
Subtyping, Declaratively

An Exercise in Mixed Induction and Coinduction

Nils Anders Danielsson and Thorsten Altenkirch

University of Nottingham

Abstract. It is natural to present subtyping for recursive types coin-
ductively. However, Gapeyev, Levin and Pierce have noted that there is
a problem with coinductive definitions of non-trivial transitive inference
systems: they cannot be “declarative”—as opposed to “algorithmic” or
syntax-directed—because coinductive inference systems with an explicit
rule of transitivity are trivial.

We propose a solution to this problem. By using mixed induction and
coinduction we define an inference system for subtyping which combines
the advantages of coinduction with the convenience of an explicit rule of
transitivity. The definition uses coinduction for the structural rules, and
induction for the rule of transitivity. We also discuss under what condi-
tions this technique can be used when defining other inference systems.

The developments presented in the paper have been mechanised using
Agda, a dependently typed programming language and proof assistant.

1 Introduction

Coinduction and corecursion are useful techniques for defining and reasoning
about things which are potentially infinite, including streams and other (poten-
tially) infinite data types (Coquand 1994; Giménez 1996; Turner 2004), process
congruences (Milner 1990), congruences for functional programs (Gordon 1999),
closures (Milner and Tofte 1991), semantics for divergence of programs (Cousot
and Cousot 1992; Hughes and Moran 1995; Leroy and Grall 2009; Nakata and
Uustalu 2009), and subtyping relations for recursive types (Brandt and Henglein
1998; Gapeyev et al. 2002).

However, the use of coinduction can lead to values which are “too infinite”.
For instance, a non-trivial binary relation defined as a coinductive inference sys-
tem cannot include the rule of transitivity, because a coinductive reading of
transitivity would imply that every element is related to every other (to see this,
build an infinite derivation consisting solely of uses of transitivity). As pointed
out by Gapeyev et al. (2002) this is unfortunate, because without transitivity,
conceptually unrelated rules may have to be merged or otherwise modified in
order to ensure that transitivity can be proved as a derived property. Gapeyev
et al. give the example of subtyping for records, where a dedicated rule of transi-
tivity ensures that one can give separate rules for depth subtyping (which states
that a record field type can be replaced by a subtype), width subtyping (which

states that new fields can be added to a record), and permutation of record
fields.

We propose a solution to this problem. The problem stems from a coinductive
reading of transitivity, and it can be solved by reading the rule of transitivity
inductively, and only using coinduction where it is necessary. We illustrate this
idea by using mixed induction and coinduction to define a subtyping relation for
recursive types; such relations have been studied repeatedly in the past (Amadio
and Cardelli 1993; Kozen et al. 1995; Brandt and Henglein 1998, and others).
The rule which defines when a function type is a subtype of another is defined
coinductively, following Brandt and Henglein (1998) and Gapeyev et al. (2002),
while the rule of transitivity is defined inductively.

The technique of mixing induction and coinduction has been known for a long
time (Park 1980; Barwise 1989; Raffalli 1994; Giménez 1996; Hensel and Jacobs
1997; Müller et al. 1999; Barthe et al. 2004; Levy 2006; Bradfield and Stirling
2007; Abel 2009; Hancock et al. 2009), but we feel that it deserves to be more
well-known in the programming language community. We also believe that the
approach to coinduction used in the paper, due to Coquand (1994), deserves more
attention: following the Curry-Howard correspondence the coinductive definition
and proof principles both take the form of guarded corecursion for (potentially
indexed) lazy data types.

The main developments in the paper have been formalised using the depen-
dently typed, total1 functional programming language Agda (Norell 2007; Agda
Team 2010), which provides good support for mixed induction and coinduction
in the style mentioned above. The source code is at the time of writing available
to download (Danielsson 2010a).

The rest of the paper is structured as follows: Section 2 gives an introduc-
tion to induction and coinduction in the context of Agda. Section 3 defines a
small language of recursive types, and Sect. 4 defines a subtyping relation for
this language by viewing the types as potentially infinite trees. Section 5 defines
an equivalent, declarative subtyping relation using mixed induction and coin-
duction, and Sect. 6 compares this definition to another equivalent definition,
given by Brandt and Henglein (1998). Finally Sect. 7 discusses a potential pitfall
associated with the technique we propose, and Sect. 8 concludes.

2 Induction and Coinduction

This section gives a brief introduction to induction and coinduction, with an
emphasis on how these concepts are realised in Agda. For more formal accounts
of induction and coinduction see, for instance, the theses of Hagino (1987) and
Mendler (1988).

1 Agda is an experimental system. The meta-theory has not been formalised, and the
type checker has not been proved bug-free, so take phrases such as “total” with a
grain of salt.

2.1 Induction

Let us start with a simple inductive definition. In Agda the type of finite lists
can be defined as follows:

data List (A : Set) : Set where
[] : List A

:: : A → List A → List A

This states that List A is a type (or Set) with two constructors, [] of type List A
and :: of type A→ List A→ List A. The constructor :: is an infix operator;
the underscores mark the argument positions. The type List A is isomorphic to
the least fixpoint µX . 1 + A × X in the category of types and total functions.2

Agda has a termination checker which ensures that all code is terminating (or
productive, see below). It is assisted by other checkers which ensure that data
types are strictly positive, and not too large. The termination checker allows
lists to be destructed using structural recursion:

map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x :: xs) = f x :: map f xs

The use of braces in {A B : Set}→ . . . means that the two type arguments
A and B are implicit ; they do not need to be given explicitly if Agda can infer
them. Note that in this context A B is not an application, it is a sequence of
variables.

2.2 Coinduction

If we want to have infinite lists, or streams, we can use the following coinductive
definition instead (note that constructors, such as :: , can be overloaded in
Agda):

data Stream (A : Set) : Set where
:: : A → ∞ (Stream A) → Stream A

The type Stream A is isomorphic to the greatest fixpoint νX . A × X . The
type function ∞ : Set → Set marks its argument as being coinductive. It
is analogous to the suspension type constructors which are sometimes used to
implement non-strictness in strict languages (Wadler et al. 1998), and comes
with a force function and a delay constructor:

[: {A : Set} → ∞ A → A
] : {A : Set} → A → ∞ A

2 At the time of writing this is not exactly true in Agda (Danielsson and Altenkirch
2009), but the difference between List A and the fixpoint is irrelevant for the pur-
poses of this paper. Similar considerations apply to greatest fixpoints.

The constructor] is a tightly binding prefix operator. Ordinary function appli-
cation binds tighter, though.

Values of coinductive types can be constructed using guarded corecursion
(Coquand 1994):

mapS : {A B : Set} → (A → B) → Stream A → Stream B
mapS f (x :: xs) = f x ::] mapS f ([xs)

The definition of mapS is accepted by Agda’s termination checker because the
corecursive call is guarded by] , without any non-constructor function between
the left-hand side and the corecursive call. This syntactic notion of guarded-
ness ensures that corecursive definitions are productive: even if the value being
constructed is infinite, the next constructor can always be computed in a finite
number of steps.

It may also be instructive to see (attempted) definitions which are not ac-
cepted:

bad : Stream N
bad = zero ::] tail bad

nats : Stream N
nats = zero ::] mapS suc nats

Both definitions are rejected because they are not guarded, but only the first
one is non-productive; nats uniquely specifies the stream of natural numbers, but
is rejected by the termination checker because it does not satisfy the syntactic
criterion imposed by Agda.

2.3 Coinductive Relations

Let us now consider a coinductively defined relation: stream equality, also known
as bisimilarity. Two streams are equal if they have identical heads and their tails
are equal (coinductively):

[xs ≈ [ys
x :: xs ≈ x :: ys

(coinductive)

This inference system can be represented using an indexed data type:

data ≈ {A : Set} : Stream A → Stream A → Set where
:: : (x : A) {xs ys : ∞ (Stream A)} → ∞ ([xs ≈ [ys) →

x :: xs ≈ x :: ys

Some remarks on this definition may be useful:

– The elements of the type xs ≈ ys are proofs witnessing the equality of xs
and ys. Agda does not make a distinction between proofs and programs, and
the termination checker ensures productivity of both kinds of definition.

– Dependent function spaces ((x : A)→ B where x can occur in B) are used
to set up dependencies of types on values.

– The first occurrence of the type constructor ∞ just reflects the fact that
the second argument to the stream constructor :: is delayed. The second
occurrence is necessary to be able to construct infinite equality proofs; if we
had omitted it the relation would have been empty.

– We overload the constructor :: so that it stands both for the “cons” func-
tion for streams, and for the proof that cons preserves equality. The con-
structors can be disambiguated based on type information.

Elements of coinductively defined relations can be constructed using corecur-
sion. As an example, let us prove the map-iterate property (Gibbons and Hutton
2005):

mapS f (iterate f x) ≈ iterate f (f x).

The function iterate repeatedly applies a function to a seed element and collects
the results in a stream:

iterate f x = x ::] (f x ::] (f (f x) :: . . .)).

The function is defined corecursively:

iterate : {A : Set} → (A → A) → A → Stream A
iterate f x = x ::] iterate f (f x)

The map-iterate property can be proved using guarded corecursion (the term
guarded coinduction could also be used):

map-iterate : {A : Set} (f : A → A) (x : A) →
mapS f (iterate f x) ≈ iterate f (f x)

map-iterate f x = f x ::] map-iterate f (f x)

To see how this proof works, consider how it can be built up step by step (as in
an interactive Agda session):

map-iterate f x = ?

The type of the goal ? is mapS f (iterate f x) ≈ iterate f (f x). Agda types
should always be read up to normalisation, so this is equivalent to3

f x ::] mapS f ([(] iterate f (f x))) ≈ f x ::] iterate f (f (f x)).

(Note that normalisation does not involve reduction under] , and that [(] x)
reduces to x .) This type matches the result type of the equality constructor :: ,
so we can refine the goal:

map-iterate f x = f x :: ?

3 This is a simplification of the current behaviour of Agda.

The new goal type is

∞
(

mapS f (iterate f (f x)) ≈ iterate f (f (f x))
)
,

so the proof can be finished by an application of the coinductive hypothesis
under the guarding constructor] :

map-iterate f x = f x ::] map-iterate f (f x)

2.4 Mixed Induction and Coinduction

The types above are either inductive or coinductive. Let us now discuss a type
which uses both induction and coinduction. Hancock et al. (2009) define a lan-
guage of stream processors, representing functions of type Stream A→Stream B ,
using a nested fixpoint: νY.µX. B × Y + (A→ X). We can represent this fix-
point in Agda as follows:

data SP (A B : Set) : Set where
put : B → ∞ (SP A B) → SP A B
get : (A → SP A B) → SP A B

The stream processor put b sp outputs b, and continues processing according
to sp. The processor get f reads one element a from the input stream, and
continues processing according to f a. In the case of put the recursive argument
is coinductive, so it is fine to output an infinite number of elements, whereas in
the case of get the recursive argument is inductive, which means that one can
only read a finite number of elements before writing the next one. This ensures
that the output stream can be generated productively.

We can implement a simple stream processor which copies the input to the
output as follows:

copy : {A : Set} → SP A A
copy = get (λ a → put a (] copy))

This definition is guarded. Note that copy contains an infinite number of get
constructors. This is fine, even though get’s argument is inductive, because there
is never a stretch of infinitely many get constructors without an intervening
delay constructor (]). On the other hand, the following definition of a sink is
not guarded, and is not accepted by Agda:

sink : {A B : Set} → SP A B
sink = get (λ → sink)

As another example we can compute the semantics of a stream processor:

J K : {A B : Set} → SP A B → Stream A → Stream B
J put b sp K as = b ::] (J [sp K as)
J get f K (a :: as) = J f a K ([as)

(J K is a mixfix operator.) This definition uses a lexicographic combination of
guarded corecursion and higher-order structural recursion (see Sect. 2.5). In the
first clause the corecursive call is guarded. In the second clause it “preserves
guardedness” (it takes place under zero coinductive constructors rather than
one), and the first argument is structurally smaller.

Note that J K could not have been implemented if SP A B had been defined
purely coinductively (because then sink could be implemented with B equal to
the empty type). By using both induction and coinduction in the definition we
rule out certain stream processors which would otherwise have been accepted,
and in return we can implement functions like J K.

2.5 A Criterion for Totality

Let us now make things more precise by giving a more detailed explanation
of Agda’s criterion for accepting a function as being total. The results in the
paper do not depend on the exact criterion used by Agda, so we only give a
conservative approximation of what is currently implemented. The description
below is based on the termination checker foetus (Abel and Altenkirch 2002),
extended with support for guarded coinduction based on an idea due to Andreas
Abel (personal communication).

First we collect some information about the program. For every left-hand
side f p1 . . . pm and function call g e1 . . . en in the corresponding right-hand
side the following information is recorded:

Argument structure For every pair (pi, ej) it is noted if the argument ej
is structurally strictly smaller (denoted by <) or equal to (=) the pattern
pi. If neither case applies, then we use the notation ?. Note that x is not
structurally smaller than] x , and that f x is strictly smaller than c f , for
an inductive constructor c.

Guardedness It is also noted whether the call is guarded by constructors, at
least one of which is coinductive (<); or whether guardedness is preserved,
i.e. if the call is guarded by inductive constructors (=).

The next step is to combine the information about individual calls into infor-
mation about all the call paths from one function to itself. We use the notation
(g | a1 . . . an) to describe the information computed for a call path; here g is
the guardedness information, and ai describes how the i-th argument is changed.
In the case of the function J K from Sect. 2.4 we get that there are three kinds
of call paths:

1. (< | = = ? =), which corresponds to the first recursive call;
2. (= | = = < ?), which corresponds to the second recursive call; and
3. (< | = = ? ?) for call paths which involve both recursive calls.

Finally we can give the criterion for totality: a function is accepted as total if
there is some lexicographic combination of the components for which every call
path is strictly decreasing. In the case of J K it suffices to combine the guarded-
ness with the information about the third argument (the stream processor).

As noted by Danielsson and Altenkirch (2009, Section 7.1) the criterion above
works best if all fixpoints have the form νY.µX. F X Y (for suitable values of
F); we have not yet found a good way to incorporate fixpoints of the form
µX.νY. F X Y . However, this issue does not affect the examples in this paper.

2.6 Relations Using Mixed Induction and Coinduction

As a final example we define a relation using mixed induction and coinduction.
Capretta (2005) defines the partiality monad, which can be used to represent
potentially non-terminating computations, as follows:

data ν (A : Set) : Set where
return : A → A ν

step : ∞ (A ν) → A ν

The constructor return returns a result, and step postpones a computation. Non-
termination is represented as an infinitely postponed computation:

⊥ : {A : Set} → A ν

⊥ = step (] ⊥)

A natural definition of equality for partial computations is weak bisimilarity
(viewing step as a silent transition):4

data ∼= : A ν → A ν → Set where
return : return v ∼= return v
step : ∞ ([x ∼= [y) → step x ∼= step y
stepr : x ∼= [y → x ∼= step y
stepl : [x ∼= y → step x ∼= y

This is basically the congruence generated by return and step, but allowing for
finite differences in delay. Note that the requirement of finite differences in delay
is captured by the use of induction for stepr and stepl, while the use of coinduction
for step is necessary to be able to prove that the relation is reflexive.

3 Recursive Types

Brandt and Henglein (1998) define the following language of recursive types:

σ, τ ::= ⊥ | > | X | σ _ τ | µX. σ _ τ

Here ⊥ and > are the least and greatest types, respectively, X is a variable,
σ _ τ is a function type, and µX. σ _ τ is a fixpoint, with bound variable X .
4 In order to reduce clutter the declarations of implicit arguments have been omitted

in the remainder of the paper.

(The body of the fixpoint is required to be a function type, so types like µX.X
are ruled out.) The intention is that a fixpoint µX.σ _ τ should be equivalent
to its unfolding (σ _ τ)[X := µX. σ _ τ]. It would be unproblematic to extend
the language with other type constructors, such as products and sums.

The language above can be represented in Agda as follows:

data Ty (n : N) : Set where
⊥ : Ty n
> : Ty n
var : Fin n → Ty n
_ : Ty n → Ty n → Ty n
µ _ : Ty (1 + n) → Ty (1 + n) → Ty n

Here variables are represented using de Bruijn indices: Ty n represents types
with at most n free variables, and Fin n is a type representing the first n
natural numbers. Substitution can also be defined; σ [τ] is the capture-avoiding
substitution of τ for variable 0 in σ:

[] : Ty (1 + n) → Ty n → Ty n

The following function unfolds a fixpoint one step:

unfold〈µ _ 〉 : Ty (1 + n) → Ty (1 + n) → Ty n
unfold〈µ σ _ τ 〉 = (σ _ τ) [µ σ _ τ]

(Note that µ _ , [] and unfold〈µ _ 〉 are all mixfix operators which take
two arguments.)

4 Subtyping via Trees

A natural definition of subtyping goes via subtyping for potentially infinite trees
(Gapeyev et al. 2002):

data Tree (n : N) : Set where
⊥ : Tree n
> : Tree n
var : Fin n → Tree n
_ : ∞ (Tree n) → ∞ (Tree n) → Tree n

The subtyping relation for trees can be given coinductively as follows:

data 6Tree : Tree n → Tree n → Set where
⊥ : ⊥ 6Tree τ
> : σ 6Tree >
var : var x 6Tree var x
_ : ∞ ([τ1 6Tree

[σ1) → ∞ ([σ2 6Tree
[τ2) →

σ1 _ σ2 6Tree τ1 _ τ2

_

_

_

_ _

_

_ _

_

_

_ _

_

_ _

_

_

_

_ >

⊥

>

Fig. 1. The first levels of the infinite trees corresponding to the types µX. X _ X and
µX. (X _ ⊥) _ >.

Note the contravariant treatment of the codomain of the function space. Note
also that the constructors of Tree are overloaded—repeatedly—in order to reduce
clutter.

The semantics of a recursive type can be given in terms of its unfolding as a
potentially infinite tree:

J K : Ty n → Tree n
J ⊥ K = ⊥
J > K = >
J var x K = var x
J σ _ τ K =] J σ K _] J τ K
J µ σ _ τ K =] J σ [χ] K _] J τ [χ] K

where χ = µ σ _ τ

The subtyping relation for types can then be defined by combining 6Tree and
J K:

6Type : Ty n → Ty n → Set
σ 6Type τ = J σ K 6Tree J τ K

As a simple example, consider the following two types, σ = µX. X _ X
and τ = µX. (X _ ⊥) _ >:

σ : Ty 0
σ = µ var zero _ var zero

τ : Ty 0
τ = µ (var zero _ ⊥) _ >

The first few levels of the infinite trees corresponding to these types can be seen
in Fig. 1. It is straightforward to show that σ is a subtype of τ using a corecursive
proof:

σ6τ : σ 6Type τ

σ6τ =] (] σ6τ _] ⊥) _] >

(Note that σ6τ is an identifier and not a compound expression; almost any
character string which does not contain whitespace can be used as an identifier.)

Amadio and Cardelli (1993) also define subtyping for recursive types by going
via potentially infinite trees, but they define a subtyping relation inductively on
finite trees, and state that an infinite tree σ is a subtype of another tree τ
when every finite approximation (of a certain kind) of σ is a subtype of the
corresponding approximation of τ . It is easy to show that this definition, as
adapted by Brandt and Henglein (1998), is equivalent to the one given above.
One direction of the proof uses induction on the depth of approximation, and
the other constructs elements of σ 6Type τ corecursively; see the code which
accompanies the paper (Danielsson 2010a).

5 Subtyping Using Mixed Induction and Coinduction

Subtyping can also be defined directly, without going via trees. The following
definition is inspired by one given by Brandt and Henglein (1998), see Sect. 6:

data 6 : Ty n → Ty n → Set where
⊥ : ⊥ 6 τ
> : σ 6 >
_ : ∞ (τ1 6 σ1) → ∞ (σ2 6 τ2) → σ1 _ σ2 6 τ1 _ τ2

unfold : µ τ1 _ τ2 6 unfold〈µ τ1 _ τ2 〉
fold : unfold〈µ τ1 _ τ2 〉 6 µ τ1 _ τ2

refl : τ 6 τ
trans : τ1 6 τ2 → τ2 6 τ3 → τ1 6 τ3

Note that the structural rules (⊥, >, _) are defined coinductively, while the
other rules, most importantly trans, are defined inductively. Note also that the
inclusion of refl and trans is essential; if either constructor is removed we get a
different relation.

Now, if we can prove that the relation 6 is equivalent to 6Type (and thus
also equivalent to Amadio and Cardelli’s relation), then we have showed what we
set out to show: that coinduction and the rule of transitivity can be combined. We
can prove completeness by a simple application of guarded corecursion (omitted
here):

complete : σ 6Type τ → σ 6 τ

The soundness proof is a little more tricky. The following lemmas are easy to
prove:

unfoldType : µ τ1 _ τ2 6Type unfold〈µ τ1 _ τ2 〉
foldType : unfold〈µ τ1 _ τ2 〉 6Type µ τ1 _ τ2
reflType : τ 6Type τ

transType : τ1 6Type τ2 → τ2 6Type τ3 → τ1 6Type τ3

Using these lemmas one might think that the following should be accepted as a
soundness proof:

sound : σ 6 τ → σ 6Type τ
sound ⊥ = ⊥
sound > = >
sound (τ16σ1 _ σ26τ2) =] sound ([τ16σ1) _] sound ([σ26τ2)
sound unfold = unfoldType

sound fold = foldType

sound refl = reflType

sound (trans τ16τ2 τ26τ3) = transType (sound τ16τ2) (sound τ26τ3)

However, consider the case for trans. The arguments to the recursive calls are
structurally smaller than the inputs, but transType is not a constructor, so guard-
edness is not preserved. The proof is productive (given a suitable definition of
transType), but Agda’s termination checker cannot see this.

In the absence of improved termination checking for Agda we provide a
workaround, using a technique described by Danielsson (2010b). If transType

had been a constructor then the definition of sound would have been accepted,
and this observation can be used to rescue the proof. First we define a variant
of 6Tree which includes an extra inductive constructor, trans:

data 6TreeP : Tree n → Tree n → Set where
⊥ : ⊥ 6TreeP τ
> : σ 6TreeP >
var : var x 6TreeP var x
_ : ∞ ([τ1 6TreeP

[σ1) → ∞ ([σ2 6TreeP
[τ2) →

σ1 _ σ2 6TreeP τ1 _ τ2
trans : τ1 6TreeP τ2 → τ2 6TreeP τ3 → τ1 6TreeP τ3

The letter P stands for “program”; this type defines a small language of equality
proof programs. It is easy to turn proofs into proof programs corecursively:

p q : σ 6Tree τ → σ 6TreeP τ

We can now write a guarded proof program which “proves” soundness:

soundP : σ 6 τ → J σ K 6TreeP J τ K
soundP ⊥ = ⊥
soundP > = >
soundP (τ16σ1 _ σ26τ2) =] soundP ([τ16σ1) _] soundP ([σ26τ2)
soundP unfold = p unfoldType q
soundP fold = p foldType q
soundP refl = p reflType q
soundP (trans τ16τ2 τ26τ3) = trans (soundP τ16τ2) (soundP τ26τ3)

If we can also find a way to turn proof programs into proofs, productively,
then we are done. We start by defining a type of weak head normal forms
(WHNFs) for the proof programs:

data 6TreeW : Tree n → Tree n → Set where
⊥ : ⊥ 6TreeW τ
> : σ 6TreeW >
var : var x 6TreeW var x
_ : [τ1 6TreeP

[σ1 → [σ2 6TreeP
[τ2 →

σ1 _ σ2 6TreeW τ1 _ τ2

Note that the arguments to _ are programs, not WHNFs. One can prove by
simple case analysis that 6TreeW is transitive:

transTreeW : τ1 6TreeW τ2 → τ2 6TreeW τ3 → τ1 6TreeW τ3

From this result it follows by structural recursion that programs can be turned
into WHNFs:

whnf : σ 6TreeP τ → σ 6TreeW τ
whnf ⊥ = ⊥
whnf > = >
whnf var = var

whnf (τ16σ1 _ σ26τ2) = [τ16σ1 _ [σ26τ2
whnf (trans τ16τ2 τ26τ3) = transTreeW (whnf τ16τ2) (whnf τ26τ3)

The following mutually recursive functions then turn proof programs into “ac-
tual” proofs by using the whnf function repeatedly:

J KW : σ 6TreeW τ → σ 6Tree τ
J ⊥ KW = ⊥
J > KW = >
J var KW = var

J τ16σ1 _ σ26τ2 KW =] J τ16σ1 KP _] J σ26τ2 KP

J KP : σ 6TreeP τ → σ 6Tree τ
J σ6τ KP = J whnf σ6τ KW

Note that these functions are guarded and hence productive. Finally we get the
soundness proof:

sound : σ 6 τ → σ 6Type τ
sound σ6τ = J soundP σ6τ KP

6 Inductive Axiomatisation of Subtyping

Brandt and Henglein (1998) do not define subtyping using mixed induction and
coinduction, as in Sect. 5, but using an inductive encoding of coinduction. Their
subtyping relation is ternary: A ` σ 6 τ means that σ is a subtype of τ given
the assumptions in A. An assumption (a hypothesis) is simply a pair of types:

data Hyp (n : N) : Set where
. : Ty n → Ty n → Hyp n

The subtyping relation is defined as follows:

data ` 6 (A : List (Hyp n)) : Ty n → Ty n → Set where
⊥ : A ` ⊥ 6 τ
> : A ` σ 6 >
_ : let H = σ1 _ σ2 . τ1 _ τ2 in

H :: A ` τ1 6 σ1 → H :: A ` σ2 6 τ2 →
A ` σ1 _ σ2 6 τ1 _ τ2

unfold : A ` µ τ1 _ τ2 6 unfold〈µ τ1 _ τ2 〉
fold : A ` unfold〈µ τ1 _ τ2 〉 6 µ τ1 _ τ2

refl : A ` τ 6 τ
trans : A ` τ1 6 τ2 → A ` τ2 6 τ3 → A ` τ1 6 τ3

hyp : σ . τ ∈ A → A ` σ 6 τ

Here ∈ encodes list membership. Note that coinduction is encoded in the _
rule by inclusion of the consequent in the lists of assumptions of the antecedents.

Brandt and Henglein prove that their relation (with an empty list of assump-
tions) is equivalent to Amadio and Cardelli’s. Their proof is considerably more
complicated than the proof outlined above which shows that 6 is equivalent
to Amadio and Cardelli’s definition, but as part of the proof they show that
subtyping is decidable. By composing the two equivalence proofs we get that
subtyping as defined in Sect. 5 is also decidable.

Brandt and Henglein use a classical argument to show that their algorithm
terminates, so it is not entirely obvious that it can be implemented in a total,
constructive type theory like Agda. However, we have adapted the algorithm to
this setting:

6? : (σ τ : Ty n) → Dec ([] ` σ 6 τ)

A value in Dec A is either a value in A, or a proof showing that no such value
exists, so this decision procedure does not merely say “yes” or “no”, it backs
up its verdict with solid evidence. Details of the implementation of 6? are
available in the code accompanying the paper (Danielsson 2010a).

We know that ` 6 is equivalent to 6 , because both relations are equiv-
alent to Amadio and Cardelli’s. However, it can still be instructive to see a direct
proof of soundness of ` 6 with respect to 6 . The proof below uses a cyclic
(but productive) proof to turn the inductive encoding of coinduction used in
` 6 into the “actual” coinduction used in 6 .

To state soundness the type All is used; All P xs means that all elements in
xs satisfy P :

data All (P : A → Set) : List A → Set where
[] : All P []

:: : P x → All P xs → All P (x :: xs)

The soundness proof shows that if A ` σ 6 τ , where all pairs σ′ . τ ′ in A
satisfy σ′ 6 τ ′, then σ 6 τ :

Valid : (Ty n → Ty n → Set) → Hyp n → Set
Valid R (σ1 . σ2) = σ1 R σ2

sound : All (Valid 6) A → A ` σ 6 τ → σ 6 τ

The interesting cases of sound are the ones for trans, hyp and _ . Transitivity
can be handled recursively, hypotheses can be looked up in the list of valid
assumptions (using lookup : All P xs → x ∈ xs → P x), and function spaces
can be handled by defining a cyclic proof:

sound valid (trans τ16τ2 τ26τ3) = trans (sound valid τ16τ2)
(sound valid τ26τ3)

sound valid (hyp h) = lookup valid h
sound valid (τ16σ1 _ σ26τ2) = proof

where proof =] sound (proof :: valid) τ16σ1 _
] sound (proof :: valid) σ26τ2

Note that the last two calls to sound extend the list of valid assumptions with
the proof currently being defined.

The definition of proof above is not guarded, but it would be if sound were a
constructor. We use the technique from Sect. 5 to make the proof guarded. The
program and WHNF types can be defined mutually as follows:

data 6P : Ty n → Ty n → Set where
sound : All (Valid 6W) A → A ` σ 6 τ → σ 6P τ

data 6W : Ty n → Ty n → Set where
done : σ 6 τ → σ 6W τ
_ : ∞ (τ1 6P σ1) → ∞ (σ2 6P τ2) → σ1 _ σ2 6W τ1 _ τ2

trans : τ1 6W τ2 → τ2 6W τ3 → τ1 6W τ3

The cases of sound listed above are now part of a function soundW which is used
by whnf to interpret sound:

soundW : All (Valid 6W) A → A ` σ 6 τ → σ 6W τ
. . .
soundW valid (trans τ16τ2 τ26τ3) = trans (soundW valid τ16τ2)

(soundW valid τ26τ3)
soundW valid (hyp h) = lookup valid h
soundW valid (τ16σ1 _ σ26τ2) = proof

where proof =] sound (proof :: valid) τ16σ1 _
] sound (proof :: valid) σ26τ2

whnf : σ 6P τ → σ 6W τ
whnf (sound valid σ6τ) = soundW valid σ6τ

Note that proof is now guarded. For the definitions of J KW, J KP and sound ,
see the accompanying code (Danielsson 2010a).

We have not found a proof of completeness of ` 6 with respect to 6
which does not use a decision procedure for subtyping. This is not entirely sur-
prising: such a completeness proof must turn a potentially infinite proof of σ 6 τ
into a finite proof of [] ` σ 6 τ , so some “trick” is necessary. With a suitably
formulated decision procedure at hand the trick is simple. We have implemented
a decision procedure dec which gives either a proof of [] ` σ 6 τ , or a proof
which shows that σ 6 τ is impossible. In the first case we are done, and in
the second case a contradiction can be derived. (The decision procedure dec, to-
gether with the proof of soundness of ` 6 , is used to implement the decision
procedure 6? mentioned above.)

7 Postulating an Admissible Rule May Not Be Sound

Given an inductively defined inference system one can add a new rule correspond-
ing to an admissible property without changing the set of derivable properties. It
is easy to prove this statement by defining functions which translate between the
two inference systems. Translating derivations from the old to the new inference
system is trivial. When translating in the other direction one can replace all oc-
currences of the new rule with instances of the proof of admissibility; this process
can be implemented using recursion over the structure of the input derivation.

However, when coinduction comes into the picture this property no longer
holds (de Vries 2009). The proof given above breaks down because there is no
guarantee that the second translation can be implemented in a productive way.
The problem is that, although the admissible rule has a proof, this proof may
not be sufficiently “contractive” (for instance, the proof may replace coinductive
rules in the input derivation with inductive rules in the output derivation).

The following example illustrates the problem. Recall the definition of the
partiality monad in Sect. 2.6. One can prove that the equality ∼= is an equiv-
alence relation, and that it is not trivial (assuming that the result type A is
inhabited). Let us now add transitivity as an inductive rule:

data ∼= : A ν → A ν → Set where
. . .
trans : x ∼= y → y ∼= z → x ∼= z

Given this new constructor we can prove, using guarded coinduction, that the
relation is trivial:

trivial : (x y : A ν) → x ∼= y
trivial x y = trans (stepr (refl x))

(trans (step (] trivial x y))
(stepl (refl y)))

The proof uses the following steps: x ∼= step (] x) ∼= step (] y) ∼= y . (The
function refl is a proof of reflexivity.)

This problem does not affect the definition of subtyping given above, which
has been proved to be equivalent to other definitions from the literature. How-
ever, it means that one should exercise caution when defining relations using
mixed induction and coinduction, and avoid relying on results or intuitions which
are only valid in the inductive case. Note that the problem with ∼= is closely
related to the problem of weak bisimulation up to weak bisimilarity (Sangiorgi
and Milner 1992); presumably some of the techniques which have been developed
to address the latter problem are also applicable to the former.

There are actually several different ways in which one can close a coinduc-
tively defined binary relation

data ∼ : A → A → Set where
. . .

under transitivity. We list three:

1. One can include transitivity as a coinductive constructor:

data ∼ : A → A → Set where
. . .
trans : ∞ (x ∼ y) → ∞ (y ∼ z) → x ∼ z

This amounts to defining the largest relation which is closed under transi-
tivity, and is not very useful, as pointed out in the introduction.

2. One can define the least relation which includes ∼ and is closed under
transitivity:

data ∼′ : A → A → Set where
include : x ∼ y → x ∼′ y
trans : x ∼′ y → y ∼′ z → x ∼′ z

This “solves” the problem outlined above, because if ∼ is transitive, then
∼ and ∼′ are equivalent. However, in any given proof trans can only be

used a finite number of times, and this can be a rather severe restriction.
For instance, the definition of 6 in Sect. 5 would not have been correct if
trans had been defined using this method.

3. Finally one can include transitivity as an inductive constructor, like in the
definition of 6 :

data ∼ : A → A → Set where
. . .
trans : x ∼ y → y ∼ z → x ∼ z

This definition often gives a more useful notion of transitivity than the one
above, because transitivity can be used anywhere in a proof, infinitely often,
as long as there is never a stretch of infinitely many transitivity constructors
without any intervening coinductive constructor. However, this notion of
transitivity can sometimes be too strong, as illustrated for the partiality
monad equality ∼= above: the “infinitely transitive closure” is sometimes
the trivial relation.

8 Conclusions

We have showed that coinduction can be usefully combined with the rule of
transitivity, and discussed under what conditions the technique is applicable.
We have also defined subtyping for recursive types in a new way, and compared
this definition to a similar axiomatisation given by Brandt and Henglein (1998).
Brandt and Henglein note that their inductive encoding of coinduction seems
to be closely related to guarded coinduction, but leave a precise comparison to
future work. This paper provides a precise comparison, albeit not for the general
case, but only for a particular example (the subtyping relations given in Sects. 5
and 6).

It is our hope that this paper provides a compelling example of the use
of mixed induction and coinduction. We have found this technique useful in
a number of situations (Danielsson and Altenkirch 2009), and encourage more
programming language researchers—as well as programmers interested in guar-
anteed totality—to become familiar with it.

Acknowledgements Nils Anders Danielsson would like to thank Peter Han-
cock for introducing him to the technique of mixed induction and coinduction.
Thorsten Altenkirch would like to thank Nicolas Oury for joint work on ΠΣ
which has had an impact on the work in this paper, and Graham Hutton for
earlier joint but unpublished work on coinductive reasoning. Both authors would
like to thank Conor McBride, Nicolas Oury and Anton Setzer for many discus-
sions about coinduction which have influenced this work, and Graham Hutton,
Henrik Nilsson and some anonymous reviewers for feedback which improved the
presentation. Both authors gratefully acknowledge funding from EPSRC (grant
codes: EP/E04350X/1 and EP/G034109/1).

References

Andreas Abel. Mixed inductive/coinductive types and strong normalization. In Pro-
gramming Languages and Systems, 5th Asian Symposium, APLAS 2007, volume
4807 of LNCS, pages 286–301, 2009.

Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion.
Journal of Functional Programming, 12(1):1–41, 2002.

The Agda Team. The Agda Wiki. Available at http://wiki.portal.chalmers.se/

agda/, 2010.
Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions

on Programming Languages and Systems, 15(4):575–631, 1993.
G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination

of recursive definitions. Mathematical Structures in Computer Science, 14(1):97–141,
2004.

Jon Barwise. The Situation in Logic, volume 17 of CSLI Lecture Notes, chapter Mixed
Fixed Points. Center for the Study of Language and Information, Leland Stanford
Junior University, 1989.

Julian Bradfield and Colin Stirling. Modal mu-calculi. In Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning. Elsevier, 2007.

Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equal-
ity and subtyping. Fundamenta Informaticae, 33(4):309–338, 1998.

Venanzio Capretta. General recursion via coinductive types. Logical Methods in Com-
puter Science, 1(2):1–28, 2005.

Thierry Coquand. Infinite objects in type theory. In Types for Proofs and Programs,
International Workshop TYPES’93, volume 806 of LNCS, pages 62–78, 1994.

Patrick Cousot and Radhia Cousot. Inductive definitions, semantics and abstract in-
terpretations. In POPL ’92, Proceedings of the 19th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 83–94, 1992.

Nils Anders Danielsson. Code accompanying the paper. Currently available from
http://www.cs.nott.ac.uk/~nad/, 2010a.

Nils Anders Danielsson. Beating the productivity checker using embedded languages.
Draft, 2010b.

Nils Anders Danielsson and Thorsten Altenkirch. Mixing induction and coinduction.
Draft, 2009.

Edsko de Vries. Re: [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not
sound? (was: Need help with coinductive proof). Message to the Coq-Club mailing
list, August 2009.

Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Recursive subtyping
revealed. Journal of Functional Programming, 12(6):511–548, 2002.

Jeremy Gibbons and Graham Hutton. Proof methods for corecursive programs. Fun-
damenta Informaticae, 66(4):353–366, 2005.

Eduardo Giménez. Un Calcul de Constructions Infinies et son Application à la
Vérification de Systèmes Communicants. PhD thesis, Ecole Normale Supérieure
de Lyon, 1996.

Andrew D. Gordon. Bisimilarity as a theory of functional programming. Theoretical
Computer Science, 228(1–2):5–47, 1999.

Tatsuya Hagino. A Categorical Programming Language. PhD thesis, University of
Edinburgh, 1987.

Peter Hancock, Dirk Pattinson, and Neil Ghani. Representations of stream processors
using nested fixed points. Logical Methods in Computer Science, 5(3:9), 2009.

Ulrich Hensel and Bart Jacobs. Proof principles for datatypes with iterated recursion.
In Category Theory and Computer Science, 7th International Conference, CTCS ’97,
volume 1290 of LNCS, pages 220–241, 1997.

John Hughes and Andrew Moran. Making choices lazily. In FPCA ’95, Proceedings
of the seventh international conference on Functional programming languages and
computer architecture, pages 108–119, 1995.

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive subtyp-
ing. Mathematical Structures in Computer Science, 5(1):113–125, 1995.

Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Information
and Computation, 207(2):284–304, 2009.

Paul Blain Levy. Infinitary Howe’s method. In Proceedings of the Eighth Workshop
on Coalgebraic Methods in Computer Science (CMCS 2006), volume 164 of ENTCS,
pages 85–104, 2006.

Paul Francis Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell Uni-
versity, 1988.

Robin Milner. Operational and algebraic semantics of concurrent processes. In Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Semantics.
The MIT Press and Elsevier, 1990.

Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical Com-
puter Science, 87(1):209–220, 1991.

Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. HOLCF = HOL
+ LCF. Journal of Functional Programming, 9(2):191–223, 1999.

Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for
While; Big-step and small-step, relational and functional styles. In Theorem Proving
in Higher Order Logics, 22nd International Conference, TPHOLs 2009, volume 5674
of LNCS, pages 375–390, 2009.

Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology and Göteborg University, 2007.

David Park. On the semantics of fair parallelism. In Abstract Software Specifications,
volume 86 of LNCS, pages 504–526, 1980.

Christophe Raffalli. L’Arithmétique Fonctionnelle du Second Ordre avec Points Fixes.
PhD thesis, Université Paris VII, 1994.

Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”. In
CONCUR ’92, Third International Conference on Concurrency Theory, volume 630
of LNCS, pages 32–46, 1992.

D. A. Turner. Total functional programming. Journal of Universal Computer Science,
10(7):751–768, 2004.

Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict
language, without even being odd. In Proceedings of the 1998 ACM SIGPLAN
Workshop on ML, 1998.

