shf : {I : Set} → {C D : Cont I} → C ⇒ D → sh C → sh D
shf (f C r) = f
pof : {I : Set} → {C D : Cont I} → (m : C ⇒ D) → (s : sh C) → (i : I) →

(po D) (shf m s) i → (po C) s i
pof (f C r) = r
_ · _ : {I : Set} {C D E : Cont I} → (f : D ⇒ E) → (g : C ⇒ D) → C ⇒ E
(a C c) · (b C d) = (λ s → a (b s)) C λ s i r → d s i (c (b s) i r)

Morphisms in ICont I J:

data _ ⇒∗ _ {I J : Set} (C D : ICont I J) : Set where
_ C _ : (f : (j : J) → sh (C j) → sh (D j)) →

(r : (j : J) (s : sh (C j)) →
(i : I) → po (D j) (f j s) i → po (C j) s i) →

C ⇒∗ D
m* : {I J : Set} → {C D : ICont I J} →

((j : J) → C j ⇒ D j) → C ⇒∗ D
m* { } { } {C} {D} m with ic* C | ic* D
m* { } { } {C} {D} m | (S C P) | (T C Q) = (λ j → shf (m j)) C λ j → pof (m j)
*m : {I J : Set} → {C D : ICont I J} →

(C ⇒∗ D) → ((j : J) → C j ⇒ D j)
*m { } { } {C} {D} (f C r) = (λ j → f j C r j)

Give rise to functors, we do not prove the laws here, because we do not need them:

left_right : {I : Set} → Cont I → (I → Set) → Set
left_right {I} C T = Σ (sh C) (λ s → (i : I) → po C s i → T i)
_$_ : {I : Set} → {C D : Cont I} → (m : C ⇒ D) → {X : I → Set} →

J C K X → J D K X
_$_ { } (a C b) (s, f) = a s, λ i q → f i (b s i q)

Before we define the least fixed point we define partial application. We begin by defining the functor U:

U : {I J : Set} → Cont (I + J) → (J → Set) → Set
U C T = J (sh C) C (λ s j → po C s (inr j)) K T
mapU : {I J : Set} → (C : Cont (I + J)) → {T T’ : J → Set} →

(f : (j : J) → T j → T’ j) → U C T → U C T’
mapU C f (s, g) = s, λ j p → f j (g j p)
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And the indexed functor R:

R : {I J : Set} → (C : Cont (I + J)) → {T : J → Set} →
(Q : (j : J) → T j → I → Set) → U C T → I → Set

R { } {J} C Q (s, f) i =
po C s (inl i)

+ Σ J (λ j → Σ (po C s (inr j)) (λ p → Q j (f j p) i))
mapR : {I J : Set} → (C : Cont (I + J)) → {T : J → Set} →

{Q Q’ : (j : J) → T j → I → Set}
(f : (j : J) (t : T j) (i : I) → Q j t i → Q’ j t i) →
(u : U C T) (i : I) → R C Q u i → R C Q’ u i

mapR C f (s, g) i (inl p) = inl p
mapR C f (s, g) i (inr (j, (p, q))) = inr (j, (p, f j (g j p) i q))

Again, we do not need to prove the functor laws for U and R but it would be possible in an extensional style.
We will need this relationship between U and R:

φ : {I J : Set} (C : Cont (I + J)) {T T’ : J → Set}
(f : (j : J) → T j → T’ j)
(Q’ : (j : J) → T’ j → I → Set) (u : U C T) (i : I) →
R C Q’ (mapU C f u) i → R C (λ j’ t i’ → Q’ j’ (f j’ t) i’) u i

φ C f Q’ (a, b) i x = x

We now define the partial application of a Cont (I + J) to an ICont I J, which gives rise to a functor:

[ ] : {I J : Set} → (C : Cont (I + J)) → (D : ICont I J) → Cont I
C [D] with ic* D
C [D] | (T C Q) = U C T C R C Q
map [ ] : {I J : Set} (C : Cont (I + J)) → {D D’ : ICont I J} →

((j : J) → D j ⇒ D’ j) → C [D] ⇒ C [D’]
map [ ] C {D} {D’} m with m* m
map [ ] C {D} {D’} m | (f C r) =

mapU C f C λ u i x → mapR C r u i (φ C f (λ j → po (D’ j)) u i x)

We can begin the construction of the least fixed point. The shapes inductive containers will be given by W-Types, here the
constructor sup takes advantage of the functor U:

data W {I J : Set} (C : ICont (I + J) J) (j : J) : Set where
sup : U (C j) (W C) → W C j

foldW : {I J : Set} (C : ICont (I + J) J) (D : J → Set) →
((j : J) → U (C j) D → D j) → (j : J) → W C j → D j

foldW C D m j (sup u) = m j (mapU (C j) (foldW C D m) u)

Note that Uµ from the paper is simply defined as W.
The postions will then be given by paths through such a tree, again we take advatage of the functor R.

Rµ : {I J : Set} → (C : ICont (I + J) J) → (j : J) → W C j → I → Set
Rµ C j (sup u) i = R (C j) (Rµ C) u i

Note that this definition is not structurally recursive, it is however terminating on the size of the W-type.
The fixed point of an ICont (I + J) J is an ICont I J:

µ : {I J : Set} → (F : ICont (I + J) J) → ICont I J
µ F j = W F j C Rµ F j
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The algebra contains a morphism from F [µ F] to µ F, given by:

inµ : {I J : Set} (F : ICont (I + J) J) → (j : J) → (F j) [µ F] ⇒ µ F j
inµ F j with ic+* (\j → c+ (F j))
inµ F j | (S C PI , PJ) = sup C λ r → r

And the associated fold by:

foldµ : {I J : Set} → (F : ICont (I + J) J) → (H : ICont I J) →
((j : J) → (F j) [H] ⇒ H j) → (j : J) → µ F j ⇒ H j

foldµ {I} {J} F H m with m* m
foldµ {I} {J} F H m | (a C b) = *m (foldW F (λ j → sh (H j)) a C d)

where d : (j : J) (w : W F j) (i : I) →
po (H j) (foldW F (λ j → sh (H j)) a j w) i → Rµ F j w i

d j (sup (s, f)) i q = mapR (F j) d (s, f) i (b j i q)

We show that the fold square commutes by observation on the action of the container functor.

foldµ� : {I J : Set} (F : ICont (I + J) J) (H : ICont I J)
(m : (j : J) → (F j) [H] ⇒ H j) → {X : I → Set}
(j : J) → (x : J (F j) [µ F] K X) →

(((m j) · (map [ ] (F j) (foldµ F H m))) $ x)
≡ (((foldµ F H m j) · (inµ F j)) $ x)

foldµ� F H m j ((s, f), g) with m j
foldµ� F H m j ((s, f), g) | (a C b) = SigEq refl (≡ ext (λ x y → refl))
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